1
|
Wu Y, Xiong F, Ling J. The role of heat shock protein B8 in neuronal protection against oxidative stress and mitochondrial dysfunction: A literature review. Int Immunopharmacol 2024; 140:112836. [PMID: 39094362 DOI: 10.1016/j.intimp.2024.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Excessive oxidative stress triggers cerebrovascular and neurodegenerative diseases resulting in acute and chronic brain injury. However, the underlying mechanisms remain unknown. Levels of small heat shock protein B8 (HSPB8), which is highly expressed in the brain, are known to be significantly elevated in cerebral injury models. Exogenous HSPB8 protects the brain against mitochondrial damage. One potential mechanism underlying this protection is that HSPB8 overexpression alleviates the mitochondria-dependent pathways of apoptosis; mitochondrial biogenesis, fission, and mitophagy. Overexpression of HSPB8 may therefore have potential as a clinical therapy for cerebrovascular and neurodegenerative diseases. This review provides an overview of advances in the protective effects of HSPB8 against excessive cerebral oxidative stress, including the modulation of mitochondrial dysfunction and potent signaling pathways.
Collapse
Affiliation(s)
- Yanqing Wu
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan 430000, China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
2
|
Zhao C, Zhao R, Wu X, Tang K, Xu P, Chen X, Zhu P, He Y. Function of unconventional T cells in oral lichen planus revealed by single-cell RNA sequencing. Inflamm Res 2024; 73:1477-1492. [PMID: 39073597 DOI: 10.1007/s00011-024-01912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE We intended to map the single-cell profile of OLP, explore the molecular characteristics of unconventional T cells in OLP tissues. METHODS Buccal mucosa samples from OLP patients and healthy individuals were used to prepare single-cell suspension. Single-cell RNA sequencing was used to analyze the proportion of all the cells, and the molecular characteristics of unconventional T cells. Immunohistochemical staining was used to detect the expression of unconventional T cells marker genes. RESULTS The cell clusters from buccal mucosa were categorized into immune cells, fibroblasts, endothelial cells, and epithelial cells. Unconventional T cells with phenotype of CD247+TRDC+NCAM1+ were identified. Immunohistochemical staining revealed higher expression of unconventional T cell marker genes in OLP tissue, predominantly in the lamina propria. In OLP, unconventional T cells are in a unique stress response state, exhibited enhanced NF-κB signaling and apoptosis inhibition, enhanced heat shock protein genes expression, weakened cytotoxic function. A large number of ligand-receptor pairs were found between unconventional T cells and other cells, particularly with fibroblasts and endothelial cells. CONCLUSIONS This study mapped the single-cell profile of OLP, delineated the molecular characteristics of unconventional T cells in OLP, and uncovered that these unconventional T cells are in a stress response state.
Collapse
Affiliation(s)
- Chen Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Ruowen Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Xinwen Wu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kailin Tang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Xin Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Pingyi Zhu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Medicine, School of Stomatology, Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Zamotina MA, Muranova LK, Zabolotskii AI, Tyurin-Kuzmin PA, Kulebyakin KY, Gusev NB. Universal Adapter Protein Bag3 and Small Heat Shock Proteins. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1535-1545. [PMID: 39418513 DOI: 10.1134/s0006297924090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 10/19/2024]
Abstract
Bag3 (Bcl-2-associated athanogene 3) protein contains a number of functional domains and interacts with a wide range of different partner proteins, including small heat shock proteins (sHsps) and heat shock protein Hsp70. The ternary Bag3-sHsp-and Hsp70 complex binds denatured proteins and transports them to phagosomes, thus playing a key role in the chaperone-assisted selective autophagy (CASA). This complex also participates in the control of formation and disassembly of stress granules (granulostasis) and cytoskeleton regulation. As Bag3 and sHsps participate in multiple cellular processes, mutations in these proteins are often associated with neurodegenerative diseases and cardiomyopathy. The review discusses the role of sHsps in different processes regulated by Bag3.
Collapse
Affiliation(s)
- Maria A Zamotina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia K Muranova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Artur I Zabolotskii
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin Yu Kulebyakin
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Department of Biochemistry and Regenerative Biomedicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Wang B, Pratt MR. Potential for targeting small heat shock protein modifications. Trends Pharmacol Sci 2024; 45:583-585. [PMID: 38704305 PMCID: PMC11227382 DOI: 10.1016/j.tips.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Small heat shock proteins (sHSPs) play key roles in cellular stress and several human diseases. The direct effects of some post-translational modifications (PTMs) on certain sHSPs have been characterized, raising the possibility that small molecules could be used to modulate these modifications and indirectly up- or downregulate sHSP activity.
Collapse
Affiliation(s)
- Binyou Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Qin S, Wang R, Li J, Tang D, Shi Z. Quantitative Proteomics Reveals Manganese Alleviates Heat Stress of Broiler Myocardial Cells via Regulating Nucleic Acid Metabolism. Biol Trace Elem Res 2024; 202:1187-1202. [PMID: 37369963 DOI: 10.1007/s12011-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Heat stress threatens severely cardiac function by caused myocardial injury in poultry. Our previous study has showed that manganese (Mn) has a beneficial effect on heat-stress resistance of broiler. Therefore, we tried to confirm the alleviation mechanism through proteomic analysis after heat stress exposure to primary broiler myocardial cells pretreated with Mn. The experiment was divided into four groups: CON group (37 °C, cells without any treatment), HS group (43 °C, cells treatment with heat stress for 4 h), HS+MnCl2 group (cells treated with 20 μM MnCl2 before heat stress), and HS+Mn-AA group (cells treated with 20 μM Mn compound amino acid complex before heat stress). Proteome analysis using DIA identified 300 differentially expressed proteins (DEPs) between CON group and HS group; 93 and 121 DEPs were identified in inorganic manganese treatment group and organic manganese treatment group, respectively; in addition, there were 53 DEPs identified between inorganic and organic manganese group. Gene Ontology (GO) analysis showed that DEPs were mainly involved in binding, catalytic activity, response to stimulus, and metabolic process. DEPs of manganese pretreatment involved in a variety of biological regulatory pathways, and significantly influenced protein processing and repair in endoplasmic reticulum, apoptosis, and DNA replication and repair. These all seem to imply that manganese may help to resist cell damage induced by heat stress by regulating key node proteins. These findings contribute to a better understanding of the effects of manganese on overall protein changes during heat-stress and the possible mechanisms, as well as how to better use manganese to protect heart function in high temperature.
Collapse
Affiliation(s)
- Shizhen Qin
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Rui Wang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jinlu Li
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Defu Tang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhaoguo Shi
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
6
|
Wang J, Tomar D, Martin TG, Dubey S, Dubey PK, Song J, Landesberg G, McCormick MG, Myers VD, Merali S, Merali C, Lemster B, McTiernan CF, Khalili K, Madesh M, Cheung JY, Kirk JA, Feldman AM. Bag3 Regulates Mitochondrial Function and the Inflammasome Through Canonical and Noncanonical Pathways in the Heart. JACC Basic Transl Sci 2023; 8:820-839. [PMID: 37547075 PMCID: PMC10401293 DOI: 10.1016/j.jacbts.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhadendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas G. Martin
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Shubham Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Praveen K. Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gavin Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Carmen Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Bonnie Lemster
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charles F. McTiernan
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
8
|
Chu Y, Dai E, Li Y, Han G, Pei G, Ingram DR, Thakkar K, Qin JJ, Dang M, Le X, Hu C, Deng Q, Sinjab A, Gupta P, Wang R, Hao D, Peng F, Yan X, Liu Y, Song S, Zhang S, Heymach JV, Reuben A, Elamin YY, Pizzi MP, Lu Y, Lazcano R, Hu J, Li M, Curran M, Futreal A, Maitra A, Jazaeri AA, Ajani JA, Swanton C, Cheng XD, Abbas HA, Gillison M, Bhat K, Lazar AJ, Green M, Litchfield K, Kadara H, Yee C, Wang L. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat Med 2023; 29:1550-1562. [PMID: 37248301 PMCID: PMC11421770 DOI: 10.1038/s41591-023-02371-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Tumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, TSTR, characterized by heat shock gene expression. TSTR cells are detectable in situ in the tumor microenvironment across various cancer types, mostly within lymphocyte aggregates or potential tertiary lymphoid structures in tumor beds or surrounding tumor edges. T cell states/compositions correlated with genomic, pathological and clinical features in 375 patients from 23 cohorts, including 171 patients who received immune checkpoint blockade therapy. We also found significantly upregulated heat shock gene expression in intratumoral CD4/CD8+ cells following immune checkpoint blockade treatment, particularly in nonresponsive tumors, suggesting a potential role of TSTR cells in immunotherapy resistance. Our well-annotated T cell reference maps, web portal and automatic alignment/annotation tool could provide valuable resources for T cell therapy optimization and biomarker discovery.
Collapse
Affiliation(s)
- Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yating Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krupa Thakkar
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Jiang-Jiang Qin
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Can Hu
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pravesh Gupta
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaojun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa P Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Xiang-Dong Cheng
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Litchfield
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Kumar R, Gupta ID, Verma A, Singh S, Kumari R, Verma N. Genetic polymorphism in HSPB6 gene and their association with heat tolerance traits in Indian Karan Fries ( Bos taurus x Bos indicus) cattle. Anim Biotechnol 2022; 33:1416-1427. [PMID: 33781169 DOI: 10.1080/10495398.2021.1899939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) act as a chaperone activity ensuring the folding, unfolding, and refolding of denatured proteins, which help in a protective role during thermal stress in dairy cattle. This study aimed to detect genetic variations of the HSPB6 gene and to determine their association with heat tolerance traits in Karan Fries cattle. Five single nucleotide polymorphisms (SNPs) (SNP 1-5) were reported in the Karan Fries cattle, which included three transitions viz. SNP1-g.161G > A, SNP2-g.436G > A, and SNP4-g.2152A > G and two transversions viz. SNP3-g.1743C > G, SNP5-g.2417A > T. The association analysis revealed that the three SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G were significantly (p < 0.01) associated with the respiration rate (RR) and rectal temperature (RT) (°C) traits. Furthermore, in the case of heat tolerance coefficient (HTC) trait was found significantly associated (p < 0.01) with SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G. The Hap 4 (GACAT) was found to more adaptable than cattle of other haplotypes as reflected by lower values of RR, RT and HTC. This study provides the first association analyses between the SNPs and haplotypes of HSPB6 gene and heat tolerance traits in Karan Fries cattle, which could be used as effective SNP markers in genetic selection for heat tolerance in cattle breeding program.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Animal and Fishery Sciences, ICAR-Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Ishwar Dayal Gupta
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Sohanvir Singh
- Division of Dairy Cattle Physiology, ICAR-National Dairy Research Institute, Karnal, India
| | - Ragini Kumari
- Block Animal Husbandry Officer, Ekangarsarai, Nalanda, India
| | - Nishant Verma
- Department of Animal Genetics and Breeding, Dr. G. C. Negi College of Veterinary and Animal Sciences, Palampur, India
| |
Collapse
|
10
|
Yerabandi N, Kouznetsova VL, Kesari S, Tsigelny IF. The role of BAG3 in dilated cardiomyopathy and its association with Charcot-Marie-Tooth disease type 2. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2022; 41:59-75. [PMID: 35832504 PMCID: PMC9237749 DOI: 10.36185/2532-1900-071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
Bcl2-associated athanogene 3 (BAG3) is a multifunctional cochaperone responsible for protein quality control within cells. BAG3 interacts with chaperones HSPB8 and Hsp70 to transport misfolded proteins to the Microtubule Organizing Center (MTOC) and degrade them in autophagosomes in a process known as Chaperone Assisted Selective Autophagy (CASA). Mutations in the second conserved IPV motif of BAG3 are known to cause Dilated Cardiomyopathy (DCM) by inhibiting adequate removal of non-native proteins. The proline 209 to leucine (P209L) BAG3 mutant in particular causes the aggregation of BAG3 and misfolded proteins as well as the sequestration of essential chaperones. The exact mechanisms of protein aggregation in DCM are unknown. However, the similar presence of insoluble protein aggregates in Charcot-Marie-Tooth disease type 2 (CMT2) induced by the proline 182 to leucine (P182L) HSPB1 mutant points to a possible avenue for future research: IPV motif. In this review, we summarize the molecular mechanisms of CASA and the currently known pathological effects of mutated BAG3 in DCM. Additionally, we will provide insight on the importance of the IPV motif in protein aggregation by analyzing a potential association between DCM and CMT2.
Collapse
Affiliation(s)
- Nitya Yerabandi
- REHS program, San Diego Supercomputer Center, University of California, San Diego, CA, USA
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California, San Diego, CA, USA,Biana, La Jolla, CA, USA
| | | | - Igor F. Tsigelny
- Correspondence Igor F. Tsigelny Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505, USA. E-mail:
| |
Collapse
|
11
|
Zhang N, Zhang Y, Miao W, Shi C, Chen Z, Wu B, Zou Y, Ma Q, You S, Lu S, Huang X, Liu J, Xu J, Cao L, Sun Y. An unexpected role for BAG3 in regulating PARP1 ubiquitination in oxidative stress-related endothelial damage. Redox Biol 2022; 50:102238. [PMID: 35066290 PMCID: PMC8783151 DOI: 10.1016/j.redox.2022.102238] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress-associated endothelial damage is the initiation factor of cardiovascular disease, and protein posttranslational modifications play critical roles in this process. Bcl-2-associated athanogene 3 (BAG3) is a molecular chaperone regulator of the BAG family, which interacts with various proteins and influences cell survival by activating multiple pathways. BAG3 undergoes posttranslational modifications; however, research evaluating BAG3 acetylation and its regulatory mechanism is lacking. In addition, the interacting protein and regulatory mechanism of BAG3 in oxidative stress-associated endothelial damage remain unclear. Here, key molecular interactions and protein modifications of BAG3 were identified in oxidative stress-associated endothelial damage. Endothelial-specific BAG3 knockout in the mouse model starkly enhances oxidative stress-associated endothelial damage and vascular remodeling, while BAG3 overexpression in mice significantly relieves this process. Mechanistically, poly(ADP-ribose) polymerase 1 (PARP1), causing oxidative stress, was identified as a novel physiological substrate of BAG3. Indeed, BAG3 binds to PARP1's BRCT domain to promote its ubiquitination (K249 residue) by enhancing the E3 ubiquitin ligase WWP2, which leads to proteasome-induced PARP1 degradation. Furthermore, we surprisingly found that BAG3 represents a new substrate of the acetyltransferase CREB-binding protein (CBP) and the deacetylase Sirtuin 2 (SIRT2) under physiological conditions. CBP/SIRT2 interacted with BAG3 and acetylated/deacetylated BAG3's K431 residue. Finally, deacetylated BAG3 promoted the ubiquitination of PARP1. This work reveals a novel regulatory system, with deacetylation-dependent regulation of BAG3 promoting PARP1 ubiquitination and degradation via enhancing WWP2, which is one possible mechanism to decrease vulnerability of oxidative stress in endothelial cells. Endothelial-specific BAG3 knockout in mice aggravates oxidative stress endothelial injury. BAG3 transgenic mice relieves oxidative stress endothelial injury. BAG3 promotes ubiquitination at the K249 residue of PARP1 via mobilization of the E3 ubiquitin ligase WWP2. CBP/SIRT2 interacted with BAG3 and acetylated/deacetylated BAG3's K431 residue. Deacetylated BAG3 promoted the ubiquitination of PARP1.
Collapse
|
12
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
13
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Wang R, Wang M, Liu B, Xu H, Ye J, Sun X, Sun G. Calenduloside E protects against myocardial ischemia-reperfusion injury induced calcium overload by enhancing autophagy and inhibiting L-type Ca 2+ channels through BAG3. Biomed Pharmacother 2021; 145:112432. [PMID: 34798472 DOI: 10.1016/j.biopha.2021.112432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Calenduloside E (CE) is a saponin isolated from Aralia elata (Miq) Seem, which has anti-cardiovascular disease effects. This study aims to evaluate the anti-myocardial ischemia-reperfusion injury (MIRI) mechanisms of CE and regulation of BAG3 on calcium overload. We adopted siRNA to interfere with BAG3 expression in H9c2 cardiomyocytes and used adenovirus to interfere with BAG3 expression (Ad-BAG3) in primary neonatal rat cardiomyocytes (PNRCMs) to clarify the role of BAG3 in mitigating MIRI by CE. The results showed that CE reduced calcium overload, and Ad-BAG3 had a significant regulatory effect on L-type Ca2+ channels (LTCC) but no effects on other calcium-related proteins. And BAG3 and LTCC were colocalized in myocardial tissue and BAG3 inhibited LTCC expression. Surprisingly, CE had no regulatory effect on LTCC mRNA, but CE promoted LTCC degradation through the autophagy-lysosomal pathway rather than the ubiquitination-protease pathway. Autophagy inhibitor played a negative regulation of cardiomyocyte contraction rhythm and field potential signals. Ad-BAG3 inhibited autophagy by regulating the expression of autophagy-related proteins and autophagy agonist treatment suppressed calcium overload. Therefore, CE promoted autophagy through BAG3, thereby regulating LTCC expression, inhibiting calcium overload, and ultimately reducing MIRI.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Xiamen Cardiovascular Hospital, Xiamen University, Xiamen 361015, Fujian, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Bo Liu
- Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Huibo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun 130021, Jilin, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
15
|
Hsp22 Deficiency Induces Age-Dependent Cardiac Dilation and Dysfunction by Impairing Autophagy, Metabolism, and Oxidative Response. Antioxidants (Basel) 2021; 10:antiox10101550. [PMID: 34679684 PMCID: PMC8533440 DOI: 10.3390/antiox10101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 22 (Hsp22) is a small heat shock protein predominantly expressed in skeletal and cardiac muscle. Previous studies indicate that Hsp22 plays a vital role in protecting the heart against cardiac stress. However, the essential role of Hsp22 in the heart under physiological conditions remains largely unknown. In this study, we used an Hsp22 knockout (KO) mouse model to determine whether loss of Hsp22 impairs cardiac growth and function with increasing age under physiological conditions. Cardiac structural and functional alterations at baseline were measured using echocardiography and invasive catheterization in Hsp22 KO mice during aging transition compared to their age-matched wild-type (WT) littermates. Our results showed that Hsp22 deletion induced progressive cardiac dilation along with declined function during the aging transition. Mechanistically, the loss of Hsp22 impaired BCL-2-associated athanogene 3 (BAG3) expression and its associated cardiac autophagy, undermined cardiac energy metabolism homeostasis and increased oxidative damage. This study showed that Hsp22 played an essential role in the non-stressed heart during the early stage of aging, which may bring new insight into understanding the pathogenesis of age-related dilated cardiomyopathy.
Collapse
|
16
|
Kirk JA, Cheung JY, Feldman AM. Therapeutic targeting of BAG3: considering its complexity in cancer and heart disease. J Clin Invest 2021; 131:e149415. [PMID: 34396980 DOI: 10.1172/jci149415] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bcl2-associated athanogene-3 (BAG3) is expressed ubiquitously in humans, but its levels are highest in the heart, the skeletal muscle, and the central nervous system; it is also elevated in many cancers. BAG3's diverse functions are supported by its multiple protein-protein binding domains, which couple with small and large heat shock proteins, members of the Bcl2 family, other antiapoptotic proteins, and various sarcomere proteins. In the heart, BAG3 inhibits apoptosis, promotes autophagy, couples the β-adrenergic receptor with the L-type Ca2+ channel, and maintains the structure of the sarcomere. In cancer cells, BAG3 binds to and supports an identical array of prosurvival proteins, and it may represent a therapeutic target. However, the development of strategies to block BAG3 function in cancer cells may be challenging, as they are likely to interfere with the essential roles of BAG3 in the heart. In this Review, we present the current knowledge regarding the biology of this complex protein in the heart and in cancer and suggest several therapeutic options.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Joseph Y Cheung
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Muranova LK, Shatov VM, Bukach OV, Gusev NB. Cardio-Vascular Heat Shock Protein (cvHsp, HspB7), an Unusual Representative of Small Heat Shock Protein Family. BIOCHEMISTRY (MOSCOW) 2021; 86:S1-S11. [PMID: 33827396 DOI: 10.1134/s0006297921140017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HspB7 is one of ten human small heat shock proteins. This protein is expressed only in insulin-dependent tissues (heart, skeletal muscle, and fat tissue), and expression of HspB7 is regulated by many different factors. Single nucleotide polymorphism is characteristic for the HspB7 gene and this polymorphism correlates with cardio-vascular diseases and obesity. HspB7 has an unusual N-terminal sequence, a conservative α-crystallin domain, and very short C-terminal domain lacking conservative IPV tripeptide involved in a small heat shock proteins oligomer formation. Nevertheless, in the isolated state HspB7 forms both small oligomers (probably dimers) and very large oligomers (aggregates). HspB7 is ineffective in suppression of amorphous aggregation of model proteins induced by heating or reduction of disulfide bonds, however it is very effective in prevention of aggregation of huntingtin fragments enriched with Gln residues. HspB7 can be an effective sensor of electrophilic agents. This protein interacts with the contractile and cytoskeleton proteins (filamin C, titin, and actin) and participates in protection of the contractile apparatus and cytoskeleton from different adverse conditions. HspB7 possesses tumor suppressive activity. Further investigations are required to understand molecular mechanisms of HspB7 participation in numerous biological processes.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olesya V Bukach
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Shatov VM, Strelkov SV, Gusev NB. The Heterooligomerization of Human Small Heat Shock Proteins Is Controlled by Conserved Motif Located in the N-Terminal Domain. Int J Mol Sci 2020; 21:ijms21124248. [PMID: 32549212 PMCID: PMC7352286 DOI: 10.3390/ijms21124248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 01/18/2023] Open
Abstract
Ubiquitously expressed human small heat shock proteins (sHsps) HspB1, HspB5, HspB6 and HspB8 contain a conserved motif (S/G)RLFD in their N-terminal domain. For each of them, we prepared mutants with a replacement of the conserved R by A (R/A mutants) and a complete deletion of the pentapeptide (Δ mutants) and analyzed their heterooligomerization with other wild-type (WT) human sHsps. We found that WT HspB1 and HspB5 formed heterooligomers with HspB6 only upon heating. In contrast, both HspB1 mutants interacted with WT HspB6 even at low temperature. HspB1/HspB6 heterooligomers revealed a broad size distribution with equimolar ratio suggestive of heterodimers as building blocks, while HspB5/HspB6 heterooligomers had an approximate 2:1 ratio. In contrast, R/A or Δ mutants of HspB6, when mixed with either HspB1 or HspB5, resulted in heterooligomers with a highly variable molar ratio and a decreased HspB6 incorporation. No heterooligomerization of HspB8 or its mutants with either HspB1 or HspB5 could be detected. Finally, R/A or Δ mutations had no effect on heterooligomerization of HspB1 and HspB5 as analyzed by ion exchange chromatography. We conclude that the conserved N-terminal motif plays an important role in heterooligomer formation, as especially pronounced in HspB6 lacking the C-terminal IXI motif.
Collapse
Affiliation(s)
- Vladislav M. Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian;
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Nikolai B. Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian;
- Correspondence:
| |
Collapse
|
20
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
21
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|