1
|
Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Hill KD, Anderson LW, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F. ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. Cell Rep 2024; 43:114829. [PMID: 39365700 DOI: 10.1016/j.celrep.2024.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we develop a series of genetically engineered mouse models of treatment-naive and -experienced NTRK1/2/3 fusion-driven gliomas. All tested NTRK fusions are oncogenic in vivo. The NTRK variant, N-terminal fusion partners, and resistance-associated point mutations all influence tumor histology and aggressiveness. Additional tumor suppressor losses greatly enhance tumor aggressiveness. Treatment with TRK kinase inhibitors significantly extends the survival of NTRK fusion-driven glioma mice, but fails to fully eradicate tumors, leading to recurrence upon treatment discontinuation. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools to study therapy resistance of NTRK fusion tumors.
Collapse
MESH Headings
- Animals
- Glioma/genetics
- Glioma/pathology
- Glioma/drug therapy
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Disease Models, Animal
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Receptor, trkA/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/antagonists & inhibitors
- Humans
- Drug Resistance, Neoplasm/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Receptor, trkC/antagonists & inhibitors
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
Collapse
Affiliation(s)
- Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alex Shimura Yamashita
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Madeline E West
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julia Walker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James Z Yan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David C Quist
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Neriah Alvinez
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kimberly D Hill
- Pharmacokinetics Laboratory, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Larry W Anderson
- Pharmacokinetics Laboratory, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra K Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Zheng Y, Wang X, Ji Q, Fang A, Song L, Xu X, Lin Y, Peng Y, Yu J, Xie L, Chen F, Li X, Zhu S, Zhang B, Zhou L, Yu C, Wang Y, Wang L, Hu H, Zhang Z, Liu B, Wu Z, Li W. OH2 oncolytic virus: A novel approach to glioblastoma intervention through direct targeting of tumor cells and augmentation of anti-tumor immune responses. Cancer Lett 2024; 589:216834. [PMID: 38537773 DOI: 10.1016/j.canlet.2024.216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Glioblastoma (GBM), the deadliest central nervous system cancer, presents a poor prognosis and scant therapeutic options. Our research spotlights OH2, an oncolytic viral therapy derived from herpes simplex virus 2 (HSV-2), which demonstrates substantial antitumor activity and favorable tolerance in GBM. The extraordinary efficacy of OH2 emanates from its unique mechanisms: it selectively targets tumor cells replication, powerfully induces cytotoxic DNA damage stress, and kindles anti-tumor immune responses. Through single-cell RNA sequencing analysis, we discovered that OH2 not only curtails the proliferation of cancer cells and tumor-associated macrophages (TAM)-M2 but also bolsters the infiltration of macrophages, CD4+ and CD8+ T cells. Further investigation into molecular characteristics affecting OH2 sensitivity revealed potential influencers such as TTN, HMCN2 or IRS4 mutations, CDKN2A/B deletion and IDO1 amplification. This study marks the first demonstration of an HSV-2 derived OV's effectiveness against GBM. Significantly, these discoveries have driven the initiation of a phase I/II clinical trial (ClinicalTrials.gov: NCT05235074). This trial is designed to explore the potential of OH2 as a therapeutic option for patients with recurrent central nervous system tumors following surgical intervention.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaomin Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiang Ji
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aizhong Fang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lairong Song
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Lin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Peng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianyu Yu
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Xie
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sipeng Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Botao Zhang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lili Zhou
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunna Yu
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - YaLi Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liang Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ziyi Zhang
- Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.
| | - Zhen Wu
- China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
3
|
Rupert PB, Buerger M, Girard EJ, Frutoso M, Parrilla D, Ng K, Gooley T, Groh V, Strong RK. Preclinical characterization of Pan-NKG2D ligand-binding NKG2D receptor decoys. Heliyon 2024; 10:e28583. [PMID: 38586421 PMCID: PMC10998067 DOI: 10.1016/j.heliyon.2024.e28583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
NKG2D and its ligands are critical regulators of protective immune responses controlling infections and cancer, defining a crucial immune signaling axis. Current therapeutic efforts targeting this axis almost exclusively aim at enhancing NKG2D-mediated effector functions. However, this axis can drive disease processes when dysregulated, in particular, driving stem-like cancer cell reprogramming and tumorigenesis through receptor/ligand self-stimulation on tumor cells. Despite complexities with its structure and biology, we developed multiple novel engineered proteins that functionally serve as axis-blocking NKG2D "decoys" and report biochemical, structural, in vitro, and in vivo evaluation of their functionality.
Collapse
Affiliation(s)
- Peter B Rupert
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Matthew Buerger
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Marie Frutoso
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Don Parrilla
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kevin Ng
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Theodore Gooley
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Veronika Groh
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Roland K Strong
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
4
|
Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F. ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584849. [PMID: 38558981 PMCID: PMC10979979 DOI: 10.1101/2024.03.13.584849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas. Both the TRK kinase domain and the N-terminal fusion partners influenced tumor histology and aggressiveness. Treatment with TRK kinase inhibitors significantly extended survival of NTRK fusion-driven glioma mice in a fusion- and inhibitor-dependent manner, but tumors ultimately recurred due to the presence of treatment-resistant persister cells. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools for preclinical testing of novel inhibitors and to study the cellular responses of NTRK fusion-driven gliomas to therapy.
Collapse
Affiliation(s)
- Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alex Shimura Yamashita
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Madeline E West
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julia Walker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James Z Yan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David C Quist
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Neriah Alvinez
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra K Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Chen H, Li T, Liu Z, Tang S, Tong J, Tao Y, Zhao Z, Li N, Mao C, Shen J, Wan M. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat Commun 2023; 14:941. [PMID: 36804924 PMCID: PMC9941476 DOI: 10.1038/s41467-022-35709-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/20/2022] [Indexed: 02/22/2023] Open
Abstract
The major challenges of immunotherapy for glioblastoma are that drugs cannot target tumor sites accurately and properly activate complex immune responses. Herein, we design and prepare a kind of chemotactic nanomotor loaded with brain endothelial cell targeting agent angiopep-2 and anti-tumor drug (Lonidamine modified with mitochondrial targeting agent triphenylphosphine, TLND). Reactive oxygen species and inducible nitric oxide synthase (ROS/iNOS), which are specifically highly expressed in glioblastoma microenvironment, are used as chemoattractants to induce the chemotactic behavior of the nanomotors. We propose a precise targeting strategy of brain endothelial cells-tumor cells-mitochondria. Results verified that the released NO and TLND can regulate the immune circulation through multiple steps to enhance the effect of immunotherapy, including triggering the immunogenic cell death of tumor, inducing dendritic cells to mature, promoting cytotoxic T cells infiltration, and regulating tumor microenvironment. Moreover, this treatment strategy can form an effective immune memory effect to prevent tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Shuwan Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Jintao Tong
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
6
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Li SJ, Sun ZJ. Fueling immune checkpoint blockade with oncolytic viruses: Current paradigms and challenges ahead. Cancer Lett 2022; 550:215937. [DOI: 10.1016/j.canlet.2022.215937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
8
|
Gospel of malignant Glioma: Oncolytic virus therapy. Gene 2022; 818:146217. [PMID: 35093451 DOI: 10.1016/j.gene.2022.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Glioma accounts for nearly 80% of all intracranial malignant tumors. It is a major challenge to society as it is causes to impaired brain function in many patients. Currently, gliomas are mainly treated with surgery, postoperative radiotherapy, and chemotherapy. However, the curative effects of these treatments are not satisfactory. Oncolytic virus (OV) is a novel treatment which works by activating the immune functions and inducing apoptosis of tumor cells. The OV propagates indefinitely in the host cell, eventually leading to the death of host cell. Subsequently, a large number of antigens and signal molecules are released which exert antitumor immunity. Several preclinical and clinical studies have shown that G207, DNX2401, Zika and other viruses have important roles in malignant tumors. For example, these viruses can reduce the growth of tumor cells without causing severe complications. However, the known OVs have not been clearly classified. Herein, we divided OVs into neurotropic and non-neurophilic OVs based on whether the OVs are naturally neurotropic or not. The therapeutic effects of each group were compared. Finally, challenges encountered in the clinical application of OVs in the treatment of malignant gliomas were summarized.
Collapse
|
9
|
Jiang X, Shi Y, Chen X, Xu H, Liu B, Zhou F, Huang X, Cho WC, Li L, Pu J. NCAPG as a Novel Prognostic Biomarker in Glioma. Front Oncol 2022; 12:831438. [PMID: 35280743 PMCID: PMC8906777 DOI: 10.3389/fonc.2022.831438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-SMC condensin I complex subunit G (NCAPG) is expressed in various human cancers, including gliomas. However, its biological function in glioma remains unclear. The present study was designed to determine the biological functions of NCAPG in glioma and to evaluate the association of NCAPG expression with glioma progression. Methods Clinical data on patients with glioma were obtained from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Gene Expression Omnibus (GEO), and the Rembrandt and Gravendeel databases. The correlations among NCAPG expression, pathological characteristics, and clinical outcome were evaluated. In addition, the correlations of NCAPG expression with immune cell infiltration and glioma progression were analyzed. Results NCAPG expression was higher in gliomas than in adjacent normal tissues. Higher expression of NCAPG in gliomas correlated with poorer prognosis, unfavorable histological features, absence of mutations in the isocitrate dehydrogenase gene (IDH), absence of chromosome 1p and 19q deletions, and responses to chemoradiotherapy. Univariate and multivariate Cox analysis demonstrated, in addition to patient age, tumor grade, absence of IDH mutations, and absence of chromosome 1p and 19q deletions, NCAPG expression was independently prognostic of overall survival, disease-free survival, and progression-free survival in patients with glioma. In addition, high expression of NCAPG correlated with tumor infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Gene set enrichment analysis (GSEA) indicated that high NCAPG expression was associated with cell proliferation and immune response-related signaling pathways. NCAPG knockdown in glioma cell lines significantly reduced cell survival, proliferation, and migration. Conclusion NCAPG expression correlates with glioma progression and immune cell infiltration, suggesting that NCAPG expression may be a useful prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Xiulin Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, China
| | - Yulin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,College of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,College of Forensic Medicine, Kunming Medical University, Kunming, China.,Department of Neurosurgery, The Pu'er People's Hospital, Pu'er, China
| | - Haitao Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,College of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Bohu Liu
- Department of Neurosurgery, Kunming First People's Hospital, Kunming, China
| | - Fan Zhou
- Department of Neurosurgery, The Pu'er People's Hospital, Pu'er, China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Lihua Li
- College of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Immunomodulatory Arming Factors-The Current Paradigm for Oncolytic Vectors Relies on Immune Stimulating Molecules. Int J Mol Sci 2021; 22:ijms22169051. [PMID: 34445759 DOI: 10.3390/ijms22169051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The dogma of engineering oncolytic viral vectors has shifted from emphasizing the viral lysis of individual cancer cells to the recruitment and coordination of the adaptive immune system to clear the tumor. To accomplish this, researchers have been adding several classes of transgenes to their preferred viral platforms. The most prevalent of these include antibodies and targeting moieties, interleukins and cytokines, and genes which rely on small molecule co-administration for tumor killing. Most current vectors rely exclusively on one of these types of transgenes to elicit the desired immune response to clear tumors, but are not mutually exclusive, with several larger OVs armed with several of these factors. The common theme of emerging armed vectors is to simply initiate or enhance infiltration of effector CD8+ T cells to clear the tumor locally at OV infection sites, and systemically throughout the body where the OV has not infected tumor cells. The precision of oncolytic vectors to target a cell type or tissue remains its key advantage over small-molecule drugs. Unlike chemo- and other drug therapies, viral vectors can be made to specifically infect and grow within tumor cells. This ensures localized expression of the therapeutic transgene to the diseased tissue, thereby limiting systemic toxicity. This review will examine the immunomodulating transgenes of current OVs, describe their general effect on the immune system, and provide the rationale for each vector's use in clearing its targeted tumor.
Collapse
|
11
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
12
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
13
|
The Effect of Herpes Simplex Virus-Type-1 (HSV-1) Oncolytic Immunotherapy on the Tumor Microenvironment. Viruses 2021; 13:v13071200. [PMID: 34206677 PMCID: PMC8310320 DOI: 10.3390/v13071200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The development of cancer causes disruption of anti-tumor immunity required for surveillance and elimination of tumor cells. Immunotherapeutic strategies aim for the restoration or establishment of these anti-tumor immune responses. Cancer immunotherapies include immune checkpoint inhibitors (ICIs), adoptive cellular therapy (ACT), cancer vaccines, and oncolytic virotherapy (OVT). The clinical success of some of these immunotherapeutic modalities, including herpes simplex virus type-1 derived OVT, resulted in Food and Drug Administration (FDA) approval for use in treatment of human cancers. However, a significant proportion of patients do not respond or benefit equally from these immunotherapies. The creation of an immunosuppressive tumor microenvironment (TME) represents an important barrier preventing success of many immunotherapeutic approaches. Mechanisms of immunosuppression in the TME are a major area of current research. In this review, we discuss how oncolytic HSV affects the tumor microenvironment to promote anti-tumor immune responses. Where possible we focus on oncolytic HSV strains for which clinical data is available, and discuss how these viruses alter the vasculature, extracellular matrix and immune responses in the tumor microenvironment.
Collapse
|
14
|
Sulman EP, Eisenstat DD. World Cancer Day 2021 - Perspectives in Pediatric and Adult Neuro-Oncology. Front Oncol 2021; 11:659800. [PMID: 34041027 PMCID: PMC8142853 DOI: 10.3389/fonc.2021.659800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in our understanding of the molecular genetics of pediatric and adult brain tumors and the resulting rapid expansion of clinical molecular neuropathology have led to improvements in diagnostic accuracy and identified new targets for therapy. Moreover, there have been major improvements in all facets of clinical care, including imaging, surgery, radiation and supportive care. In selected cohorts of patients, targeted and immunotherapies have resulted in improved patient outcomes. Furthermore, adaptations to clinical trial design have facilitated our study of new agents and other therapeutic innovations. However, considerable work remains to be done towards extending survival for all patients with primary brain tumors, especially children and adults with diffuse midline gliomas harboring Histone H3 K27 mutations and adults with isocitrate dehydrogenase (IDH) wild-type, O6 guanine DNA-methyltransferase gene (MGMT) promoter unmethylated high grade gliomas. In addition to improvements in therapy and care, access to the advances in technology, such as particle radiation or biologic therapy, neuroimaging and molecular diagnostics in both developing and developed countries is needed to improve the outcome of patients with brain tumors.
Collapse
Affiliation(s)
- Erik P. Sulman
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
- NYU Langone Health, New York, NY, United States
| | - David D. Eisenstat
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Zhou Z, Tian J, Zhang W, Xiang W, Ming Y, Chen L, Zhou J. Multiple strategies to improve the therapeutic efficacy of oncolytic herpes simplex virus in the treatment of glioblastoma. Oncol Lett 2021; 22:510. [PMID: 33986870 DOI: 10.3892/ol.2021.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have attracted widespread attention as biological anticancer agents that can selectively kill tumor cells without affecting normal cells. Although progress has been made in therapeutic strategies, the prognosis of patients with glioblastoma (GBM) remains poor and no ideal treatment approach has been developed. Recently, oncolytic herpes simplex virus (oHSV) has been considered a promising novel treatment approach for GBM. However, the therapeutic efficacy of oHSV in GBM, with its intricate pathophysiology, remains unsatisfactory due to several obstacles, such as limited replication and attenuated potency of oHSV owing to deletions or mutations in virulence genes, and ineffective delivery of the therapeutic virus. Multiple strategies have attempted to identify the optimal strategy for the successful clinical application of oHSV. Several preclinical trials have demonstrated that engineering novel oHSVs, developing combination therapies and improving methods for delivering oHSV to tumor cells seem to hold promise for improving the efficacy of this virotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Junjie Tian
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wenyan Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Wirsching HG, Roth P, Weller M. A vasculature-centric approach to developing novel treatment options for glioblastoma. Expert Opin Ther Targets 2021; 25:87-100. [PMID: 33482697 DOI: 10.1080/14728222.2021.1881062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Glioblastoma is invariably deadly and is characterized by extensive vascularization and macrophage-dominant immunosuppression; nevertheless, anti-angiogenesis has so far failed to prolong overall survival of patients. Regardless of the problems in clinical development, the rationale for the application of anti-angiogenics in glioblastoma remains.Areas covered: Resistance to anti-angiogenics is discussed, including vessel co-option and amplification of hypoxic signaling in response to vessel destruction. The modulation of GSC and tumor-associated macrophages by dysfunctional tumor vessels and by hypoxia are outlined. Pharmacologic approaches to sensitizing glioblastomas to anti-angiogenics and evidence for the cooperation of anti-angiogenics with immunotherapies are summarized. Database search: https://pubmed.ncbi.nlm.nih.gov prior to December 12, 2020.Expert opinion: Despite drawbacks in the clinical development of vascular endothelial growth factor A (VEGF)-targeted agents, there is still rationale for the use of anti-angiogenics. The better understanding of vascular co-option and adverse effects of blood vessel destruction guides to improve strategies for vascular targeting. The pivotal role of the vasculature and of angiogenic factors such as VEGF for the induction and maintenance of immunosuppression in glioblastoma supports the use of anti-angiogenics in combination with immunotherapy. Proinflammatory repolarization of perivascular and perinecrotic tumor-associated macrophages is probably paramount for overcoming treatment resistance to virtually any treatment.
Collapse
Affiliation(s)
- Hans-Georg Wirsching
- Department of Neurology University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
19
|
Alexander J, LaPlant QC, Pattwell SS, Szulzewsky F, Cimino PJ, Caruso FP, Pugliese P, Chen Z, Chardon F, Hill AJ, Spurrell C, Ahrendsen D, Pietras A, Starita LM, Hambardzumyan D, Iavarone A, Shendure J, Holland EC. Multimodal single-cell analysis reveals distinct radioresistant stem-like and progenitor cell populations in murine glioma. Glia 2020; 68:2486-2502. [PMID: 32621641 PMCID: PMC7586969 DOI: 10.1002/glia.23866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
Radiation therapy is part of the standard of care for gliomas and kills a subset of tumor cells, while also altering the tumor microenvironment. Tumor cells with stem-like properties preferentially survive radiation and give rise to glioma recurrence. Various techniques for enriching and quantifying cells with stem-like properties have been used, including the fluorescence activated cell sorting (FACS)-based side population (SP) assay, which is a functional assay that enriches for stem-like tumor cells. In these analyses, mouse models of glioma have been used to understand the biology of this disease and therapeutic responses, including the radiation response. We present combined SP analysis and single-cell RNA sequencing of genetically-engineered mouse models of glioma to show a time course of cellular response to radiation. We identify and characterize two distinct tumor cell populations that are inherently radioresistant and also distinct effects of radiation on immune cell populations within the tumor microenvironment.
Collapse
Affiliation(s)
- Jes Alexander
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
- Department of Radiation OncologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Quincey C. LaPlant
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Siobhan S. Pattwell
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Frank Szulzewsky
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Patrick J. Cimino
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Francesca P. Caruso
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
- Bioinformatics Lab, BIOGEMAriano IrpinoItaly
| | - Pietro Pugliese
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
- Bioinformatics Lab, BIOGEMAriano IrpinoItaly
| | - Zhihong Chen
- Department of Oncological SciencesTisch Cancer Institute, and Department of Neurosurgery, Mount Sinai Icahn School of MedicineNew YorkNew YorkUSA
| | - Florence Chardon
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Andrew J. Hill
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Cailyn Spurrell
- Brotman Baty Institute for Precision MedicineSeattleWashingtonUSA
| | - Dakota Ahrendsen
- Brotman Baty Institute for Precision MedicineSeattleWashingtonUSA
| | | | - Lea M. Starita
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty Institute for Precision MedicineSeattleWashingtonUSA
| | - Dolores Hambardzumyan
- Department of Oncological SciencesTisch Cancer Institute, and Department of Neurosurgery, Mount Sinai Icahn School of MedicineNew YorkNew YorkUSA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology, Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Jay Shendure
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty Institute for Precision MedicineSeattleWashingtonUSA
- Allen Discovery Center for Cell LineageSeattleWashingtonUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Eric C. Holland
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| |
Collapse
|
20
|
Liu P, Wang Y, Wang Y, Kong Z, Chen W, Li J, Chen W, Tong Y, Ma W, Wang Y. Effects of oncolytic viruses and viral vectors on immunity in glioblastoma. Gene Ther 2020; 29:115-126. [PMID: 33191399 DOI: 10.1038/s41434-020-00207-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is regarded as an incurable disease due to its poor prognosis and limited treatment options. Virotherapies were once utilized on cancers for their oncolytic effects. And they are being revived on GBM treatment, as accumulating evidence presents the immunogenic effects of virotherapies in remodeling immunosuppressive GBM microenvironment. In this review, we focus on the immune responses induced by oncolytic virotherapies and viral vectors in GBM. The current developments of GBM virotherapies are briefly summarized, followed by a detailed depiction of their immune response. Limitations and lessons inferred from earlier experiments and trials are discussed. Moreover, we highlight the importance of engaging the immune responses induced by virotherapies into the multidisciplinary management of GBM.
Collapse
Affiliation(s)
- Penghao Liu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziren Kong
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wanqi Chen
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiatong Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenlin Chen
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanren Tong
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
21
|
Oncolytic Viruses as a Platform for the Treatment of Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207449. [PMID: 33050329 PMCID: PMC7589928 DOI: 10.3390/ijms21207449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumors remain incurable diseases. Although much effort has been devoted to improving patient outcome, multiple factors such as the high tumor heterogeneity, the strong tumor-induced immunosuppressive microenvironment, and the low mutational burden make the treatment of these tumors especially challenging. Thus, novel therapeutic strategies are urgent. Oncolytic viruses (OVs) are biotherapeutics that have been selected or engineered to infect and selectively kill cancer cells. Increasingly, preclinical and clinical studies demonstrate the ability of OVs to recruit T cells and induce durable immune responses against both virus and tumor, transforming a “cold” tumor microenvironment into a “hot” environment. Besides promising clinical results as a monotherapy, OVs can be powerfully combined with other cancer therapies, helping to overcome critical barriers through the creation of synergistic effects in the fight against brain cancer. Although many questions remain to be answered to fully exploit the therapeutic potential of OVs, oncolytic virotherapy will clearly be part of future treatments for patients with malignant brain tumors.
Collapse
|
22
|
Wirsching HG, Arora S, Zhang H, Szulzewsky F, Cimino PJ, Quéva C, Houghton AM, Glorioso JC, Weller M, Holland EC. Cooperation of oncolytic virotherapy with VEGF-neutralizing antibody treatment in IDH wildtype glioblastoma depends on MMP9. Neuro Oncol 2020; 21:1607-1609. [PMID: 31412117 DOI: 10.1093/neuonc/noz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hans-Georg Wirsching
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Huajia Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, Division of Neuropathology, University of Washington, Seattle, Washington, USA
| | | | - A McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurosurgery, University of Washington, Seattle, Washington, USA.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Chen Z, Herting CJ, Ross JL, Gabanic B, Puigdelloses Vallcorba M, Szulzewsky F, Wojciechowicz ML, Cimino PJ, Ezhilarasan R, Sulman EP, Ying M, Ma'ayan A, Read RD, Hambardzumyan D. Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia 2020; 68:2148-2166. [PMID: 32639068 DOI: 10.1002/glia.23883] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor. In addition to being genetically heterogeneous, GBMs are also immunologically heterogeneous. However, whether the differences in immune microenvironment are driven by genetic driver mutation is unexplored. By leveraging the versatile RCAS/tv-a somatic gene transfer system, we establish a mouse model for Classical GBM by introducing EGFRvIII expression in Nestin-positive neural stem/progenitor cells in adult mice. Along with our previously published Nf1-silenced and PDGFB-overexpressing models, we investigate the immune microenvironments of the three models of human GBM subtypes by unbiased multiplex profiling. We demonstrate that both the quantity and composition of the microenvironmental myeloid cells are dictated by the genetic driver mutations, closely mimicking what was observed in human GBM subtypes. These myeloid cells express high levels of the immune checkpoint protein PD-L1; however, PD-L1 targeted therapies alone or in combination with irradiation are unable to increase the survival time of tumor-bearing mice regardless of the driver mutations, reflecting the outcomes of recent human trials. Together, these results highlight the critical utility of immunocompetent mouse models for preclinical studies of GBM, making these models indispensable tools for understanding the resistance mechanisms of immune checkpoint blockade in GBM and immune cell-targeting drug discovery.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cameron J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA
| | - James L Ross
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Ben Gabanic
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Montse Puigdelloses Vallcorba
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program of Solid Tumors, Center for the Applied Medical Research (CIMA), Pamplona, Navarra, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Mingyao Ying
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory Usniversity School of Medicine, Atlanta, Georgia, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Chiu M, Armstrong EJL, Jennings V, Foo S, Crespo-Rodriguez E, Bozhanova G, Patin EC, McLaughlin M, Mansfield D, Baker G, Grove L, Pedersen M, Kyula J, Roulstone V, Wilkins A, McDonald F, Harrington K, Melcher A. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin Biol Ther 2020; 20:635-652. [PMID: 32067509 DOI: 10.1080/14712598.2020.1729351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have dramatically improved the outcome for cancer patients across multiple tumor types. However the response rates to ICI monotherapy remain relatively low, in part due to some tumors cultivating an inherently 'cold' immune microenvironment. Oncolytic viruses (OV) have the capability to promote a 'hotter' immune microenvironment which can improve the efficacy of ICI.Areas covered: In this article we conducted a literature search through Pubmed/Medline to identify relevant articles in both the pre-clinical and clinical settings for combining OVs with ICIs and discuss the impact of this approach on treatment as well as changes within the tumor microenvironment. We also explore the future directions of this novel combination strategy.Expert opinion: The imminent results of the Phase 3 study combining pembrolizumab with or without T-Vec injection are eagerly awaited. OV/ICI combinations remain one of the most promising avenues to explore in the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew Chiu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Edward John Lloyd Armstrong
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Vicki Jennings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Shane Foo
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Eva Crespo-Rodriguez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Galabina Bozhanova
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Martin McLaughlin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Gabriella Baker
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Lorna Grove
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Malin Pedersen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Joan Kyula
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Anna Wilkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Rider PJF, Uche IK, Sweeny L, Kousoulas KG. Anti-viral immunity in the tumor microenvironment: implications for the rational design of herpes simplex virus type 1 oncolytic virotherapy. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:193-199. [PMID: 33344108 DOI: 10.1007/s40588-019-00134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose of review The design of novel herpes simplex type I (HSV-1)-derived oncolytic virotherapies is a balancing act between safety, immunogenicity and replicative potential. We have undertaken this review to better understand how these considerations can be incorporated into rational approaches to the design of novel herpesvirus oncolytic virotherapies. Recent findings Several recent papers have demonstrated that enhancing the potential of HSV-1 oncolytic viruses to combat anti-viral mechanisms present in the tumor microenvironment leads to greater efficacy than their parental viruses. Summary It is not entirely clear how the immunosuppressive tumor microenvironment affects oncolytic viral replication and spread within tumors. Recent work has shown that the manipulation of specific cellular and molecular mechanisms of immunosuppression operating within the tumor microenvironment can enhance the efficacy of oncolytic virotherapy. We anticipate that future work will integrate greater knowledge of immunosuppression in tumor microenvironments with design of oncolytic virotherapies.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ifeanyi K Uche
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Larissa Sweeny
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA.,Louisiana State University Health Sciences Center, New Orleans, Louisiana USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|