1
|
Olascoaga S, Castañeda-Sánchez JI, Königsberg M, Gutierrez H, López-Diazguerrero NE. Oxidative stress-induced gene expression changes in prostate epithelial cells in vitro reveal a robust signature of normal prostatic senescence and aging. Biogerontology 2024; 25:1145-1169. [PMID: 39162979 PMCID: PMC11486819 DOI: 10.1007/s10522-024-10126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H2O2-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H2O2. Additionally, the collective expression of these H2O2-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H2O2-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Jorge I Castañeda-Sánchez
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Mexico City, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | | | - Norma Edith López-Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico.
| |
Collapse
|
2
|
Polasko AL, Zhang D, Ramraj A, Chiu CL, Garcia-Marques FJ, Bermudez A, Kapp K, Peterson E, Qiu Z, Pollack AS, Zhao H, Pollack JR, Pitteri SJ, Brooks JD. Establishing and Characterizing the Molecular Profiles, Cellular Features, and Clinical Utility of a Patient-Derived Xenograft Model Using Benign Prostatic Tissues. J Transl Med 2024; 104:102129. [PMID: 39222914 PMCID: PMC11502252 DOI: 10.1016/j.labinv.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.
Collapse
Affiliation(s)
| | - Dalin Zhang
- Department of Urology, Stanford University, Stanford, California
| | - Avanti Ramraj
- Department of Urology, Stanford University, Stanford, California
| | - Chun-Lung Chiu
- Department of Urology, Stanford University, Stanford, California
| | - Fernando J Garcia-Marques
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Abel Bermudez
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Kathryn Kapp
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Eric Peterson
- Department of Urology, Stanford University, Stanford, California
| | - Zhengyuan Qiu
- Department of Urology, Stanford University, Stanford, California
| | - Anna S Pollack
- Department of Pathology, Stanford University, Stanford, California
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, California
| | | | - Sharon J Pitteri
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California.
| |
Collapse
|
3
|
Choi HY, Torkko KC, Lucia MS, Mozhui K, Choi WY, Clark PE, Fowke JH. Change in prostate tissue gene expression following finasteride or doxazosin administration in the medical therapy for prostatic symptoms (MTOPS) study. Sci Rep 2024; 14:19164. [PMID: 39160179 PMCID: PMC11333712 DOI: 10.1038/s41598-024-69301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) may decrease patient quality of life and often leads to acute urinary retention and surgical intervention. While effective treatments are available, many BPH patients do not respond or develop resistance to treatment. To understand molecular determinants of clinical symptom persistence after initiating BPH treatment, we investigated gene expression profiles before and after treatments in the prostate transitional zone of 108 participants in the Medical Therapy of Prostatic Symptoms (MTOPS) Trial. Unsupervised clustering revealed molecular subgroups characterized by expression changes in a large set of genes associated with resistance to finasteride, a 5α-reductase inhibitor. Pathway analyses within this gene cluster found finasteride administration induced changes in fatty acid metabolism, amino acid metabolism, immune response, steroid hormone metabolism, and kinase activity within the transitional zone. We found that patients without this transcriptional response were highly likely to develop clinical progression, which is expected in 13.2% of finasteride-treated patients. Importantly, a patient's transcriptional response to finasteride was associated with their pre-treatment kinase expression. Further, we identified novel expression signatures of finasteride resistance among the transcriptionally responded patients. These patients showed different gene expression profiles at baseline and increased prostate transitional zone volume compared to the patients who responded to the treatment. Our work suggests molecular mechanisms of clinical resistance to finasteride treatment that could be potentially helpful for personalized BPH treatment as well as new drug development to increase patient drug response.
Collapse
Affiliation(s)
- Hyo Young Choi
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - M Scott Lucia
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Won-Young Choi
- UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter E Clark
- Atrium Health Levine Cancer Institute, Charlotte, NC, USA
| | - Jay H Fowke
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Hashemi Gheinani A, Kim J, You S, Adam RM. Bioinformatics in urology - molecular characterization of pathophysiology and response to treatment. Nat Rev Urol 2024; 21:214-242. [PMID: 37604982 DOI: 10.1038/s41585-023-00805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/23/2023]
Abstract
The application of bioinformatics has revolutionized the practice of medicine in the past 20 years. From early studies that uncovered subtypes of cancer to broad efforts spearheaded by the Cancer Genome Atlas initiative, the use of bioinformatics strategies to analyse high-dimensional data has provided unprecedented insights into the molecular basis of disease. In addition to the identification of disease subtypes - which enables risk stratification - informatics analysis has facilitated the identification of novel risk factors and drivers of disease, biomarkers of progression and treatment response, as well as possibilities for drug repurposing or repositioning; moreover, bioinformatics has guided research towards precision and personalized medicine. Implementation of specific computational approaches such as artificial intelligence, machine learning and molecular subtyping has yet to become widespread in urology clinical practice for reasons of cost, disruption of clinical workflow and need for prospective validation of informatics approaches in independent patient cohorts. Solving these challenges might accelerate routine integration of bioinformatics into clinical settings.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, Inselspital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jina Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Yang L, Liu J, Yin J, Li Y, Liu J, Liu D, Wang Z, DiSanto ME, Zhang W, Zhang X. S100A4 modulates cell proliferation, apoptosis and fibrosis in the hyperplastic prostate. Int J Biochem Cell Biol 2024; 169:106551. [PMID: 38360265 DOI: 10.1016/j.biocel.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/β-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.
Collapse
Affiliation(s)
- Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
He W, Tian Z, Dong B, Cao Y, Hu W, Wu P, Yu L, Zhang X, Guo S. Identification and functional activity of Nik related kinase (NRK) in benign hyperplastic prostate. J Transl Med 2024; 22:255. [PMID: 38459501 PMCID: PMC11367987 DOI: 10.1186/s12967-024-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Benign prostatic hyperplasia (BPH) is common in elder men. The current study aims to identify differentially expressed genes (DEGs) in hyperplastic prostate and to explore the role of Nik related kinase (NRK) in BPH. METHODS Four datasets including three bulk and one single cell RNA-seq (scRNA-seq) were obtained to perform integrated bioinformatics. Cell clusters and specific metabolism pathways were analyzed. The localization, expression and functional activity of NRK was investigated via RT-PCR, western-blot, immunohistochemical staining, flow cytometry, wound healing assay, transwell assay and CCK-8 assay. RESULTS A total of 17 DEGs were identified by merging three bulk RNA-seq datasets. The findings of integrated single-cell analysis showed that NRK remarkably upregulated in fibroblasts and SM cells of hyperplasia prostate. Meanwhile, NRK was upregulated in BPH samples and localized almost in stroma. The expression level of NRK was significantly correlated with IPSS and Qmax of BPH patients. Silencing of NRK inhibited stromal cell proliferation, migration, fibrosis and EMT process, promoted apoptosis and induced cell cycle arrest, while overexpression of NRK in prostate epithelial cells showed opposite results. Meanwhile, induced fibrosis and EMT process were rescued by knockdown of NRK. Furthermore, expression level of NRK was positively correlated with that of α-SMA, collagen-I and N-cadherin, negatively correlated with that of E-cadherin. CONCLUSION Our novel data identified NRK was upregulated in hyperplastic prostate and associated with prostatic stromal cell proliferation, apoptosis, cell cycle, migration, fibrosis and EMT process. NRK may play important roles in the development of BPH and may be a promising therapeutic target for BPH/LUTS.
Collapse
Affiliation(s)
- Weixiang He
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China.
| | - Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital of Air Force Medical University, Xi'an, China
| | - Bingchen Dong
- Department of Orthopedics, Ninth Hospital of Xi'an, Xi'an, China
| | - Yitong Cao
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Wei Hu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Peng Wu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Lei Yu
- Department of Urology, Xijing Hospital of Air Force Medical University, West Changle Road 127, Xi'an, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, China.
| | - Shanshan Guo
- Department of Physiology and Pathophysiology, Air Force Medical University, West Changle Road 169, Xi'an, China.
| |
Collapse
|
7
|
Chae J, Jung SH, Choi EJ, Kim JW, Kim NY, Moon SW, Lee JY, Chung YJ, Lee SH. Spatial architectures of somatic mutations in normal prostate, benign prostatic hyperplasia and coexisting prostate cancer. Exp Mol Med 2024; 56:168-176. [PMID: 38172600 PMCID: PMC10834420 DOI: 10.1038/s12276-023-01140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to identify somatic mutations in nontumor cells (NSMs) in normal prostate and benign prostatic hyperplasia (BPH) and to determine their relatedness to prostate cancer (PCA). From 22 PCA patients, two prostates were sampled for 3-dimensional mapping (50 normal, 46 BPH and 1 PCA samples), and 20 prostates were trio-sampled (two normal or BPH samples and one PCA sample) and analyzed by whole-genome sequencing. Normal and BPH tissues harbored several driver NSMs and copy number alterations (CNAs), including in FOXA1, but the variations exhibited low incidence, rare recurrence, and rare overlap with PCAs. CNAs, structural variants, and mutation signatures were similar between normal and BPH samples, while BPHs harbored a higher mutation burden, shorter telomere length, larger clone size, and more private NSMs than normal prostates. We identified peripheral-zonal dominance and right-side asymmetry in NSMs, but the asymmetry was heterogeneous between samples. In one normal prostate, private oncogenic RAS-signaling NSMs were detected, suggesting convergence in clonal maintenance. Early embryonic mutations exhibited two distinct distributions, characterized as layered and mixed patterns. Our study identified that the BPH genome differed from the normal prostate genome but was still closer to the normal genome than to the PCA genome, suggesting that BPH might be more related to aging or environmental stress than to tumorigenic processes.
Collapse
Affiliation(s)
- Jeesoo Chae
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
- Department of Biochemistry, College of Medicine, Ewha Womans University, 07804, Seoul, South Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
| | - Eun Ji Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
| | - Jae Woong Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
| | - Na Yung Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
| | - Sung Won Moon
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea
| | - Yeun-Jun Chung
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
| | - Sug Hyung Lee
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
- Department of Pathology, College of Medicine, The Catholic University of Korea, 06591, Seoul, South Korea.
| |
Collapse
|
8
|
Pollack AS, Kunder CA, Brazer N, Shen Z, Varma S, West RB, Cunha GR, Baskin LS, Brooks JD, Pollack JR. Spatial transcriptomics identifies candidate stromal drivers of benign prostatic hyperplasia. JCI Insight 2024; 9:e176479. [PMID: 37971878 PMCID: PMC10906230 DOI: 10.1172/jci.insight.176479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is the nodular proliferation of the prostate transition zone in older men, leading to urinary storage and voiding problems that can be recalcitrant to therapy. Decades ago, John McNeal proposed that BPH originates with the "reawakening" of embryonic inductive activity by adult prostate stroma, which spurs new ductal proliferation and branching morphogenesis. Here, by laser microdissection and transcriptional profiling of the BPH stroma adjacent to hyperplastic branching ducts, we identified secreted factors likely mediating stromal induction of prostate glandular epithelium and coinciding processes. The top stromal factors were insulin-like growth factor 1 (IGF1) and CXC chemokine ligand 13 (CXCL13), which we verified by RNA in situ hybridization to be coexpressed in BPH fibroblasts, along with their cognate receptors (IGF1R and CXCR5) on adjacent epithelium. In contrast, IGF1 but not CXCL13 was expressed in human embryonic prostate stroma. Finally, we demonstrated that IGF1 is necessary for the generation of BPH-1 cell spheroids and patient-derived BPH cell organoids in 3D culture. Our findings partially support historic speculations on the etiology of BPH and provide what we believe to be new molecular targets for rational therapies directed against the underlying processes driving BPH.
Collapse
Affiliation(s)
- Anna S. Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Christian A. Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Noah Brazer
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhewei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert B. West
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald R. Cunha
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Laurence S. Baskin
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan R. Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Schneider AJ, Serrell EC, Grimes M, Wang S, Bushman W. Histologic inflammation and collagen content are not positively correlated in human BPH. Prostate 2023; 83:1529-1536. [PMID: 37602498 DOI: 10.1002/pros.24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Recent clinical studies have implicated prostate inflammation and fibrosis in the development of bladder outlet obstruction and lower urinary tract symptoms (LUTS). Studies utilizing rodent models, including work in our laboratory, have shown prostate fibrosis to occur as a consequence of inflammation. However, the relationship between collagen content and inflammation in human tissue samples obtained from surgical treatment of benign prostatic hypererplasia (BPH)/LUTS has not to our knowledge been previously examined. METHODS Prostate tissue specimens from 53 patients (ages 47-88, mean 65.1) treated by open simple prostatectomy or transurethral resection of the prostate for BPH/LUTS were stained to quantitatively assess prostate inflammation and collagen content. Patients with prostate cancer present in greater than 5% of the surgical specimen were excluded. Prostate volume was determined from pelvic CT scan obtained within 2 years of surgery. RESULTS Analysis of the data showed that inflammation was inversely correlated with collagen content (r = -0.28, p = 0.04). In men with prostates less than 75 cm3 inflammation increases and collagen content decreases with prostate volume (p = 0.002 and p = 0.03, respectively) while in men with prostate volume over 75 cm3 inflammation decreases and collagen content increases with prostate volume (p = 0.30 and p = 0.005, respectively). CONCLUSIONS Our data do not support the assumed positive association of prostate inflammation with collagen content. Coordinated analysis of scatter plots of inflammation and collagen content with prostate volume revealed a subset of prostates with volumes >50 cm3 prostate characterized by intense inflammation and low collagen content and it is this subgroup that appears most responsible for the inverse correlation of inflammation and collagen.
Collapse
Affiliation(s)
- Andrew J Schneider
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily C Serrell
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Grimes
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sijian Wang
- Department of Statistics, Rutgers University, Piscataway, New Jersey, USA
| | - Wade Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Sreekumar A, Simmons MN, Lee TJ, Sharma A, Saini S. Therapeutic potential of pomegranate juice-derived nanovesicles in nude mouse benign prostatic hyperplasia (BPH) xenograft model. Sci Rep 2023; 13:12427. [PMID: 37528206 PMCID: PMC10394011 DOI: 10.1038/s41598-023-39511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms affect a large percentage of the male population and places a substantial burden on the world health system. Current therapies include 5-alpha reductase inhibitors and alpha-blockers that are only partially effective and pose a huge economic burden, emphasizing the urgent need for effective, economical therapies. We isolated nanovesicles from pomegranate juice (Punica Granatum) (referred to as 'POM-NVs') and report to our knowledge for the first time, that these vesicles possess therapeutic potential against BPH. Following extensive characterization of POM-NVs, we tested their therapeutic potential in vitro using BPH1 cell line and identified a potential anti-proliferative and pro-apoptotic effect. We further tested these vesicles using a clinically relevant xenograft mouse BPH model derived from human BPH tissues. Remarkably, POM-NVs could reverse the BPH phenotype conferred by TGF-β mediated signaling and induced epithelial-to-mesenchymal (EMT) reversal, leading to the restoration of prostate epithelial states in vivo and in vitro. Furthermore, these vesicles attenuated bone morphogenic protein 5 (BMP5) signaling, a cardinal alteration that is instrumental in driving BPH. Considering the large incidences of BPH and its associated economic burdens, our study has important implications and can potentially improve the clinical management of BPH.
Collapse
Affiliation(s)
- Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | | - Tae Jin Lee
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Ashok Sharma
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
| |
Collapse
|
11
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
12
|
Natali PG, Piantelli M, Minacori M, Eufemi M, Imberti L. Improving Whole Tomato Transformation for Prostate Health: Benign Prostate Hypertrophy as an Exploratory Model. Int J Mol Sci 2023; 24:ijms24065795. [PMID: 36982868 PMCID: PMC10055130 DOI: 10.3390/ijms24065795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
It is well-established that the beneficial properties of single phytonutrients can be better attained when they are taken with the complex of the molecules present in their natural milieu. Tomato, the fruit providing the most comprehensive complex of prostate-health-preserving micronutrients, has been shown to be superior to its single-nutrient counterparts in decreasing the incidence of age-related prostate diseases. Herein, we describe a novel tomato food supplement enriched with olive polyphenols, containing cis-lycopene concentrations far exceeding those present in industry-produced tomato commodities. The supplement, endowed with antioxidant activity comparable to that of N-acetylcysteine, significantly reduced, in experimental animals, the blood levels of prostate-cancer-promoting cytokines. In prospective, randomized, double-blinded, placebo-controlled studies performed on patients affected by benign prostatic hyperplasia, its uptake significantly improved urinary symptoms and quality of life. Therefore, this supplement can complement and, in some cases, be an alternative to current benign prostatic hyperplasia management. Furthermore, the product suppressed carcinogenesis in the TRAMP mouse model of human prostate cancer and interfered with prostate cancer molecular signaling. Thus, it may offer a step forward in exploring the potential of tomato consumption to delay or prevent the onset of age-related prostate diseases in high-risk individuals.
Collapse
Affiliation(s)
- Pier Giorgio Natali
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Mauro Piantelli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, 66100 Chieti, Italy
| | - Marco Minacori
- Department of Biochemical Science "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, "La Sapienza" University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Science "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, "La Sapienza" University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
13
|
Popovics P, Penniston KL. Current research and future directions in non-malignant urologic research - proceedings of the annual CAIRIBU meeting. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:449-461. [PMID: 36636691 PMCID: PMC9831912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/14/2023]
Abstract
The Annual Collaborating for the Advancement of Interdisciplinary Research (CAIRIBU) Meeting in 2022 highlighted basic, translational, and clinical non-malignant urology research within five main areas affecting the urinary tract: urinary dysfunction due to prostate disease, microbes and infection, bladder function and physiology, neurology and neuromuscular influences and calculi and obstruction. In this paper, we summarize main findings and future directions outlined by CAIRIBU-affiliated scientists who presented as part of the scientific sessions.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical SchoolVA, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public HealthWI, USA
| |
Collapse
|
14
|
Changes in the Expression and Functional Activities of C-X-C Motif Chemokine Ligand 13 ( CXCL13) in Hyperplastic Prostate. Int J Mol Sci 2022; 24:ijms24010056. [PMID: 36613500 PMCID: PMC9820459 DOI: 10.3390/ijms24010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). METHODS Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. RESULTS CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. CONCLUSIONS Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH.
Collapse
|
15
|
Gangavarapu KJ, Jowdy PF, Foster BA, Huss WJ. Role of prostate stem cells and treatment strategies in benign prostate hyperplasia. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:154-169. [PMID: 35874288 PMCID: PMC9301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Benign prostate hyperplasia (BPH) is a progressive disease with a direct correlation between incidence and age. Since the treatment and management of BPH involve harmful side effects and decreased quality of life for the patient, the primary focus of research should be to find better and longer-lasting therapeutic options. The mechanisms regulating prostate stem cells in development can be exploited to decrease prostate growth. BPH is defined as the overgrowth of the prostate, and BPH is often diagnosed when lower urinary tract symptoms (LUTS) of urine storage or voiding symptoms cause patients to seek treatment. While multiple factors are involved in the hyperplastic growth of the stromal and epithelial compartments of the prostate, the clonal proliferation of stem cells is considered one of the main reasons for BPH initiation and regrowth of the prostate after therapies for BPH fail. Several theories explain possible reasons for the involvement of stem cells in the development, progression, and pathogenesis of BPH. The aim of the current review is to discuss current literature on the fundamentals of prostate development and the role of stem cells in BPH. This review examines the rationale for the hypothesis that unregulated stem cell properties can lead to BPH and therapeutic targeting of stem cells may reduce treatment-related side effects and prevent the regrowth of the prostate.
Collapse
Affiliation(s)
- Kalyan J Gangavarapu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Peter F Jowdy
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffalo, NY 14203, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
16
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
17
|
Tong Y, Guo YJ, Zhang Q, Bi HX, Kai K, Zhou RY. Combined treatment with dihydrotestosterone and lipopolysaccharide modulates prostate homeostasis by upregulating TNF-α from M1 macrophages and promotes proliferation of prostate stromal cells. Asian J Androl 2021; 24:513-520. [PMID: 34975070 PMCID: PMC9491040 DOI: 10.4103/aja2021114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Androgens and chronic inflammation, which play essential roles in the development of benign prostatic hyperplasia (BPH), are considered to be important factors in disorders of prostate homeostasis. These two factors may lead to pathological hyperplasia in the prostate transition zone of patients with BPH. However, few studies have examined the mechanism of how dihydrotestosterone (DHT) affects chronic inflammation in prostate tissue during the progression of BPH. This study examined the performance of DHT in lipopolysaccharide-treated M1 macrophages and the subsequent effects on the proliferation of prostate stromal and epithelial cells. We found that DHT increased secretion of the pro-inflammatory factor tumor necrosis factor (TNF)-α from M1 macrophages differentiated from THP-1 cells. The supernatant of M1 macrophages promoted the proliferation of WPMY-1 prostate stromal cells by upregulating B-cell lymphoma-extra large (Bcl-xL) and cellular Myc (c-Myc) levels by activating TNF-α-mediated nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, this supernatant increased the expression of androgen receptor in WPMY-1 cells, which was TNF-α-independent. Additionally, TNF-α protein expression was significantly higher in patients with BPH and a large prostate volume than that in those with a small prostate volume. Further analysis showed that higher serum testosterone combined with prostate-specific androgen concentrations was related to TNF-α expression. This study suggests that DHT modulates the inflammatory environment of BPH by increasing TNF-α expression from lipopolysaccharide-treated M1 macrophages and promotes the proliferation of prostate stromal cells. Targeting TNF-α, but not DHT, may be a promising strategy for patients with BPH.
Collapse
Affiliation(s)
- Yu Tong
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Yi-Jun Guo
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Qin Zhang
- Department of Pathology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Hai-Xia Bi
- Department of Pathology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Kai Kai
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Ren-Yuan Zhou
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
18
|
Liu D, Liu J, Li Y, Liu H, Hassan HM, He W, Li M, Zhou Y, Fu X, Zhan J, Wang Z, Yang S, Chen P, Xu D, Wang X, DiSanto ME, Zeng G, Zhang X. Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Prostate 2021; 81:1435-1449. [PMID: 34553788 DOI: 10.1002/pros.24241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
Collapse
Affiliation(s)
- Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hassan M Hassan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Pediatric Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
20
|
Batai K, Phung M, Bell R, Lwin A, Hynes KA, Price E, Meiklejohn KM, Bracamonte ER, Funk JT. Correlation between body mass index and prostate volume in benign prostatic hyperplasia patients undergoing holmium enucleation of the prostate surgery. BMC Urol 2021; 21:88. [PMID: 34112139 PMCID: PMC8191122 DOI: 10.1186/s12894-020-00753-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Background Benign prostatic obstruction (BPO) due to benign prostatic hyperplasia (BPH) is a leading cause of morbidity in men over the age of 40. This study examined whether there was an association between body mass index (BMI) and pre-operative prostate volume and whether expression of two genes, alpha-2-macroglobulin (A2M) and transforming growth factor beta 3 (TGFB3), was correlated with BMI, pre-operative prostate volume, and age at surgery. Methods Medical records of patients who underwent holmium enucleation of the prostate surgery for treatment of BPO were retrospectively reviewed. Surgical specimens were obtained from formalin-fixed paraffin-embedded blocks, and expression of the targeted genes was quantified using a real time PCR approach. Linear regression analysis was performed to assess association between BMI and prostate volume adjusting for demographic characteristics and co-morbidity. Spearman’s correlation was used to examine whether gene expression was correlated with BMI, prostate volume, and age at surgery. Results A total of 278 patients were identified, including 62.9% European Americans (n = 175) and 27.7% Hispanic Americans (n = 77). BMI was significantly correlated with prostate volume (Spearman’s rho = 0.123, P = 0.045). In linear regression analysis, BMI was positively associated with prostate volume (β = 0.01, P = 0.004), while hyperlipidemia was negatively associated with prostate volume (β = −0.08, P = 0.02). A trend for a positive association was also observed for diabetes (β = 0.07, P = 0.099). In the race/ethnicity stratified analysis, age at surgery showed a trend for significantly positive association with prostate volume in European Americans (β = 0.005, P = 0.08), but not in Hispanic Americans. Expression of the A2M gene in the stroma was negatively correlated with age at surgery (P = 0.006). A2M expression in the gland was positively correlated with prostate volume among older men (Age ≥ 70, P = 0.01) and overweight men (BMI 25–30, P = 0.04). TGFB3 expression in the gland was positively correlated with BMI (P = 0.007) among older men. Conclusions This study demonstrated the positive correlation between BMI and prostate volume. Expression of TGFB3 and A2M was correlated with BMI, prostate volume, and age at surgery. Supplementary information Supplementary information accompanies this paper at 10.1186/s12894-020-00753-9.
Collapse
Affiliation(s)
- Ken Batai
- Department of Urology, The University of Arizona, 1501 N Campbell Ave, PO Box 245077, Tucson, AZ, 85724-5077, USA
| | - Michael Phung
- Department of Urology, University of California Los Angeles, 10833 Le Conte Avenue, Box 951738, Los Angeles, CA, 90095-1738, USA
| | - Robert Bell
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S Euclid Ave, Campus, Box 8118, St. Louis, MO, 63110, USA
| | - Aye Lwin
- Department of Urology, The University of Arizona, 1501 N Campbell Ave, PO Box 245077, Tucson, AZ, 85724-5077, USA
| | - Kieran A Hynes
- Department of Surgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Elinora Price
- Department of Surgery, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Karleen M Meiklejohn
- Department of Pathology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Erika R Bracamonte
- Department of Pathology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Joel T Funk
- Department of Urology, The University of Arizona, 1501 N Campbell Ave, PO Box 245077, Tucson, AZ, 85724-5077, USA.
| |
Collapse
|
21
|
Pascal LE, Dhir R, Balasubramani GK, Chen W, Hudson CN, Srivastava P, Green A, DeFranco DB, Yoshimura N, Wang Z. Claudin-1 down-regulation in the prostate is associated with aging and increased infiltration of inflammatory cells in BPH. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:53-64. [PMID: 33816694 PMCID: PMC8012836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION AND OBJECTIVE Benign prostatic hyperplasia (BPH) is an age-related disease that is frequently associated with chronic prostatic inflammation. In previous studies, we detected the presence of PSA protein in the stroma of BPH nodules and down-regulation of junction proteins E-cadherin and claudin-1. Transmission electron microscopy (TEM) imaging showed a decrease in tight junctions suggesting the luminal epithelial barrier in BPH tissues may be compromised. Recent in vitro studies showed that stimulation of benign prostate epithelial cell lines with TGF-β1 induced a decrease in claudin-1 expression suggesting that inflammation might be associated with alterations in the prostate epithelial barrier. This study explored the potential associations between aging and loss of junction proteins and the presence of inflammatory cells in prostate tissue specimens from young healthy donors and aged BPH patients. METHODS Immunostaining of serial prostate sections from 13 BPH patients and five healthy young donors was performed for claudin-1, CD4, CD8, CD20 and CD68. H-Scores and the number of inflammatory cells were calculated for the same area in donor, normal adjacent prostate (NAP) to and BPH specimens. Quantification and statistical correlation analyses were performed. RESULTS Claudin-1 immunostaining was inversely associated with increasing age, and inflammation in prostate specimens. B-cell infiltration increased with age and BPH was associated with an increased infiltration of T-cells and macrophages compared to NAP. CONCLUSIONS These findings suggest that aging is associated with down-regulation of claudin-1 and claudin-1 is further decreased in BPH. Claudin-1 down-regulation was associated with increased infiltration of inflammatory cells in both NAP and BPH tissues. Claudin-1 down-regulation in the aging prostate could contribute to increased prostatic inflammation, subsequently contributing to BPH pathogenesis.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | | | - Wei Chen
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Chandler N Hudson
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Pooja Srivastava
- Department of Pathology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Anthony Green
- Department of Pathology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Donald B DeFranco
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
22
|
Identification of key genes in benign prostatic hyperplasia using bioinformatics analysis. World J Urol 2021; 39:3509-3516. [PMID: 33564912 DOI: 10.1007/s00345-021-03625-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/30/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE This study aimed to identify differentially expressed genes (DEGs) and pathways in benign prostatic hyperplasia (BPH) by comprehensive bioinformatics analysis. METHODS Data of the gene expression microarray (GSE6099) were downloaded from GEO database. DEGs were obtained by GEO2R. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction network was constructed through STRING. Anterior gradient 2 (ARG2) and lumican (LUM) staining in paraffin-embedded specimens from BPH and normal prostate (NP) were detected by immunohistochemistry (IHC). Differences between groups were analyzed by the Student's t test. RESULTS A total of 24 epithelial DEGs and 39 stromal DEGs were determined. The GO analysis results showed that epithelial DEGs between BPH and NP were enriched in biological processes of glucose metabolic process, glucose homeostasis and negative regulation of Rho protein signal transduction. For DEGs in stroma, enriched biological processes included response to ischemia, antigen processing and presentation, cartilage development, T cell costimulation and energy reserve metabolic process. ARG2, as one of the epithelial DEGs, was mainly located in epithelial cells of prostate. In addition, LUM is primarily expressed in the stroma. We further confirmed that compared with NP, the BPH have the lower ARG2 protein level (p = 0.029) and higher LUM protein level (p = 0.003) using IHC. CONCLUSIONS Our study indicated that there are possible differentially expressed genes in epithelial and stromal cells, such as ARG2 and LUM, which may provide a novel insight for the pathogenesis of BPH.
Collapse
|
23
|
Wei F, He X, Xu K, Wang S. Stepwise frontal analysis coupled with cell membrane chromatography for affinity screening and characterization analysis of bioactive constituent from the mature fruits of schisandra chinensis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122443. [PMID: 33246280 DOI: 10.1016/j.jchromb.2020.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Cell membrane chromatography (CMC) is effective and widely used in drug screening, especially for the analysis of complex matrixes. However, it is time-consuming and costly given that cells or animals are employed for activity confirmation, which leads to a large amount of waste being produced if the result is negative. Stepwise frontal analysis is employed to saturate the affinity stationary phase, by using a series of low- to high-concentration solutions which resultantly form a staircase pattern. In doing so, the waste of samples, caused by the balancing process, can be avoided. In this study, stepwise frontal analysis coupled with a CMC system was performed for screening and characterizing the affinity of an active compound from wuweizi. Schizandrin A was screened and identified by α1A AR /CMC coupled with UHPLC-MS/MS. By comparing the values obtained with those related to the equilibrium dissociation constant (Kd) calculated by zonal elution, the accuracy of the stepwise frontal analysis was verified. Subsequently, the type of affinity force between Schizandrin A and α1A AR was studied by thermodynamic parameters. Moreover, schizandrin A showed an antagonistic effect on phenylephrine-induced contractions, which relax prostate muscle strips in a non-competitive antagonism manner. It has already suggested that the active compound, schizandrin A, could be used as a lead compound for the treatment of benign prostate hyperplasia (BPH) and should be further studied. Thus, the findings of this study are significant given that they could result in an online screening and affinity analysis method being utilized for the discovery of medicinal compounds as well as clarify the interaction characteristics between a drug and a receptor.
Collapse
Affiliation(s)
- Fen Wei
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, China
| | - Xiaoshuang He
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, China; Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197# Ruijin 2nd Road, Shanghai, China
| | - Ke Xu
- Jining First People's Hospital, 269# Mencius Avenue, Jining High-tech Zone, Jining, China
| | - Sicen Wang
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, China.
| |
Collapse
|
24
|
Xiao H, Jiang Y, He W, Xu D, Chen P, Liu D, Liu J, Wang X, DiSanto ME, Zhang X. Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate. Aging (Albany NY) 2020; 12:8605-8621. [PMID: 32392178 PMCID: PMC7244086 DOI: 10.18632/aging.103175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Objective: Benign prostatic hyperplasia (BPH) is a common condition in aging males. The current study aims to identify differentially expressed genes (DEGs) associated with BPH and to elucidate the role of matrix-remodeling associated 5 (MXRA5) protein and mitogen-activated protein kinase (MAPK) signaling pathways in BPH. Results: A total of 198 DEGs and a number of related pathways were identified with MXRA5 being one of the most significantly altered DEGs. MXRA5 was upregulated in BPH samples and localized mostly in stroma. Knockdown of MXRA5 induced stromal cell cycle arrest instead of inhibiting apoptosis. Consistently, MXRA5 overexpression enhanced epithelial cell proliferation. In addition, phosphorylated ERK1/2 and p38, key members of the MAPK family, were strongly decreased with knockdown but increased with overexpression. Conclusion: Our novel data demonstrates that upregulation of MXRA5 in the enlarged prostate could contribute to the development of BPH through increasing cell proliferation via the MAPK pathway. Thus, the MXRA5-MAPK system could be rediscovered as a new therapeutic target for treating BPH. Methods: Microarray analysis and integrated bioinformatics were conducted. The expression and biologic functions of MXRA5 was investigated via RT-PCR, western-blot, immunofluorescence, flow cytometry and MTT assay. Finally, genes involved in regulation of the MAPK pathway were investigated.
Collapse
Affiliation(s)
- He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Current address: Urological Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ye Jiang
- Department of Urology, People's Hospital of Qichun County, Huanggang, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Liu D, Shoag JE, Poliak D, Goueli RS, Ravikumar V, Redmond D, Vosoughi A, Fontugne J, Pan H, Lee D, Thomas D, Salari K, Wang Z, Romanel A, Te A, Lee R, Chughtai B, Olumi AF, Mosquera JM, Demichelis F, Elemento O, Rubin MA, Sboner A, Barbieri CE. Integrative multiplatform molecular profiling of benign prostatic hyperplasia identifies distinct subtypes. Nat Commun 2020; 11:1987. [PMID: 32332823 PMCID: PMC7181734 DOI: 10.1038/s41467-020-15913-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Benign prostatic hyperplasia (BPH), a nonmalignant enlargement of the prostate, is among the most common diseases affecting aging men, but the underlying molecular features remain poorly understood, and therapeutic options are limited. Here we employ a comprehensive molecular investigation of BPH, including genomic, transcriptomic and epigenetic profiling. We find no evidence of neoplastic features in BPH: no evidence of driver genomic alterations, including low coding mutation rates, mutational signatures consistent with aging tissues, minimal copy number alterations, and no genomic rearrangements. At the epigenetic level, global hypermethylation is the dominant process. Integrating transcriptional and methylation signatures identifies two BPH subgroups with distinct clinical features and signaling pathways, validated in two independent cohorts. Finally, mTOR inhibitors emerge as a potential subtype-specific therapeutic option, and men exposed to mTOR inhibitors show a significant decrease in prostate size. We conclude that BPH consists of distinct molecular subgroups, with potential for subtype-specific precision therapy.
Collapse
Affiliation(s)
- Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jonathan E Shoag
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Poliak
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ramy S Goueli
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | | | - David Redmond
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Aram Vosoughi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jacqueline Fontugne
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Heng Pan
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Daniel Lee
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Domonique Thomas
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zongwei Wang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alexis Te
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Lee
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Bilal Chughtai
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Aria F Olumi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juan Miguel Mosquera
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
| | - Mark A Rubin
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA
- Department of BioMedical Research, University of Bern and Inselspital, Bern, Switzerland
| | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA.
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|