1
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
2
|
Yurtsever I, Atasoy B, Bozkurt S, Yıldız GB, Balsak S, Yabul F, Donmez Z, Selvitop R, Karaman O, Toluk O, Alkan A. Diffusion tensor imaging findings in the hunger and satiety centers of the brain after bariatric surgery: a preliminary study. Ir J Med Sci 2024; 193:191-197. [PMID: 37231150 DOI: 10.1007/s11845-023-03389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To investigate the alterations in the diffusion tensor imaging (DTI) parameters measured in the hunger and satiety centers of the brain before and after bariatric surgery (BS) in morbidly obese patients. METHODS Fourty morbidly obese patients were evaluated before and after BS. Mean diffusivity (MD) and fractional anisotropy (FA) values were calculated from 14 related brain locations, and the DTI parameters were analyzed. RESULTS After the BS, the mean BMI of the patients decreased from 47.53 ± 5.21 to 31.48 ± 4.21. The MD and FA values in the all of the hunger and satiety centers was found statistically significant different in the pre-surgery period compared to the post-surgery period (for each; p-value < 0.001). CONCLUSION The FA and MD changes after BS may be attributed to reversible neuroinflammatory alterations in the hunger and satiety centers. Decreased MD and FA values after BS may be explained by the neuroplastic structural recovery in the related brain locations.
Collapse
Affiliation(s)
- Ismail Yurtsever
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey.
| | - Bahar Atasoy
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Suleyman Bozkurt
- Department of General Surgery, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Gulsen Babacan Yıldız
- Department of Neurology, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Fatma Yabul
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Rabia Selvitop
- Department of Neurology, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinoloy and Metabolism, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Biostatistics, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| |
Collapse
|
3
|
Atasoy B, Balsak S, Donmez Z, Yurtsever I, Yabul F, Akcay A, Atila N, Cesme DH, Toluk O, Alkan A. Evaluation of the white matter integrity in morbidly obese patients before and after bariatric surgery; a diffusion tensor imaging study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1403-1409. [PMID: 37644657 DOI: 10.1002/jcu.23550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To investigate the difference in FA (Fractional anisotropy), ADC (Apparent diffusion coefficient), RD (Radial diffusivity) and AD (axial diffusivity) values of white matter (WM) tracts in morbidly obese subjects before and after bariatric surgery (BS). MATERIALS AND METHODS A group of thirty-nine morbidly obese subjects are evaluated before and 4-6 months after BS. ADC, FA, RD and AD values of 17 distinct neuroanatomic localizations are measured and DTI parameters are analyzed. RESULTS Following the BS, the patients' mean BMI decreased from 47.665.21 to 31.723.97. A significant difference is displayed between the pre-surgery and post-surgery FA values of SLF, SFOF, ALIC, fornix, ILF, CST, MCP (p = 0.010, p < 0.001, p = 0.048, p = 0.014, p = 0.012, p = 0.012, p = 0.040 respectively). Following BS, decrease in FA values in the mentioned areas are detected. ADC values obtained from MCP are significantly lower in the post-BS period compared to pre-BS period (p = 0.018). There was a statistically significant difference between the pre-surgery and post-surgery AD values of SLF, SFOF, ILF, ALIC, EC, CST, and MCP (p = 0.001, p = 0.022, p = 0.001, p = 0.011, p = 0.001, p = 0.000, p = 0.000, respectively). Following the BS, AD values of the SLF, SFOF, ILF, ALIC, EC, CST, and MCP are decreased. RD values measured from GCC are significantly lower in the post-BS period compared to pre-BS period (p = 0.008). CONCLUSION Our study supported the hypothesis of the BS-induced reversibility of the low-grade inflammation in WM tracts in the morbidly obese group following BS. Our DTI results may represent the subacute period findings of the reversal of low-grade inflammation after BS.
Collapse
Affiliation(s)
- Bahar Atasoy
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ismail Yurtsever
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Fatma Yabul
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ahmet Akcay
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Naz Atila
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Dilek Hacer Cesme
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Bioistatistics, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Samim MM, Dhar D, Bardhan M. Walking through the tracts in the era of bariatric surgery: Obesity and white matter integrity. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1410-1411. [PMID: 37702984 DOI: 10.1002/jcu.23565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Affiliation(s)
- M M Samim
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mainak Bardhan
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| |
Collapse
|
5
|
Bottino R, Carbone A, Formisano T, D'Elia S, Orlandi M, Sperlongano S, Molinari D, Castaldo P, Palladino A, Barbareschi C, Tolone S, Docimo L, Cimmino G. Cardiovascular Effects of Weight Loss in Obese Patients with Diabetes: Is Bariatric Surgery the Additional Arrow in the Quiver? Life (Basel) 2023; 13:1552. [PMID: 37511927 PMCID: PMC10381712 DOI: 10.3390/life13071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is an increasingly widespread disease worldwide because of lifestyle changes. It is associated with an increased risk of cardiovascular disease, primarily type 2 diabetes mellitus, with an increase in major cardiovascular adverse events. Bariatric surgery has been shown to be able to reduce the incidence of obesity-related cardiovascular disease and thus overall mortality. This result has been shown to be the result of hormonal and metabolic effects induced by post-surgical anatomical changes, with important effects on multiple hormonal and molecular axes that make this treatment more effective than conservative therapy in determining a marked improvement in the patient's cardiovascular risk profile. This review, therefore, aimed to examine the surgical techniques currently available and how these might be responsible not only for weight loss but also for metabolic improvement and cardiovascular benefits in patients undergoing such procedures.
Collapse
Affiliation(s)
- Roberta Bottino
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Andreina Carbone
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Tiziana Formisano
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Saverio D'Elia
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Massimiliano Orlandi
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Simona Sperlongano
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Daniele Molinari
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Pasquale Castaldo
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Alberto Palladino
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Consiglia Barbareschi
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
| | - Salvatore Tolone
- Department of Medical, Surgical, Neurologic, Metabolic and Aging Sciences, General, Mini-Invasive and Obesity Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Ludovico Docimo
- Department of Medical, Surgical, Neurologic, Metabolic and Aging Sciences, General, Mini-Invasive and Obesity Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giovanni Cimmino
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia 2, 80138 Napoli, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
6
|
Sewaybricker LE, Huang A, Chandrasekaran S, Melhorn SJ, Schur EA. The Significance of Hypothalamic Inflammation and Gliosis for the Pathogenesis of Obesity in Humans. Endocr Rev 2023; 44:281-296. [PMID: 36251886 DOI: 10.1210/endrev/bnac023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Accumulated preclinical literature demonstrates that hypothalamic inflammation and gliosis are underlying causal components of diet-induced obesity in rodent models. This review summarizes and synthesizes available translational data to better understand the applicability of preclinical findings to human obesity and its comorbidities. The published literature in humans includes histopathologic analyses performed postmortem and in vivo neuroimaging studies measuring indirect markers of hypothalamic tissue microstructure. Both support the presence of hypothalamic inflammation and gliosis in children and adults with obesity. Findings predominantly point to tissue changes in the region of the arcuate nucleus of the hypothalamus, although findings of altered tissue characteristics in whole hypothalamus or other hypothalamic regions also emerged. Moreover, the severity of hypothalamic inflammation and gliosis has been related to comorbid conditions, including glucose intolerance, insulin resistance, type 2 diabetes, and low testosterone levels in men, independent of elevated body adiposity. Cross-sectional findings are augmented by a small number of prospective studies suggesting that a greater degree of hypothalamic inflammation and gliosis may predict adiposity gain and worsening insulin sensitivity in susceptible individuals. In conclusion, existing human studies corroborate a large preclinical literature demonstrating that hypothalamic neuroinflammatory responses play a role in obesity pathogenesis. Extensive or permanent hypothalamic tissue remodeling may negatively affect the function of neuroendocrine regulatory circuits and promote the development and maintenance of elevated body weight in obesity and/or comorbid endocrine disorders.
Collapse
Affiliation(s)
| | - Alyssa Huang
- Department of Pediatrics, University of Washington, Division of Endocrinology and Diabetes, Seattle Children's Hospital, Seattle, WA 98015, USA
| | | | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:ijms24032684. [PMID: 36769012 PMCID: PMC9917048 DOI: 10.3390/ijms24032684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
It is well established that decreases in plasma leptin levels, as with fasting, signal starvation and elicit appropriate physiological responses, such as increasing the drive to eat and decreasing energy expenditure. These responses are mediated largely by suppression of the actions of leptin in the hypothalamus, most notably on arcuate nucleus (ArcN) orexigenic neuropeptide Y neurons and anorexic pro-opiomelanocortin neurons. However, the question addressed in this review is whether the effects of increased leptin levels are also significant on the long-term control of energy balance, despite conventional wisdom to the contrary. We focus on leptin's actions (in both lean and obese individuals) to decrease food intake, increase sympathetic nerve activity, and support the hypothalamic-pituitary-thyroid axis, with particular attention to sex differences. We also elaborate on obesity-induced inflammation and its role in the altered actions of leptin during obesity.
Collapse
|
8
|
Folick A, Cheang RT, Valdearcos M, Koliwad SK. Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Exp Mol Med 2022; 54:393-402. [PMID: 35474339 PMCID: PMC9076660 DOI: 10.1038/s12276-021-00666-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rachel T Cheang
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Martin Valdearcos
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Suneil K Koliwad
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zhou M, Wang L, Zhou L, Chang X, Zhu X. Novel Insight into the Mechanism of Metabolic Surgery Causing the Diversity in Glycemic Status in Type 2 Diabetes. Exp Clin Endocrinol Diabetes 2022; 130:484-492. [PMID: 34979572 DOI: 10.1055/a-1708-3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic surgery results in diverse glycemic status in patients with type 2 diabetes (T2D), including hyperglycemia without remission, significant amelioration of hyperglycemia with partial remission, complete restoration of euglycemia, or with prolonged remission, hyperglycemia recurrence in relapses after remission, or post-bariatric hypoglycemia. Unfortunately, it is not known how metabolic surgery leads to this diverse consequence. Here, we discuss the diversity of glycemic status associated with metabolic surgery and the potential mechanisms of T2D remission. We also highlight the relationship between the change in low-grade inflammation and T2D remission after metabolic surgery. We hypothesize that the level of inflammatory and anti-inflammatory cytokines controls the efficacy of metabolic surgery in patients with T2D. This hypothesis may provide further insight into the mechanism of the beneficial effects of metabolic surgery patients with T2D.
Collapse
Affiliation(s)
- Mengxiao Zhou
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China.,Department of Blood Transfusion, Forth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lijuan Wang
- Department of Day Care Unit, Gansu Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Lujin Zhou
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China
| | - Xiaotong Chang
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China
| | - Xiaobo Zhu
- Key Laboratory of Clinical Diagnostics, North University of Hebei, Zhangjiakou, China
| |
Collapse
|
10
|
Ji Y, Lee H, Kaura S, Yip J, Sun H, Guan L, Han W, Ding Y. Effect of Bariatric Surgery on Metabolic Diseases and Underlying Mechanisms. Biomolecules 2021; 11:1582. [PMID: 34827579 PMCID: PMC8615605 DOI: 10.3390/biom11111582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a highly prevalent public health concern, attributed to multifactorial causes and limited in treatment options. Several comorbidities are closely associated with obesity such as the development of type 2 diabetes mellitus (T2DM), cardiovascular and cerebrovascular diseases, and nonalcoholic fatty liver disease (NAFLD). Bariatric surgery, which can be delivered in multiple forms, has been remarked as an effective treatment to decrease the prevalence of obesity and its associated comorbidities. The different types of bariatric surgery create a variety of new pathways for food to metabolize in the body and truncate the stomach's caliber. As a result, only a small quantity of food is tolerated, and the body mass index noticeably decreases. This review describes the improvements of obesity and its comorbidities following bariatric surgery and their mechanism of improvement. Additionally, endocrine function improvements after bariatric surgery, which contributes to the patients' health improvement, are described, including the role of glucagon-like peptide-1 (GLP-1), fibroblast growth factors 19 and 21 (FGF-19, FGF-21), and pancreatic peptide YY (PYY). Lastly, some of the complications of bariatric surgery, including osteoporosis, iron deficiency/anemia, and diarrhea, as well as their potential mechanisms, are described.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, MI 48201, USA
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| | - Shawn Kaura
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| | - James Yip
- Department of General Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Hao Sun
- Central Laboratory, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
| | - Longfei Guan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, MI 48201, USA
- Department of General Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| |
Collapse
|
11
|
Chen J, Haase N, Haange SB, Sucher R, Münzker J, Jäger E, Schischke K, Seyfried F, von Bergen M, Hankir MK, Krügel U, Fenske WK. Roux-en-Y gastric bypass contributes to weight loss-independent improvement in hypothalamic inflammation and leptin sensitivity through gut-microglia-neuron-crosstalk. Mol Metab 2021; 48:101214. [PMID: 33741533 PMCID: PMC8095174 DOI: 10.1016/j.molmet.2021.101214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Hypothalamic inflammation and endoplasmic reticulum (ER) stress are extensively linked to leptin resistance and overnutrition-related diseases. Surgical intervention remains the most efficient long-term weight-loss strategy for morbid obesity, but mechanisms underlying sustained feeding suppression remain largely elusive. This study investigated whether Roux-en-Y gastric bypass (RYGB) interacts with obesity-associated hypothalamic inflammation to restore central leptin signaling as a mechanistic account for post-operative appetite suppression. Methods RYGB or sham surgery was performed in high-fat diet-induced obese Wistar rats. Sham-operated rats were fed ad libitum or by weight matching to RYGB via calorie restriction (CR) before hypothalamic leptin signaling, microglia reactivity, and the inflammatory pathways were examined to be under the control of gut microbiota-derived circulating signaling. Results RYGB, other than CR-induced adiposity reduction, ameliorates hypothalamic gliosis, inflammatory signaling, and ER stress, which are linked to enhanced hypothalamic leptin signaling and responsiveness. Mechanistically, we demonstrate that RYGB interferes with hypothalamic ER stress and toll-like receptor 4 (TLR4) signaling to restore the anorexigenic action of leptin, which most likely results from modulation of a circulating factor derived from the altered gut microbial environment upon RYGB surgery. Conclusions Our data demonstrate that RYGB interferes with hypothalamic TLR4 signaling to restore the anorexigenic action of leptin, which most likely results from modulation of a circulating factor derived from the post-surgical altered gut microbial environment. RYGB surgery-related weight loss independently restores hypothalamic leptin signaling and action in diet-induced obesity. RGYB modulates hypothalamic TLR4-mediated pro-inflammatory signaling and ER stress to restore leptin's anorexigenic action. Humoral factors contribute to modulated microglia-POMC neuron interaction, which appears specific to the RYGB procedure. Altering the gut microbiota environment by antibiotics deteriorates leptin's feeding suppressive action after RYGB.
Collapse
Affiliation(s)
- Jiesi Chen
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Nadine Haase
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Robert Sucher
- Division of Bariatric Surgery, Clinic of Visceral, Transplant, Thoracic, and Vascular Surgery, University Hospital, Liebigstraße 20, D-4015, Leipzig, Germany
| | - Julia Münzker
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Elisabeth Jäger
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Kristin Schischke
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital, Würzburg, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Wiebke K Fenske
- Medical Department III, Endocrinology, Nephrology, and Rheumatology, University Hospital of Leipzig, Leipzig, Germany; Division of Endocrinology, Diabetes, and Metabolism, Medical Department I, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|