1
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Emont MP, Rosen ED. Exploring the heterogeneity of white adipose tissue in mouse and man. Curr Opin Genet Dev 2023; 80:102045. [PMID: 37094486 PMCID: PMC10330284 DOI: 10.1016/j.gde.2023.102045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Adipose tissue is a heterogeneous organ, comprising cell types, including mature adipocytes, progenitor cells, immune cells, and vascular cells. Here, we discuss the heterogeneity of human and mouse white adipose tissue in general and white adipocytes specifically, focusing on how our understanding of adipocyte subpopulations has expanded with the advent of single nuclear RNA sequencing and spatial transcriptomics. Furthermore, we discuss critical remaining questions regarding how these distinct populations arise, how their functions differ from one another, and which potentially contribute to metabolic pathophysiology.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA.
| |
Collapse
|
3
|
Ceglarek VM, Bertasso IM, Pietrobon CB, Scomazzon SP, Leite NC, Bonfleur ML, Araújo ACF, Balbo SL, Grassiolli S. Maternal Roux-en-Y gastric bypass surgery reduces lipid deposition and increases UCP1 expression in the brown adipose tissue of male offspring. Sci Rep 2021; 11:1158. [PMID: 33441773 PMCID: PMC7806700 DOI: 10.1038/s41598-020-80104-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity induced by cafeteria diet (CAF) predisposes offspring to obesity and metabolic diseases, events that could be avoided by maternal bariatric surgery (BS). Herein we evaluated whether maternal BS is able to modulate brown adipose tissue (BAT) morphology and function in adult male rats born from obese female rats submitted to Roux-en-Y gastric bypass (RYGB). For this, adult male rat offspring were obtained from female rats that consumed standard diet (CTL), or CAF diet, and were submitted to simulated operation or RYGB. Analysis of offspring showed that, at 120 days of life, the maternal CAF diet induced adiposity and decreased the expression of mitochondrial Complex I (CI) and Complex III (CIII) in the BAT, resulting in higher accumulation of lipids than in BAT from offspring of CTL dams. Moreover, maternal RYGB increased UCP1 expression and prevented excessive deposition of lipids in the BAT of adult male offspring rats. However, maternal RYGB failed to reverse the effects of maternal diet on CI and CIII expression. Thus, maternal CAF promotes higher lipid deposition in the BAT of offspring, contributing to elevated adiposity. Maternal RYGB prevented obesity in offspring, probably by increasing the expression of UCP1.
Collapse
Affiliation(s)
- Vanessa Marieli Ceglarek
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil. .,Institute of Basic Health Sciences. Biological Sciences: Physiology, postgraduate. Department of Physiology, Room 337-7, Laboratory of Neurophysiology of Cognition and Development of the Brain, Federal University of Rio Grande do Sul, 500, Sarmento Leite - Farroupilha, Porto Alegre, RS, 90050-170, Brazil.
| | - Iala Milene Bertasso
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sofia Pizzato Scomazzon
- Medical Sciences: Endocrinology Post Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nayara Carvalho Leite
- Obesity Comorbidities and Research Center, University of Campinas, Campinas, SP, Brazil
| | - Maria Lúcia Bonfleur
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Allan Cezar Faria Araújo
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sandra Lucinei Balbo
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| | - Sabrina Grassiolli
- Laboratory of Endocrine and Metabolic Physiology, Biosciences and Health, Postgraduate, University of West Parana, Cascavel, PR, Brazil
| |
Collapse
|
4
|
Orsso CE, Colin-Ramirez E, Field CJ, Madsen KL, Prado CM, Haqq AM. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients 2020; 12:E2735. [PMID: 32911676 PMCID: PMC7551046 DOI: 10.3390/nu12092735] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Prevalence rates of pediatric obesity continue to rise worldwide. Adipose tissue (AT) development and expansion initiate in the fetus and extend throughout the lifespan. This paper presents an overview of the AT developmental trajectories from the intrauterine period to adolescence; factors determining adiposity expansion are also discussed. The greatest fetal increases in AT were observed in the third pregnancy trimester, with growing evidence suggesting that maternal health and nutrition, toxin exposure, and genetic defects impact AT development. From birth up to six months, healthy term newborns experience steep increases in AT; but a subsequent reduction in AT is observed during infancy. Important determinants of AT in infancy identified in this review included feeding practices and factors shaping the gut microbiome. Low AT accrual rates are maintained up to puberty onset, at which time, the pattern of adiposity expansion becomes sex dependent. As girls experience rapid increases and boys experience decreases in AT, sexual dimorphism in hormone secretion can be considered the main contributor for changes. Eating patterns/behaviors and interactions between dietary components, gut microbiome, and immune cells also influence AT expansion. Despite the plasticity of this tissue, substantial evidence supports that adiposity at birth and infancy highly influences its levels across subsequent life stages. Thus, a unique window of opportunity for the prevention and/or slowing down of the predisposition toward obesity, exists from pregnancy through childhood.
Collapse
Affiliation(s)
- Camila E. Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | | | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2C2, Canada;
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | - Andrea M. Haqq
- Department of Pediatrics and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
5
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Hankir MK, Seyfried F. Do Bariatric Surgeries Enhance Brown/Beige Adipose Tissue Thermogenesis? Front Endocrinol (Lausanne) 2020; 11:275. [PMID: 32425889 PMCID: PMC7203442 DOI: 10.3389/fendo.2020.00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bariatric surgeries induce marked and durable weight loss in individuals with morbid obesity through powerful effects on both food intake and energy expenditure. While alterations in gut-brain communication are increasingly implicated in the improved eating behavior following bariatric surgeries, less is known about the mechanistic basis for energy expenditure changes. Brown adipose tissue (BAT) and beige adipose tissue (BeAT) have emerged as major regulators of whole-body energy metabolism in humans as well as in rodents due to their ability to convert the chemical energy in circulating glucose and fatty acids into heat. In this Review, we critically discuss the steadily growing evidence from preclinical and clinical studies suggesting that Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), the two most commonly performed bariatric surgeries, enhance BAT/BeAT thermogenesis. We address the documented mechanisms, highlight study limitations and finish by outlining unanswered questions in the subject. Further understanding how and to what extent bariatric surgeries enhance BAT/BeAT thermogenesis may not only aid in the development of improved obesity pharmacotherapies that safely and optimally target both sides of the energy balance equation, but also in the development of novel hyperglycemia and/or hyperlipidemia pharmacotherapies.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|