1
|
Basic M, Thiyagarajah K, Glitscher M, Schollmeier A, Wu Q, Görgülü E, Lembeck P, Sonnenberg J, Dietz J, Finkelmeier F, Praktiknjo M, Trebicka J, Zeuzem S, Sarrazin C, Hildt E, Peiffer KH. Impaired HBsAg release and antiproliferative/antioxidant cell regulation by HBeAg-negative patient isolates reflects an evolutionary process. Liver Int 2024; 44:2773-2792. [PMID: 39078064 DOI: 10.1111/liv.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The hepatitis B e antigen (HBeAg)-negative infection Phase 3 is characterized by no or minimal signs of hepatic inflammation and the absence of hepatic fibrosis. However, underlying molecular mechanisms leading to this benign phenotype are poorly understood. METHODS Genotype A, B and D HBeAg-negative patient isolates with precore mutation G1896A from Phase 3 were analysed in comparison with respective HBeAg-positive rescue mutant and HBeAg-positive wild-type reference genomes regarding differences in viral replication, morphogenesis, infectivity and impact on NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE)-dependent gene expression and cellular kinome. RESULTS In comparison with reference genomes, the patient isolates are characterized by a lower intra- and extracellular hepatitis B surface antigen (HBsAg)-amount, and HBsAg-retention in the endoplasmic reticulum. Rescue of HBeAg expression increased HBsAg-amount but not its release. Expression of the isolated genomes is associated with a higher Nrf2/ARE-dependent gene expression as compared to reference genomes independent of HBeAg expression. Kinome analyses revealed a decreased activity of receptors involved in regulation of proliferative pathways for all patient isolates compared to the reference genomes. No specific conserved mutations could be found between all genomes from Phase 3. CONCLUSIONS HBeAg-negative genomes from Phase 3 exhibit distinct molecular characteristics leading to lower HBsAg synthesis and release, enhanced oxidative stress protection and decreased activity of key kinases, triggering an antiproliferative stage, which might contribute to the lower probability of hepatocellular carcinoma. The observed differences cannot be associated with loss of HBeAg or specific mutations common to all analysed isolates, indicating the phenotype of Phase 3 derived genomes to be the result of a multifactorial process likely reflecting a conserved natural selection process.
Collapse
Affiliation(s)
- Michael Basic
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Keerthihan Thiyagarajah
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Mirco Glitscher
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Anja Schollmeier
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Qingyan Wu
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Esra Görgülü
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Pia Lembeck
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Jannik Sonnenberg
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Julia Dietz
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Stefan Zeuzem
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Gastroenterology, St. Josefs Hospital, Wiesbaden, Germany
| | - Eberhard Hildt
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Kai-Henrik Peiffer
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
2
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
3
|
Basic M, Kubesch A, Kuhnhenn L, Görgülü E, Finkelmeier F, Dietz J, Knabe M, Mücke VT, Mücke MM, Berger A, Zeuzem S, Sarrazin C, Hildt E, Peiffer KH. Not uncommon: HBV genotype G co-infections among healthy European HBV carriers with genotype A and E infection. Liver Int 2021; 41:1278-1289. [PMID: 33786970 DOI: 10.1111/liv.14884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS HBV genotype G (HBV/G) is mainly found in co-infections with other HBV genotypes and was identified as an independent risk factor for liver fibrosis. This study aimed to analyse the prevalence of HBV/G co-infections in healthy European HBV carriers and to characterize the crosstalk of HBV/G with other genotypes. METHODS A total of 560 European HBV carriers were tested via HBV/G-specific PCR for HBV/G co-infections. Quasispecies distribution was analysed via deep sequencing, and the clinical phenotype was characterized regarding qHBsAg-/HBV-DNA levels and frequent mutations. Replicative capacity and expression of HBsAg/core was studied in hepatoma cells co-expressing HBV/G with either HBV/A, HBV/D or HBV/E using bicistronic vectors. RESULTS Although no HBV/G co-infection was found by routine genotyping PCR, HBV/G was detected by specific PCR in 4%-8% of patients infected with either HBV/A or HBV/E but only infrequently in other genotypes. In contrast to HBV/E, HBV/G was found as the quasispecies major variant in co-infections with HBV/A. No differences in the clinical phenotype were observed for HBV/G co-infections. In vitro RNA and DNA levels were comparable among all genotypes, but expression and release of HBsAg was reduced in co-expression of HBV/G with HBV/E. In co-expression with HBV/A and HBV/E expression of HBV/G-specific core was enhanced while core expression from the corresponding genotype was markedly diminished. CONCLUSIONS HBV/G co-infections are common in European inactive carriers with HBV/A and HBV/E infection, but sufficient detection depends strongly on the assay. HBV/G regulated core expression might play a critical role for survival of HBV/G in co-infections.
Collapse
Affiliation(s)
- Michael Basic
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany.,Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Alica Kubesch
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Lisa Kuhnhenn
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Esra Görgülü
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Dietz
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Mate Knabe
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Victoria T Mücke
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Marcus M Mücke
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Annemarie Berger
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany.,Department of Gastroenterology, St. Josefs Hospital, Wiesbaden, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Kai-Henrik Peiffer
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany.,Division of Virology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|