1
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Satoskar A, Abdel-Rasoul M, Uwase H, Breuer CK, Bumgardner GL. Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1504-1518. [PMID: 38517294 PMCID: PMC11047759 DOI: 10.4049/jimmunol.2300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Hope Uwase
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Li X, Zhao Y, Sun W, Zhang C, Yu Y, Du B, Jin A, Liu Y. Neutrophil depletion attenuates antibody-mediated rejection in a renal transplantation mouse model. Clin Exp Immunol 2024; 216:211-219. [PMID: 38150328 PMCID: PMC11036104 DOI: 10.1093/cei/uxad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/05/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023] Open
Abstract
Antibody-mediated rejection (AMR) can cause graft failure following renal transplantation. Neutrophils play a key role in AMR progression, but the exact mechanism remains unclear. We investigated the effect of neutrophils on AMR in a mouse kidney transplantation model. The mice were divided into five groups: syngeneic transplantation (Syn), allograft transplantation (Allo), and three differently treated AMR groups. The AMR mouse model was established using skin grafts to pre-sensitize recipient mice. Based on the AMR model, Ly6G-specific monoclonal antibodies were administered to deplete neutrophils (NEUT-/- + AMR) and TACI-Fc was used to block B-cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) signaling (TACI-Fc + AMR). Pathological changes were assessed using hematoxylin-eosin and immunohistochemical staining. Banff values were evaluated using the Banff 2015 criteria. Donor-specific antibody (DSA) levels were assessed using flow cytometry, and BAFF and APRIL concentrations were measured using ELISA. Compared to the Syn and Allo groups, a significantly increased number of neutrophils and increased C4d and IgG deposition were observed in AMR mice, accompanied by elevated DSA levels. Neutrophil depletion inhibited inflammatory cell infiltration and reduced C4d and IgG deposition. Neutrophil depletion significantly decreased DSA levels after transplantation and suppressed BAFF and APRIL concentrations, suggesting a mechanism for attenuating AMR-induced graft damage. Similar results were obtained after blockading BAFF/APRIL using a TACI-Fc fusion protein. In summary, neutrophil infiltration increased in the AMR mouse renal transplantation model. Neutrophil depletion or blockading the BAFF/APRIL signaling pathway significantly alleviated AMR and may provide better options for the clinical treatment of AMR.
Collapse
Affiliation(s)
- Xingku Li
- Experimental Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yakun Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wenying Sun
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Cong Zhang
- Department of Microbiology and Immunology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yadi Yu
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
| | - Bo Du
- Experimental Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - AiShun Jin
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ye Liu
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Santos J, Wang P, Shemesh A, Liu F, Tsao T, Aguilar OA, Cleary SJ, Singer JP, Gao Y, Hays SR, Golden JA, Leard L, Kleinhenz ME, Kolaitis NA, Shah R, Venado A, Kukreja J, Weigt SS, Belperio JA, Lanier LL, Looney MR, Greenland JR, Calabrese DR. CCR5 drives NK cell-associated airway damage in pulmonary ischemia-reperfusion injury. JCI Insight 2023; 8:e173716. [PMID: 37788115 PMCID: PMC10721259 DOI: 10.1172/jci.insight.173716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI. Here, we used 2 mouse models paired with human lung transplant samples to investigate the mechanisms whereby NK cells migrate to the airways to mediate lung injury. We demonstrate that chemokine receptor ligand transcripts and proteins are increased in mouse and human disease. CCR5 ligand transcripts were correlated with NK cell gene signatures independently of NK cell CCR5 ligand secretion. NK cells expressing CCR5 were increased in the lung and airways during IRI and had increased markers of tissue residency and maturation. Allosteric CCR5 drug blockade reduced the migration of NK cells to the site of injury. CCR5 blockade also blunted quantitative measures of experimental IRI. Additionally, in human lung transplant bronchoalveolar lavage samples, we found that CCR5 ligand was associated with increased patient morbidity and that the CCR5 receptor was increased in expression on human NK cells following PGD. These data support a potential mechanism for NK cell migration during lung injury and identify a plausible preventative treatment for PGD.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Surgery, UCSF - East Bay, Oakland, California, USA
| | - Ping Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Avishai Shemesh
- Department of Medicine, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Fengchun Liu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Tasha Tsao
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Simon J. Cleary
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Ying Gao
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven R. Hays
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Lorriana Leard
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | - Rupal Shah
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Aida Venado
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - S. Sam Weigt
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Lewis L. Lanier
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Department of Microbiology and Immunology, and
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John R. Greenland
- Department of Medicine, UCSF, San Francisco, California, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Daniel R. Calabrese
- Department of Medicine, UCSF, San Francisco, California, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
4
|
Zhang P, Wu P, Khan UZ, Zhou Z, Sui X, Li C, Dong K, Liu Y, Qing L, Tang J. Exosomes derived from LPS-preconditioned bone marrow-derived MSC modulate macrophage plasticity to promote allograft survival via the NF-κB/NLRP3 signaling pathway. J Nanobiotechnology 2023; 21:332. [PMID: 37716974 PMCID: PMC10504750 DOI: 10.1186/s12951-023-02087-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study investigated whether exosomes from LPS pretreated bone marrow mesenchymal stem cells (LPS pre-MSCs) could prolong skin graft survival. METHODS The exosomes were isolated from the supernatant of MSCs pretreated with LPS. LPS pre-Exo and rapamycin were injected via the tail vein into C57BL/6 mice allografted with BALB/c skin; graft survival was observed and evaluated. The accumulation and polarization of macrophages were examined by immunohistochemistry. The differentiation of macrophages in the spleen was analyzed by flow cytometry. For in vitro, an inflammatory model was established. Specifically, bone marrow-derived macrophages (BMDMs) were isolated and cultured with LPS (100 ng/ml) for 3 h, and were further treated with LPS pre-Exo for 24 h or 48 h. The molecular signaling pathway responsible for modulating inflammation was examined by Western blotting. The expressions of downstream inflammatory cytokines were determined by Elisa, and the polarization of macrophages was analyzed by flow cytometry. RESULTS LPS pre-Exo could better ablate inflammation compared to untreated MSC-derived exosomes (BM-Exo). These loaded factors inhibited the expressions of inflammatory factors via a negative feedback mechanism. In vivo, LPS pre-Exo significantly attenuated inflammatory infiltration, thus improving the survival of allogeneic skin graft. Flow cytometric analysis of BMDMs showed that LPS pre-Exo were involved in the regulation of macrophage polarization and immune homeostasis during inflammation. Further investigation revealed that the NF-κB/NLRP3/procaspase-1/IL-1β signaling pathway played a key role in LPS pre-Exo-mediated regulation of macrophage polarization. Inhibiting NF-κB in BMDMs could abolish the LPS-induced activation of inflammatory pathways and the polarization of M1 macrophages while increasing the proportion of M2 cells. CONCLUSION LPS pre-Exo are able to switch the polarization of macrophages and enhance the resolution of inflammation. This type of exosomes provides an improved immunotherapeutic potential in prolonging graft survival.
Collapse
Affiliation(s)
- PeiYao Zhang
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Umar Zeb Khan
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Zekun Zhou
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Xinlei Sui
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Cheng Li
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Kangkang Dong
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Yongjun Liu
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China.
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery Surgery, Xiangya Hospital of Central South University, Xiangy Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Franco-Acevedo A, Comes J, Mack JJ, Valenzuela NM. New insights into maladaptive vascular responses to donor specific HLA antibodies in organ transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1146040. [PMID: 38993843 PMCID: PMC11235244 DOI: 10.3389/frtra.2023.1146040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 07/13/2024]
Abstract
Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Johanna Comes
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, United States
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Shepherd HM, Gauthier JM, Terada Y, Li W, Krupnick AS, Gelman AE, Kreisel D. Updated Views on Neutrophil Responses in Ischemia-Reperfusion Injury. Transplantation 2022; 106:2314-2324. [PMID: 35749228 PMCID: PMC9712152 DOI: 10.1097/tp.0000000000004221] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion injury is an inevitable event during organ transplantation and represents a primary risk factor for the development of early graft dysfunction in lung, heart, liver, and kidney transplant recipients. Recent studies have implicated recipient neutrophils as key mediators of this process and also have found that early innate immune responses after transplantation can ultimately augment adaptive alloimmunity and affect late graft outcomes. Here, we discuss signaling pathways involved in neutrophil recruitment and activation after ischemia-mediated graft injury in solid organ transplantation with an emphasis on lung allografts, which have been the focus of recent studies. These findings suggest novel therapeutic interventions that target ischemia-reperfusion injury-mediated graft dysfunction in transplant recipients.
Collapse
Affiliation(s)
- Hailey M. Shepherd
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Yuriko Terada
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
7
|
Dangi A, Husain I, Jordan CZ, Yu S, Natesh N, Shen X, Kwun J, Luo X. Blocking CCL8-CCR8-Mediated Early Allograft Inflammation Improves Kidney Transplant Function. J Am Soc Nephrol 2022; 33:1876-1890. [PMID: 35973731 PMCID: PMC9528333 DOI: 10.1681/asn.2022020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In kidney transplantation, early allograft inflammation impairs long-term allograft function. However, precise mediators of early kidney allograft inflammation are unclear, making it challenging to design therapeutic interventions. METHODS We used an allogeneic murine kidney transplant model in which CD45.2 BALB/c kidneys were transplanted to CD45.1 C57BL/6 recipients. RESULTS Donor kidney resident macrophages within the allograft expanded rapidly in the first 3 days. During this period, they were also induced to express a high level of Ccl8, which, in turn, promoted recipient monocyte graft infiltration, their differentiation to resident macrophages, and subsequent expression of Ccl8. Enhanced graft infiltration of recipient CCR8+ T cells followed, including CD4, CD8, and γδ T cells. Consequently, blocking CCL8-CCR8 or depleting donor kidney resident macrophages significantly inhibits early allograft immune cell infiltration and promotes superior short-term allograft function. CONCLUSIONS Targeting the CCL8-CCR8 axis is a promising measure to reduce early kidney allograft inflammation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Shuangjin Yu
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naveen Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
- Terasaki Institute, Los Angeles, California
| | - Jean Kwun
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|