1
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Tian M, Yao Z, Zhou Y, Gan Q, Wang L, Lu H, Wang S, Zhou P, Dai Z, Zhang S, Sun Y, Tang Z, Yu J, Wang X. DeepRisk network: an AI-based tool for digital pathology signature and treatment responsiveness of gastric cancer using whole-slide images. J Transl Med 2024; 22:182. [PMID: 38373959 PMCID: PMC10877826 DOI: 10.1186/s12967-023-04838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Digital histopathology provides valuable information for clinical decision-making. We hypothesized that a deep risk network (DeepRisk) based on digital pathology signature (DPS) derived from whole-slide images could improve the prognostic value of the tumor, node, and metastasis (TNM) staging system and offer chemotherapeutic benefits for gastric cancer (GC). METHODS DeepRisk is a multi-scale, attention-based learning model developed on 1120 GCs in the Zhongshan dataset and validated with two external datasets. Then, we assessed its association with prognosis and treatment response. The multi-omics analysis and multiplex Immunohistochemistry were conducted to evaluate the potential pathogenesis and spatial immune contexture underlying DPS. RESULTS Multivariate analysis indicated that the DPS was an independent prognosticator with a better C-index (0.84 for overall survival and 0.71 for disease-free survival). Patients with low-DPS after neoadjuvant chemotherapy responded favorably to treatment. Spatial analysis indicated that exhausted immune clusters and increased infiltration of CD11b+CD11c+ immune cells were present at the invasive margin of high-DPS group. Multi-omics data from the Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD) hint at the relevance of DPS to myeloid derived suppressor cells infiltration and immune suppression. CONCLUSION DeepRisk network is a reliable tool that enhances prognostic value of TNM staging and aid in precise treatment, providing insights into the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Mengxin Tian
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Yao
- Biomedical Engineering Center, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Yufu Zhou
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qiangjun Gan
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leihao Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongwei Lu
- Biomedical Engineering Center, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Siyuan Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Dai
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Sijia Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihong Sun
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqing Tang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
| | - Jinhua Yu
- Biomedical Engineering Center, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
- The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| | - Xuefei Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
| |
Collapse
|
3
|
Zhao T, Du H, Yan C. Characterization of lysosomal acid lipase in Ly6G + and CD11c + myeloid-derived suppressor cells. Methods Cell Biol 2023; 184:119-131. [PMID: 38555152 DOI: 10.1016/bs.mcb.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids, whose deficiency (LAL-D) induces the differentiation of myeloid lineage cells into myeloid-derived suppressor cells (MDSCs), which promotes tumor growth and metastasis. This protocol provides detailed procedures for assessment of various LAL biochemical and physiological activities in Ly6G+ and CD11c+ MDSCs, including isolation of Ly6G+ and CD11c+ cells from the bone marrow and blood of mice, assays of LAL-D-induced cellular metabolic and mitochondrial activities, assessment of LAL-D-induced pathogenic immunosuppressive activity and tumor stimulatory activity. Pharmacological inhibition of the LAL activity was also described in both murine myeloid cells and human white blood cells.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
4
|
Bradić I, Liesinger L, Kuentzel KB, Vujić N, Trauner M, Birner-Gruenberger R, Kratky D. Metabolic changes and propensity for inflammation, fibrosis, and cancer in livers of mice lacking lysosomal acid lipase. J Lipid Res 2023; 64:100427. [PMID: 37595802 PMCID: PMC10482749 DOI: 10.1016/j.jlr.2023.100427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.
Collapse
Affiliation(s)
- Ivan Bradić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Katharina B Kuentzel
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria; BioTechMed-Graz, Graz, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
5
|
Abouhashem AS, Singh K, Srivastava R, Liu S, Mathew-Steiner SS, Gu X, Kacar S, Hagar A, Sandusky GE, Roy S, Wan J, Sen CK. The Prolonged Terminal Phase of Human Life Induces Survival Response in the Skin Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540715. [PMID: 37292819 PMCID: PMC10245562 DOI: 10.1101/2023.05.15.540715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human death marks the end of organismal life under conditions such that the components of the human body continue to be alive. Such postmortem cellular survival depends on the nature (Hardy scale of slow-fast death) of human death. Slow and expected death typically results from terminal illnesses and includes a prolonged terminal phase of life. As such organismal death process unfolds, do cells of the human body adapt for postmortem cellular survival? Organs with low energy cost-of-living, such as the skin, are better suited for postmortem cellular survival. In this work, the effect of different durations of terminal phase of human life on postmortem changes in cellular gene expression was investigated using RNA sequencing data of 701 human skin samples from the Genotype-Tissue Expression (GTEx) database. Longer terminal phase (slow-death) was associated with a more robust induction of survival pathways (PI3K-Akt signaling) in postmortem skin. Such cellular survival response was associated with the upregulation of embryonic developmental transcription factors such as FOXO1 , FOXO3 , ATF4 and CEBPD . Upregulation of PI3K-Akt signaling was independent of sex or duration of death-related tissue ischemia. Analysis of single nucleus RNA-seq of post-mortem skin tissue specifically identified the dermal fibroblast compartment to be most resilient as marked by adaptive induction of PI3K-Akt signaling. In addition, slow death also induced angiogenic pathways in the dermal endothelial cell compartment of postmortem human skin. In contrast, specific pathways supporting functional properties of the skin as an organ were downregulated following slow death. Such pathways included melanogenesis and those representing the skin extracellular matrix (collagen expression and metabolism). Efforts to understand the significance of death as a biological variable (DABV) in influencing the transcriptomic composition of surviving component tissues has far-reaching implications including rigorous interpretation of experimental data collected from the dead and mechanisms involved in transplant-tissue obtained from dead donors.
Collapse
|
6
|
Korbelius M, Kuentzel KB, Bradić I, Vujić N, Kratky D. Recent insights into lysosomal acid lipase deficiency. Trends Mol Med 2023; 29:425-438. [PMID: 37028992 DOI: 10.1016/j.molmed.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Lysosomal acid lipase (LAL) is the sole enzyme known to degrade neutral lipids in the lysosome. Mutations in the LAL-encoding LIPA gene lead to rare lysosomal lipid storage disorders with complete or partial absence of LAL activity. This review discusses the consequences of defective LAL-mediated lipid hydrolysis on cellular lipid homeostasis, epidemiology, and clinical presentation. Early detection of LAL deficiency (LAL-D) is essential for disease management and survival. LAL-D must be considered in patients with dyslipidemia and elevated aminotransferase concentrations of unknown etiology. Enzyme replacement therapy, sometimes in combination with hematopoietic stem cell transplantation (HSCT), is currently the only therapy for LAL-D. New technologies based on mRNA and viral vector gene transfer are recent efforts to provide other effective therapeutic strategies.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
7
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Zhao T, Liu S, Hanna NH, Jalal S, Ding X, Wan J, Yan C, Du H. LAL deficiency induced myeloid-derived suppressor cells as targets and biomarkers for lung cancer. J Immunother Cancer 2023; 11:e006272. [PMID: 36914206 PMCID: PMC10016256 DOI: 10.1136/jitc-2022-006272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells in tumor microenvironment, which suppress antitumor immunity. Expansion of various MDSC subpopulations is closely associated with poor clinical outcomes in cancer. Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids, whose deficiency (LAL-D) in mice induces the differentiation of myeloid lineage cells into MDSCs. These Lal -/- MDSCs not only suppress immune surveillance but also stimulate cancer cell proliferation and invasion. Understanding and elucidating the underlying mechanisms of MDSCs biogenesis will help to facilitate diagnosis/prognosis of cancer occurrence and prevent cancer growth and spreading. METHODS Single-cell RNA sequencing (scRNA-seq) was performed to distinguish intrinsic molecular and cellular differences between normal versus Lal -/- bone marrow-derived Ly6G+ myeloid populations in mice. In humans, LAL expression and metabolic pathways in various myeloid subsets of blood samples of patients with non-small cell lung cancer (NSCLC) were assessed by flow cytometry. The profiles of myeloid subsets were compared in patients with NSCLC before and after the treatment of programmed death-1 (PD-1) immunotherapy. RESULTS scRNA-seq of Lal -/- CD11b+Ly6G+ MDSCs identified two distinctive clusters with differential gene expression patterns and revealed a major metabolic shift towards glucose utilization and reactive oxygen species (ROS) overproduction. Blocking pyruvate dehydrogenase (PDH) in glycolysis reversed Lal -/- MDSCs' capabilities of immunosuppression and tumor growth stimulation and reduced ROS overproduction. In the blood samples of human patients with NSCLC, LAL expression was significantly decreased in CD13+/CD14+/CD15+/CD33+ myeloid cell subsets. Further analysis in the blood of patients with NSCLC revealed an expansion of CD13+/CD14+/CD15+ myeloid cell subsets, accompanied by upregulation of glucose-related and glutamine-related metabolic enzymes. Pharmacological inhibition of the LAL activity in the blood cells of healthy participants increased the numbers of CD13+ and CD14+ myeloid cell subsets. PD-1 checkpoint inhibitor treatment in patients with NSCLC reversed the increased number of CD13+ and CD14+ myeloid cell subsets and PDH levels in CD13+ myeloid cells. CONCLUSION These results demonstrate that LAL and the associated expansion of MDSCs could serve as targets and biomarkers for anticancer immunotherapy in humans.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nasser H Hanna
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shadia Jalal
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinchun Ding
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Pang B, Hu C, Li H, Nie X, Wang K, Zhou C, Yi H. Myeloidderived suppressor cells: Escorts at the maternal-fetal interface. Front Immunol 2023; 14:1080391. [PMID: 36817414 PMCID: PMC9932974 DOI: 10.3389/fimmu.2023.1080391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a novel heterogenous group of immunosuppressive cells derived from myeloid progenitors. Their role is well known in tumors and autoimmune diseases. In recent years, the role and function of MDSCs during reproduction have attracted increasing attention. Improving the understanding of their strong association with recurrent implantation failure, pathological pregnancy, and neonatal health has become a focus area in research. In this review, we focus on the interaction between MDSCs and other cell types (immune and non-immune cells) from embryo implantation to postpartum. Furthermore, we discuss the molecular mechanisms that could facilitate the therapeutic targeting of MDSCs. Therefore, this review intends to encourage further research in the field of maternal-fetal interface immunity in order to identify probable pathways driving the accumulation of MDSCs and to effectively target their ability to promote embryo implantation, reduce pathological pregnancy, and increase neonatal health.
Collapse
Affiliation(s)
- Bo Pang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimin Li
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xinyu Nie
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Keqi Wang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Zhou
- General Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. Int J Mol Sci 2022; 23:ijms232415549. [PMID: 36555187 PMCID: PMC9779616 DOI: 10.3390/ijms232415549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving 50-60 genes. Among the two disease subtypes, the severe disease subtype of LAL-D is known as Wolman disease, with typical manifestations involving hepatomegaly, splenomegaly, vomiting, diarrhea, and hematopoietic abnormalities, such as anemia. In contrast, the mild disease subtype of this disorder is known as cholesteryl ester storage disease, with hypercholesterolemia, hypertriglyceridemia, and high-density lipoprotein disappearance. The prevalence of LAL-D is rare, but several treatment options, including enzyme replacement therapy, are available. Accordingly, a number of screening methodologies have been developed for this disorder. This review summarizes the current discussion on LAL-D, covering genetics, screening, and the tertiary structure of human LAL enzyme and preclinical study for the future development of a novel therapy.
Collapse
|