1
|
Wang C, Zhao M, Yue Y, Hu C, Zhou C, Zhang Z, He Y, Luo Y, Shen T, Dang S, Yang Y, Zhang Y. Protective Effect of Modified Suanmei-Tang on Metabolic-Associated Fatty Liver Disease: An Integrated Strategy of Network Pharmacology, Metabolomics, and Transcriptomics. Drug Des Devel Ther 2024; 18:5161-5182. [PMID: 39559790 PMCID: PMC11572505 DOI: 10.2147/dddt.s478072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Background Modified Suanmei-Tang (MST) comprises four plants common to both traditional Chinese medicine and culinary applications, and it can potentially alleviate metabolic-associated fatty liver disease (MAFLD) triggered by a high-fat diet (HFD). Purpose This research aims to investigate the impact and underlying mechanisms of MST in ameliorating MAFLD caused by an HFD. Methods UHPLC-Q-Orbitrap-MS/MS was used to determine the constituents of MST and to evaluate its effects on MAFLD mouse models. Transcriptomics, network pharmacology, and bioinformatics analysis (including Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis) were utilized to further clarify the mechanisms by which MST acts on MAFLD. The experimental methods included ELISA, real time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, molecular docking, and metabolomics. Transcriptomics was integrated with metabolomics to find correlations between differentially expressed genes and metabolites, and crucial genes were validated through RT-qPCR. Results A total of 23 components of MST were identified. The formulation was found to alleviate metabolic disorders, obesity, insulin resistance, inflammation, and oxidative stress in mice with MAFLD. The findings indicate that MST promoted autophagy by suppressing phosphorylation in the PI3K/AKT/mTOR pathway and enhancing lipid management in the livers of MAFLD mice. Conclusion MST could effectively improve lipid metabolism disorders and liver lipid deposition in MAFLD mice, and its mechanism might be related to regulating the PI3K/AKT/mTOR pathway to improve autophagy.
Collapse
Affiliation(s)
- Chao Wang
- Traditional Chinese Medicine Department, Qitai Hospital of the Sixth Division, Xinjiang, 831899, People’s Republic of China
| | - Mei Zhao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yuanyuan Yue
- Department of Ultrasound, Chengdu First People’s Hospital, Chengdu, 610095, People’s Republic of China
| | - Chao Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chunqiu Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Zhongyi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yunliang He
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yaqi Luo
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Tao Shen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Sijie Dang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yong Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| |
Collapse
|
2
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
4
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|