1
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 PMCID: PMC11702947 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N. Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Asmael Al-Azzawi HM, Paolini R, McCullough M, Reilly LO, Hamza SA, Hadjigol S, Yap T, Celentano A. Assessment of anticoagulant safety and coagulation analysis in mice using the VETSCAN ® VSpro analyzer. J Thromb Thrombolysis 2024:10.1007/s11239-024-03066-y. [PMID: 39702894 DOI: 10.1007/s11239-024-03066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Animal models of thrombosis play a critical role in research, helping us understand the mechanisms of hemostasis and thrombus formation, as well as in the screening of anti-thrombotic drugs. This study aimed to evaluate the safety profile of two anticoagulants in murine research and to assess coagulation parameters, including prothrombin time (PT) and activated partial thromboplastin time (aPTT), using the VETSCAN® VSpro coagulation analyzer in wild-type (C57BL/6) mice following administration of anticoagulants. Two experiments were conducted involving a total of sixty wild-type mice that received two common anticoagulants. Warfarin was administered in the drinking water at varying dosages, while dabigatran was incorporated into a custom-chow diet at two dosages (10 mg/g and 15 mg/g chow). The VSpro was used to establish a reference range for PT and aPTT values in untreated wild-type mice and to monitor coagulation changes in mice undergoing anticoagulant therapy. Dabigatran was well tolerated at both concentrations (10 mg/g and 15 mg/g chow), while warfarin was safe at a concentration of 2.5 mg/L, resulting in a doubling of PT and aPTT compared to baseline levels. Although the VSpro effectively detected coagulation abnormalities in murine models, certain limitations were observed, including out-of-range measurements in cases of coagulopathy. This study provides insights into safe anticoagulant dosages for murine models, supporting the use of dabigatran at 10 mg/g and 15 mg/g chow and warfarin at 2.5 mg/L. The VSpro analyzer was able to monitor coagulation parameters under these conditions, making it a feasible tool for murine research.
Collapse
Affiliation(s)
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Lorraine O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Syed Ameer Hamza
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Sara Hadjigol
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne Melbourne Dental School, Victoria, Australia.
| |
Collapse
|
3
|
Amrutha MC, Wessler S, Ponnuraj K. Biophysical characterization and in silico analysis of natural and synthetic compounds targeting Listeria monocytogenes HtrA protease. Mol Divers 2024:10.1007/s11030-024-11050-0. [PMID: 39604603 DOI: 10.1007/s11030-024-11050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
HtrA protein is a member of a serine protease family with dual functions as a protease and molecular chaperone. It is a virulence factor in many bacteria, including the food-borne pathogen Listeria monocytogenes (Lm), which induces listeriosis in humans. Hence, inhibitors of LmHtrA protease have great importance in the control of infection. Many natural compounds have been used in the inhibition studies of proteases; here, we have performed the inhibition studies of LmHtrA with 31 compounds from different origins. The spectrophotometric assays revealed that plant compounds are promising inhibitors of LmHtrA protease activity compared to other tested peptides and synthetic compounds. The green tea catechin, EGCG has been identified as an inhibitor of protease activity of LmHtrA with a low IC50 value of 0.754 ± 0.2 μM. The substrate cleavage analysis by SDS-PAGE and SPR experiments corroborates the spectrophotometric results by exhibiting protease inhibition and showing the micromolar affinity of EGCG with LmHtrA, respectively. The interaction between rLmHtrA and EGCG was investigated by fluorescence spectroscopy. The binding constant and the number of binding sites were determined as 1.86 × 10(5) M(-1) and 1.2, respectively. The molecular docking and dynamics results of LmHtrA-inhibitor complexes have provided new insights into the inhibition mechanism of LmHtrA compared with other serine proteases. The findings of this study may open up new avenues for the development of natural compound-based derivatives of LmHtrA inhibitors that might be more potent and less harmful to humans.
Collapse
Affiliation(s)
- M C Amrutha
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Silja Wessler
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Str. 34, 5020, Salzburg, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
4
|
Demcsák A, Shariatzadeh S, Sahin-Tóth M. Secretagogue-induced pancreatitis in mice devoid of chymotrypsin. Am J Physiol Gastrointest Liver Physiol 2024; 327:G333-G344. [PMID: 38981616 PMCID: PMC11427105 DOI: 10.1152/ajpgi.00310.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
The serine protease chymotrypsin protects the pancreas against pancreatitis by degrading trypsinogen, the precursor to the digestive protease trypsin. Taking advantage of previously generated mouse models with either the Ctrb1 gene (encoding chymotrypsin B1) or the Ctrl gene (encoding chymotrypsin-like protease) disrupted, here we generated the novel Ctrb1-del × Ctrl-KO strain in the C57BL/6N genetic background, which harbors a naturally inactivated Ctrc gene (encoding chymotrypsin C). The newly created mice are devoid of chymotrypsin, yet the animals develop normally, breed well, and show no spontaneous phenotype, indicating that chymotrypsin is dispensable under laboratory conditions. When given cerulein, the Ctrb1-del × Ctrl-KO strain exhibited markedly increased intrapancreatic trypsin activation and more severe acute pancreatitis, relative to wild-type C57BL/6N mice. After the acute episode, Ctrb1-del × Ctrl-KO mice spontaneously progressed to chronic pancreatitis, whereas C57BL/6N mice recovered rapidly. The cerulein-induced pancreas pathology in Ctrb1-del × Ctrl-KO mice was highly similar to that previously observed in Ctrb1-del mice; however, trypsin activation was more robust and pancreatitis severity was increased. Taken together, the results confirm and extend prior observations demonstrating that chymotrypsin safeguards the pancreas against pancreatitis by limiting pathologic trypsin activity. In mice, the CTRB1 isoform, which constitutes about 90% of the total chymotrypsin content, is responsible primarily for the anti-trypsin defenses and protection against pancreatitis; however, the minor isoform CTRL also contributes to an appreciable extent.NEW & NOTEWORTHY Chymotrypsins defend the pancreas against the inflammatory disorder pancreatitis by degrading harmful trypsinogen. This study demonstrates that mice devoid of pancreatic chymotrypsins are phenotypically normal but become sensitized to secretagogue hyperstimulation and exhibit increased intrapancreatic trypsin activation, more severe acute pancreatitis, and rapid progression to chronic pancreatitis. The observations confirm and extend the essential role of chymotrypsins in pancreas health.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
5
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
6
|
Wang YC, Mao XT, Sun C, Wang YH, Zheng YZ, Xiong SH, Liu MY, Mao SH, Wang QW, Ma GX, Wu D, Li ZS, Chen JM, Zou WB, Liao Z. Pancreas-directed AAV8 -hSPINK1 gene therapy safely and effectively protects against pancreatitis in mice. Gut 2024; 73:1142-1155. [PMID: 38553043 DOI: 10.1136/gutjnl-2023-330788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Currently, there is no cure for chronic pancreatitis (CP). Germline loss-of-function variants in SPINK1 (encoding trypsin inhibitor) are common in patients with CP and are associated with acute attacks and progression of the disease. This preclinical study was conducted to explore the potential of adeno-associated virus type 8 (AAV8)-mediated overexpression of human SPINK1 (hSPINK1) for pancreatitis therapy in mice. DESIGN A capsid-optimised AAV8-mediated hSPINK1 expression vector (AAV8-hSPINK1) to target the pancreas was constructed. Mice were treated with AAV8-hSPINK1 by intraperitoneal injection. Pancreatic transduction efficiency and safety of AAV8-hSPINK1 were dynamically evaluated in infected mice. The effectiveness of AAV8-hSPINK1 on pancreatitis prevention and treatment was studied in three mouse models (caerulein-induced pancreatitis, pancreatic duct ligation and Spink1 c.194+2T>C mouse models). RESULTS The constructed AAV8-hSPINK1 vector specifically and safely targeted the pancreas, had low organ tropism for the heart, lungs, spleen, liver and kidneys and had a high transduction efficiency (the optimal expression dose was 2×1011 vg/animal). The expression and efficacy of hSPINK1 peaked at 4 weeks after injection and remained at significant level for up to at least 8 weeks. In all three mouse models, a single dose of AAV8-hSPINK1 before disease onset significantly alleviated the severity of pancreatitis, reduced the progression of fibrosis, decreased the levels of apoptosis and autophagy in the pancreas and accelerated the pancreatitis recovery process. CONCLUSION One-time injection of AAV8-hSPINK1 safely targets the pancreas with high transduction efficiency and effectively ameliorates pancreatitis phenotypes in mice. This approach is promising for the prevention and treatment of CP.
Collapse
Affiliation(s)
- Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Hui Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yi-Zhou Zheng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Si-Huai Xiong
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Mu-Yun Liu
- Department of Gastroenterology, No. 905 Hospital of PLA Navy Affiliated to Naval Medical University, Shanghai, China
| | - Sheng-Han Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Guo-Xiu Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Di Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| |
Collapse
|
7
|
Demcsák A, Sahin-Tóth M. Heterozygous Spink1 Deficiency Promotes Trypsin-dependent Chronic Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101361. [PMID: 38768901 PMCID: PMC11292374 DOI: 10.1016/j.jcmgh.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND & AIMS Heterozygous SPINK1 mutations are strong risk factors for chronic pancreatitis in humans, yet heterozygous disruption of mouse Spink1 yielded no pancreatic phenotype. To resolve this contradiction, we used CRISPR/Cas9-mediated genome editing to generate heterozygous Spink1-deleted mice (Spink1-KOhet) in the C57BL/6N strain and studied the effect of this allele in trypsin-independent and trypsin-dependent pancreatitis models. METHODS We investigated severity of acute pancreatitis and progression to chronic pancreatitis in Spink1-KOhet mice after transient (10 injections) and prolonged (2 × 8 injections) cerulein hyperstimulation. We crossed Spink1-KOhet mice with T7D23A and T7D22N,K24R mice that carry strongly autoactivating trypsinogen mutants and exhibit spontaneous chronic pancreatitis. RESULTS Prolonged but not transient cerulein stimulation resulted in increased intrapancreatic trypsin activity and more severe acute pancreatitis in Spink1-KOhet mice relative to the C57BL/6N control strain. After the acute episode, Spink1-KOhet mice developed progressive disease with chronic pancreatitis-like features, whereas C57BL/6N mice recovered rapidly. Trypsinogen mutant mice carrying the Spink1-KOhet allele exhibited strikingly more severe chronic pancreatitis than the respective parent strains. CONCLUSIONS Heterozygous Spink1 deficiency caused more severe acute pancreatitis after prolonged cerulein stimulation and promoted chronic pancreatitis after the cerulein-induced acute episode, and in two strains of trypsinogen mutant mice with spontaneous disease. In contrast, acute pancreatitis induced with limited cerulein hyperstimulation was unaffected by heterozygous Spink1 deletion, in agreement with recent observations that trypsin activity does not mediate pathologic responses in this model. Taken together, the findings strongly support the notion that loss-of-function SPINK1 mutations in humans increase chronic pancreatitis risk in a trypsin-dependent manner.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
8
|
Zaman S, Gorelick F. Acute pancreatitis: pathogenesis and emerging therapies. JOURNAL OF PANCREATOLOGY 2024; 7:10-20. [PMID: 38524855 PMCID: PMC10959536 DOI: 10.1097/jp9.0000000000000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
Acute pancreatitis is a severe inflammatory disorder with limited treatment options. Improved understanding of disease mechanisms has led to new and potential therapies. Here we summarize what we view as some of the most promising new therapies for treating acute pancreatitis, emphasizing the rationale of specific treatments based on disease mechanisms. Targeted pharmacologic interventions are highlighted. We explore potential treatment benefits and risks concerning reducing acute injury, minimizing complications, and improving long-term outcomes. Mechanisms associated with acute pancreatitis initiation, perpetuation, and reconstitution are highlighted, along with potential therapeutic targets and how these relate to new treatments.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
| | - Fred Gorelick
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
- Veteran’s Administration Healthcare System, West Haven, CT 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
9
|
Glaubitz J, Asgarbeik S, Lange R, Mazloum H, Elsheikh H, Weiss FU, Sendler M. Immune response mechanisms in acute and chronic pancreatitis: strategies for therapeutic intervention. Front Immunol 2023; 14:1279539. [PMID: 37881430 PMCID: PMC10595029 DOI: 10.3389/fimmu.2023.1279539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Morales Granda NC, Toldi V, Miczi M, Lassoued M, Szabó A. Inhibition of mouse trypsin isoforms by SPINK1 and effect of human pancreatitis-associated mutations. Pancreatology 2023:S1424-3903(23)00137-0. [PMID: 37149461 DOI: 10.1016/j.pan.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Serine protease inhibitor Kazal type 1 (SPINK1) is a trypsin-selective inhibitor protein secreted by the exocrine pancreas. Loss-of-function SPINK1 mutations predispose to chronic pancreatitis through either reduced expression, secretion, or impaired trypsin inhibition. In this study, we aimed to characterize the inhibitory activity of mouse SPINK1 against cationic (T7) and anionic (T8, T9, T20) mouse trypsin isoforms. Kinetic measurements with a peptide substrate, and digestion experiments with β-casein indicated that the catalytic activity of all mouse trypsins is comparable. Human SPINK1 and its mouse ortholog inhibited mouse trypsins with comparable efficiency (KD range 0.7-2.2 pM), with the sole exception of T7 trypsin, which was inhibited less effectively by the human inhibitor (KD 21.9 pM). Characterization of four chronic pancreatitis-associated human SPINK1 mutations in the context of the mouse inhibitor revealed that the reactive-loop mutations R42N (human K41N) and I43M (human I42M) impaired SPINK1 binding to trypsin (KD 60 nM and 47.5 pM, respectively), whereas mutations D35S (human N34S) and A56S (human P55S) had no impact on trypsin inhibition. Our results confirmed that high-affinity trypsin inhibition by SPINK1 is conserved in the mouse, and the functional consequences of human pancreatitis-associated SPINK1 mutations can be replicated in the mouse inhibitor.
Collapse
Affiliation(s)
- Nataly C Morales Granda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Vanda Toldi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márió Miczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Meriam Lassoued
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|