1
|
Oh Y, Abid R, Dababneh S, Bakr M, Aslani T, Cook DP, Vanderhyden BC, Park JG, Munshi NV, Hui CC, Kim KH. Transcriptional regulation of the postnatal cardiac conduction system heterogeneity. Nat Commun 2024; 15:6550. [PMID: 39095365 PMCID: PMC11297185 DOI: 10.1038/s41467-024-50849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.
Collapse
Affiliation(s)
- Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rimshah Abid
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marwan Bakr
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Termeh Aslani
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Mangum KD, Li Q, Bauer TM, Wolf SJ, Shadiow J, Moon JY, Barrett EC, Joshi AD, Ahmed Z, Wasikowski R, Boyer K, Obi AT, Davis FM, Chang L, Tsoi LC, Gudjonsson J, Gallagher KA. Epigenetic Alteration of Smooth Muscle Cells Regulates Endothelin-Dependent Blood Pressure and Hypertensive Arterial Remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310178. [PMID: 39040193 PMCID: PMC11261912 DOI: 10.1101/2024.07.09.24310178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Long-standing hypertension (HTN) affects multiple organ systems and leads to pathologic arterial remodeling, which is driven largely by smooth muscle cell (SMC) plasticity. Although genome wide association studies (GWAS) have identified numerous variants associated with changes in blood pressure in humans, only a small percentage of these variants actually cause HTN. In order to identify relevant genes important in SMC function in HTN, we screened three separate human GWAS and Mendelian randomization studies to identify SNPs located within non-coding gene regions, focusing on genes encoding epigenetic enzymes, as these have been recently identified to control SMC fate in cardiovascular disease. We identified SNPs rs62059712 and rs74480102 in the promoter of the human JMJD3 gene and show that the minor C allele increases JMJD3 transcription in SMCs via increased SP1 binding to the JMJD3 promoter. Using our novel SMC-specific Jmjd3-deficient murine model ( Jmjd3 flox/flox Myh11 CreERT ), we show that loss of Jmjd3 in SMCs results in HTN, mechanistically, due to decreased EDNRB expression and a compensatory increase in EDNRA expression. As a translational corollary, through single cell RNA-sequencing (scRNA-seq) of human arteries, we found strong correlation between JMJD3 and EDNRB expression in SMCs. Further, we identified that JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs in the setting of HTN results in increased arterial remodeling by promoting the SMC synthetic phenotype. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing therapeutic targets that may be used in the screening and/or personalized treatment of HTN.
Collapse
|
3
|
Stanley HM, White BR, LaRosa CJ, Cocalis MW, Gaynor JW, Strong A, Gangaram B. Patent ductus arteriosus and coarctation of the aorta in association with PRDM6 variants. Am J Med Genet A 2024; 194:e63500. [PMID: 38071433 DOI: 10.1002/ajmg.a.63500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 03/10/2024]
Abstract
Patent ductus arteriosus (PDA) and coarctation of the aorta (CoA) are relatively common congenital heart defects. Pathogenic variants in PRDM6, which encodes a smooth-muscle-cell-specific transcription factor, have now been etiologically associated with non-syndromic PDA. We present three patients with PDA and CoA found to harbor PRDM6 variants, including a novel, likely-pathogenic variant.
Collapse
Affiliation(s)
- Helen M Stanley
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian R White
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J LaRosa
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Cocalis
- Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alanna Strong
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Balram Gangaram
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA
- Division of Genetics and Metabolism, Valley Children's Healthcare, Madera, California, USA
| |
Collapse
|
4
|
Yarboro MT, Boatwright N, Sekulich DC, Hooper CW, Wong T, Poole SD, Berger CD, Brown AJ, Jetter CS, Sucre JMS, Shelton EL, Reese J. A novel role for PGE 2-EP 4 in the developmental programming of the mouse ductus arteriosus: consequences for vessel maturation and function. Am J Physiol Heart Circ Physiol 2023; 325:H687-H701. [PMID: 37566109 PMCID: PMC10643004 DOI: 10.1152/ajpheart.00294.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.
Collapse
Affiliation(s)
- Michael T Yarboro
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Naoko Boatwright
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Deanna C Sekulich
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher W Hooper
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ting Wong
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Stanley D Poole
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Courtney D Berger
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexus J Brown
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher S Jetter
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elaine L Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Jeff Reese
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Smith JP, Sequeira-Lopez MLS, Gomez RA. A novel role for the histone modifier PRDM6 and an opportunity to understand hypertension. Kidney Int 2023; 104:415-417. [PMID: 37236422 PMCID: PMC10529860 DOI: 10.1016/j.kint.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Jason P Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
| | | | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|