1
|
Beaver M, Bergdolt L, Dunaevsky A, Kielian T, Skar GL. C1q is elevated during chronic Staphylococcus epidermidis central nervous system catheter infection. Front Immunol 2024; 15:1342467. [PMID: 38881889 PMCID: PMC11176433 DOI: 10.3389/fimmu.2024.1342467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Significant neurologic morbidity is caused by pediatric cerebrospinal fluid (CSF) shunt infections. The underlying mechanisms leading to impaired school performance and increased risk of seizures are unknown, however, a better understanding of these mechanisms may allow us to temper their consequences. Recent evidence has demonstrated important roles for complement proteins in neurodevelopment and neuroinflammation. Methods We examined complement activation throughout Staphylococcus epidermidis (S. epidermidis) central nervous system (CNS) catheter infection. In addition, based on accumulating evidence that C3 plays a role in synaptic pruning in other neuroinflammatory states we determined if C3 and downstream C5 led to alterations in synaptic protein levels. Using our murine model of S. epidermidis catheter infection we quantified levels of the complement components C1q, Factor B, MASP2, C3, and C5 over the course of infection along with bacterial burdens. Results We found that MASP2 predominated early in catheter infection, but that Factor B was elevated at intermediate time points. Unexpectedly C1q was elevated at late timepoints when bacterial burdens were low or undetectable. Based on these findings and the wealth of information regarding the emerging roles of C1q in the CNS, this suggests functions beyond pathogen elimination during S. epidermidis CNS catheter infection. To identify if C3 impacted synaptic protein levels we performed synaptosome isolation and quantified levels of VGLUT1 and PSD95 as well as pre-, post- and total synaptic puncta in cortical layer V of C3 knockout (KO) and wild type mice. We also used C5 KO and wild type mice to determine if there was any difference in pre-, post- and total synaptic puncta. Discussion Neither C3 nor C5 impacted synaptic protein abundance. These findings suggest that chronic elevations in C1q in the brain that persist once CNS catheter infection has resolved may be modulating disease sequalae.
Collapse
Affiliation(s)
- Matthew Beaver
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lara Bergdolt
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gwenn L. Skar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Cuff SM, Merola JP, Twohig JP, Eberl M, Gray WP. Toll-like receptor linked cytokine profiles in cerebrospinal fluid discriminate neurological infection from sterile inflammation. Brain Commun 2020; 2:fcaa218. [PMID: 33409494 PMCID: PMC7772097 DOI: 10.1093/braincomms/fcaa218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid determination of an infective aetiology causing neurological inflammation in the cerebrospinal fluid can be challenging in clinical practice. Post-surgical nosocomial infection is difficult to diagnose accurately, as it occurs on a background of altered cerebrospinal fluid composition due to the underlying pathologies and surgical procedures involved. There is additional diagnostic difficulty after external ventricular drain or ventriculoperitoneal shunt surgery, as infection is often caused by pathogens growing as biofilms, which may fail to elicit a significant inflammatory response and are challenging to identify by microbiological culture. Despite much research effort, a single sensitive and specific cerebrospinal fluid biomarker has yet to be defined which reliably distinguishes infective from non-infective inflammation. As a result, many patients with suspected infection are treated empirically with broad-spectrum antibiotics in the absence of definitive diagnostic criteria. To begin to address these issues, we examined cerebrospinal fluid taken at the point of clinical equipoise to diagnose cerebrospinal fluid infection in 14 consecutive neurosurgical patients showing signs of inflammatory complications. Using the guidelines of the Infectious Diseases Society of America, six cases were subsequently characterized as infected and eight as sterile inflammation. Twenty-four contemporaneous patients with idiopathic intracranial hypertension or normal pressure hydrocephalus were included as non-inflamed controls. We measured 182 immune and neurological biomarkers in each sample and used pathway analysis to elucidate the biological underpinnings of any biomarker changes. Increased levels of the inflammatory cytokine interleukin-6 and interleukin-6-related mediators such as oncostatin M were excellent indicators of inflammation. However, interleukin-6 levels alone could not distinguish between bacterially infected and uninfected patients. Within the patient cohort with neurological inflammation, a pattern of raised interleukin-17, interleukin-12p40/p70 and interleukin-23 levels delineated nosocomial bacteriological infection from background neuroinflammation. Pathway analysis showed that the observed immune signatures could be explained through a common generic inflammatory response marked by interleukin-6 in both nosocomial and non-infectious inflammation, overlaid with a toll-like receptor-associated and bacterial peptidoglycan-triggered interleukin-17 pathway response that occurred exclusively during infection. This is the first demonstration of a pathway dependent cerebrospinal fluid biomarker differentiation distinguishing nosocomial infection from background neuroinflammation. It is especially relevant to the commonly encountered pathologies in clinical practice, such as subarachnoid haemorrhage and post-cranial neurosurgery. While requiring confirmation in a larger cohort, the current data indicate the potential utility of cerebrospinal fluid biomarker strategies to identify differential initiation of a common downstream interleukin-6 pathway to diagnose nosocomial infection in this challenging clinical cohort.
Collapse
Affiliation(s)
- Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Joseph P Merola
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jason P Twohig
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - William P Gray
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol 2020; 11:585108. [PMID: 33240274 PMCID: PMC7683570 DOI: 10.3389/fimmu.2020.585108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on activation of complement and contains the complement proteins C5b, C6, C7, C8, C9 together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique complement activation macromolecule as it is comprised of several different subunits. To date no complement-mediated function has been identified for sMAC. sMAC is present in blood and other body fluids under homeostatic conditions and there is abundant evidence documenting changes in sMAC levels during infection, autoimmune disease and trauma. Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in healthy individuals and its biological functions in both health and disease remain poorly understood. Here, we review the structural differences between sMAC and its membrane counterpart, MAC, and examine sMAC immunobiology with respect to its presence in body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for diagnostic and prognostic applications and potential utility as a companion diagnostic.
Collapse
Affiliation(s)
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
4
|
Zervos T, Walters BC. Diagnosis of Ventricular Shunt Infection in Children: A Systematic Review. World Neurosurg 2019; 129:34-44. [DOI: 10.1016/j.wneu.2019.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
5
|
Identification of Potential Cerebrospinal Fluid Biomarkers To Discriminate between Infection and Sterile Inflammation in a Rat Model of Staphylococcus epidermidis Catheter Infection. Infect Immun 2019; 87:IAI.00311-19. [PMID: 31262978 PMCID: PMC6704599 DOI: 10.1128/iai.00311-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus epidermidis cerebrospinal fluid (CSF) shunt infection is a common complication of hydrocephalus treatment, creating grave neurological consequences for patients, especially when diagnosis is delayed. The current method of diagnosis relies on microbiological culture; however, awaiting culture results may cause treatment delays, or culture may fail to identify infection altogether, so newer methods are needed. Staphylococcus epidermidis cerebrospinal fluid (CSF) shunt infection is a common complication of hydrocephalus treatment, creating grave neurological consequences for patients, especially when diagnosis is delayed. The current method of diagnosis relies on microbiological culture; however, awaiting culture results may cause treatment delays, or culture may fail to identify infection altogether, so newer methods are needed. To investigate potential CSF biomarkers of S. epidermidis shunt infection, we developed a rat model allowing for serial CSF sampling. We found elevated levels of interleukin-10 (IL-10), IL-1β, chemokine ligand 2 (CCL2), and CCL3 in the CSF of animals implanted with S. epidermidis-infected catheters compared to sterile controls at day 1 postinfection. Along with increased chemokine and cytokine expression early in infection, neutrophil influx was significantly increased in the CSF of animals with infected catheters, suggesting that coupling leukocyte counts with inflammatory mediators may differentiate infection from sterile inflammation. Mass spectrometry analysis revealed that the CSF proteome in sterile animals was similar to that in infected animals at day 1; however, by day 5 postinfection, there was an increase in the number of differently expressed proteins in the CSF of infected compared to sterile groups. The expansion of the proteome at day 5 postinfection was interesting, as bacterial burdens began to decline by this point, yet the CSF proteome data indicated that the host response remained active, especially with regard to the complement cascade. Collectively, these results provide potential biomarkers to distinguish S. epidermidis infection from sterile postoperative inflammation.
Collapse
|
6
|
CSF inflammatory markers differ in gram-positive versus gram-negative shunt infections. J Neuroinflammation 2019; 16:7. [PMID: 30626412 PMCID: PMC6325818 DOI: 10.1186/s12974-019-1395-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) shunt placement is frequently complicated by bacterial infection. Shunt infection diagnosis relies on bacterial culture of CSF which can often produce false-negative results. Negative cultures present a conundrum for physicians as they are left to rely on other CSF indices, which can be unremarkable. New methods are needed to swiftly and accurately diagnose shunt infections. CSF chemokines and cytokines may prove useful as diagnostic biomarkers. The objective of this study was to evaluate the potential of systemic and CSF biomarkers for identification of CSF shunt infection. Methods We conducted a retrospective chart review of children with culture-confirmed CSF shunt infection at Children’s Hospital and Medical Center from July 2013 to December 2015. CSF cytokine analysis was performed for those patients with CSF in frozen storage from the same sample that was used for diagnostic culture. Results A total of 12 infections were included in this study. Patients with shunt infection had a median C-reactive protein (CRP) of 18.25 mg/dL. Median peripheral white blood cell count was 15.53 × 103 cells/mL. Those with shunt infection had a median CSF WBC of 332 cells/mL, median CSF protein level of 406 mg/dL, and median CSF glucose of 35.5 mg/dL. An interesting trend was observed with gram-positive infections having higher levels of the anti-inflammatory cytokine interleukin (IL)-10 as well as IL-17A and vascular endothelial growth factor (VEGF) compared to gram-negative infections, although these differences did not reach statistical significance. Conversely, gram-negative infections displayed higher levels of the pro-inflammatory cytokines IL-1β, fractalkine (CX3CL1), chemokine ligand 2 (CCL2), and chemokine ligand 3 (CCL3), although again these were not significantly different. CSF from gram-positive and gram-negative shunt infections had similar levels of interferon gamma (INF-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8. Conclusions This pilot study is the first to characterize the CSF cytokine profile in patients with CSF shunt infection and supports the distinction of chemokine and cytokine profiles between gram-negative and gram-positive infections. Additionally, it demonstrates the potential of CSF chemokines and cytokines as biomarkers for the diagnosis of shunt infection.
Collapse
|
7
|
Vickers A, Donnelly JP, Moore JX, Barnum SR, Schein TN, Wang HE. Epidemiology of lumbar punctures in hospitalized patients in the United States. PLoS One 2018; 13:e0208622. [PMID: 30543645 PMCID: PMC6292631 DOI: 10.1371/journal.pone.0208622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Lumbar puncture (LP) is an important technique for assessing and treating neurological symptoms. The objective of this study was to describe the characteristics of diagnostic lumbar punctures performed on hospitalized patients in the United States. Methods We analyzed data from the 2010 National Inpatient Sample (NIS) and the National Emergency Department Survey (NEDS). We included patients treated in the Emergency Department (ED) as well as those admitted to an inpatient bed through the ED. We identified patients undergoing LPs from ICD-9 procedural code 03.31 and CPT code 62270. We generated nationally weighted estimates of the total number of LPs. We also assessed patient and hospital characteristics of cases undergoing LP. Results Of an estimated 135 million hospitalizations (ED + admission, or ED only), there were an estimated 362,718 LPs (331,248–394,188), including 273,612 (251,850–295,375) among adults and 89,106 (71,870–106,342) among children (<18 years old). Of the 362,718 LPs, 136,764 (122,117–151,410) were performed in the ED without admission. The most common conditions associated with LP among children were fever of unknown origin, meningitis, seizures and other perinatal conditions. The most common conditions associated with LP among adults were headache and meningitis. Conclusions Lumbar Puncture remains an important procedure for diagnostic and therapeutic uses in United States Hospitals.
Collapse
Affiliation(s)
- Adrienne Vickers
- University of South Alabama School of Medicine, Mobile, Alabama, United States of America
| | - John P. Donnelly
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Justin Xavier Moore
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Scott R. Barnum
- CNine Biosolutions, LLC., Birmingham, Alabama, United States of America
| | - Theresa N. Schein
- CNine Biosolutions, LLC., Birmingham, Alabama, United States of America
| | - Henry E. Wang
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Emergency Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Anderson AM, Schein TN, Kalapila A, Lai L, Waldrop-Valverde D, Moore RC, Franklin D, Letendre SL, Barnum SR. Soluble membrane attack complex in the blood and cerebrospinal fluid of HIV-infected individuals, relationship to HIV RNA, and comparison with HIV negatives. J Neuroimmunol 2017; 311:35-39. [PMID: 28774464 DOI: 10.1016/j.jneuroim.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
The soluble membrane attack complex (sMAC) represents the terminal product of the complement cascade. We enrolled 47 HIV+ adults (12 of whom underwent a second visit at least 24weeks after starting therapy) as well as 11 HIV negative controls. At baseline, cerebrospinal fluid (CSF) sMAC was detectable in 27.7% of HIV+ individuals. CSF sMAC correlated with CSF HIV RNA levels and was more likely to be detectable in HIV+ individuals on cART compared to HIV negative controls. In HIV+ participants, there were negative association trends between sMAC and neurocognitive performance but these did not reach statistical significance.
Collapse
Affiliation(s)
- Albert M Anderson
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.
| | - Theresa N Schein
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Aley Kalapila
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Lillin Lai
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Raeanne C Moore
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, United States
| | - Donald Franklin
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, United States
| | - Scott L Letendre
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, United States; Department of Medicine, University of California at San Diego, La Jolla, CA, United States
| | - Scott R Barnum
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| |
Collapse
|