1
|
Iwasaki Y, Reyes M, Jüppner H, Bastepe M. A biallelically active embryonic enhancer dictates GNAS imprinting through allele-specific conformations. Nat Commun 2025; 16:1377. [PMID: 39910084 PMCID: PMC11799514 DOI: 10.1038/s41467-025-56608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Genomic imprinting controls parental allele-specific gene expression via epigenetic mechanisms. Abnormal imprinting at the GNAS gene causes multiple phenotypes, including pseudohypoparathyroidism type-1B (PHP1B), a disorder of multihormone resistance. Microdeletions affecting the neighboring STX16 gene ablate an imprinting control region (STX16-ICR) of GNAS and lead to PHP1B upon maternal but not paternal inheritance. Mechanisms behind this imprinted inheritance mode remain unknown. Here, we show that the STX16-ICR forms different chromatin conformations with each GNAS parental allele and enhances two GNAS promoters in human embryonic stem cells. When these cells differentiate toward proximal renal tubule cells, STX16-ICR loses its effect, accompanied by a transition to a somatic cell-specific GNAS imprinting status. The activity of STX16-ICR depends on an OCT4 motif, whose disruption impacts transcript levels differentially on each allele. Therefore, a biallelically active embryonic enhancer dictates GNAS imprinting via different chromatin conformations, underlying the allele-specific pathogenicity of STX16-ICR microdeletions.
Collapse
Affiliation(s)
- Yorihiro Iwasaki
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Nakamura Y, Kobayashi H, Fukuda N, Tanaka S, Murata Y, Hatanaka Y, Haketa A, Tsunemi A, Chen L, Abe M. Induced pluripotent stem cells derived renal tubular cells from a patient with pseudohypoparathyroidism and its response to parathyroid hormone stimulation. Mol Biol Rep 2024; 51:790. [PMID: 38990390 DOI: 10.1007/s11033-024-09751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Creating induced pluripotent stem cells (iPSCs) from somatic cells of patients with genetic diseases offers a pathway to generate disease-specific iPSCs carrying genetic markers. Differentiating these iPSCs into renal tubular cells can aid in understanding the pathophysiology of rare inherited renal tubular diseases through cellular experiments. MATERIALS AND METHODS Two Japanese patients with Pseudohypoparathyroidism (PHP), a 49-year-old woman and a 71-year-old man, were studied. iPSC-derived tubular cells were established from their peripheral blood mononuclear cells (PBMCs). We examined changes in intracellular and extracellular cyclic adenosine monophosphate (cAMP) levels in these cells in response to parathyroid hormone (PTH) stimulation. RESULTS Renal tubular cells, differentiated from iPSCs of a healthy control (648A1), showed a PTH-dependent increase in both intracellular and extracellular cAMP levels. However, the renal tubular cells derived from the PHP patients' iPSCs showed inconsistent changes in cAMP levels upon PTH exposure. CONCLUSION We successfully created disease-specific iPSCs from PHP patients' PBMCs, differentiated them into tubular cells, and replicated the distinctive response of the disease to PTH in vitro. This approach could enhance our understanding of the pathophysiology of inherited renal tubular diseases and contribute to developing effective treatments.
Collapse
Affiliation(s)
- Yoshihiro Nakamura
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Sho Tanaka
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yusuke Murata
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yoshinari Hatanaka
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Akira Haketa
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Akiko Tsunemi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Lan Chen
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
3
|
Tory K. The dominant findings of a recessive man: from Mendel's kid pea to kidney. Pediatr Nephrol 2024; 39:2049-2059. [PMID: 38051388 PMCID: PMC11147900 DOI: 10.1007/s00467-023-06238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
The research of Mendel, born two centuries ago, still has many direct implications for our everyday clinical work. He introduced the terms "dominant" and "recessive" characters and determined their 3:1 ratio in the offspring of heterozygous "hybrid" plants. This distribution allowed calculation of the number of the phenotype-determining "elements," i.e., the alleles, and has been used ever since to prove the monogenic origin of a disorder. The Mendelian inheritance of monogenic kidney disorders is still of great help in distinguishing them from those with multifactorial origin in clinical practice. Inheritance of most monogenic kidney disorders fits to Mendel's observations: the equal contribution of the two parents and the complete penetrance or the direct correlation between the frequency of the recessive character and the degree of inbreeding. Nevertheless, beyond the truth of these basic concepts, several observations have expanded their genetic characteristics. The extreme genetic heterogeneity, the pleiotropy of the causal genes and the role of modifiers in ciliopathies, the digenic inheritance and parental imprinting in some tubulopathies, and the incomplete penetrance and eventual interallelic interactions in podocytopathies, reflect this expansion. For all these reasons, the transmission pattern in a natural setting may depend not only on the "character" but also on the causal gene and the variant. Mendel's passion for research combined with his modest personality and meticulous approach can still serve as an example in the work required to understand the non-Mendelian universe of genetics.
Collapse
Affiliation(s)
- Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences, Budapest, Hungary.
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Zhang X, Bi X, Wu Y, Xu P. Interpreting epigenetic causes of recurrent hypokalemia and seizures: Gitelman syndrome co-exist with pseudohypoparathyroidism type 1B. Nephrology (Carlton) 2024; 29:300-304. [PMID: 38233937 DOI: 10.1111/nep.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
We describe a unique case of 27-year-old male with Gitelman syndrome (GS) co-exist with pseudohypoparathyroidism type 1B (PHP1B). The patient presented with a 5-year history of seizures, tetany, and numbness of the extremities. Further examinations showed recurrent hypokalemia, inappropriate kaliuresis, hypocalcemia, hyperphosphatemia, and elevated PTH levels. A novel variant of autosomal recessive GS (p.Val287Met SLC12A3) and a novel 492.3Kb deletion containing the whole of STX16, were discovered by a whole-exome sequencing. Following the diagnosis, calcitriol, calcium, and potassium supplements were started. Hematuria calcium and phosphorus levels, as well as blood potassium levels, have recovered and remained within normal ranges after 3 years of follow-up. Our findings have important consequences for supporting the idea that heterozygosity for variants have effects on the patients' clinical performance with autosomal recessive inheritance disorders. Further study is need for the putative effects of the variant. Likewise, further investigation with regards to the gene-gene interaction relations between GS and other electrolyte imbalance disorders is warranted.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xin Bi
- Guangzhou KingMed Center for Clinical Laboratory Co, Ltd., Guangzhou, Guangdong, China
| | - Yan Wu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Jüppner H. Pseudohypoparathyroidism: complex disease variants with unfortunate names. J Mol Endocrinol 2024; 72:e230104. [PMID: 37965945 PMCID: PMC10843601 DOI: 10.1530/jme-23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Several human disorders are caused by genetic or epigenetic changes involving the GNAS locus on chromosome 20q13.3 that encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Thus, pseudohypoparathyroidism type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal GNAS exons 1-13 resulting in characteristic abnormalities referred to as Albright's hereditary osteodystrophy (AHO) that are associated with resistance to several agonist ligands, particularly to parathyroid hormone (PTH), thereby leading to hypocalcemia and hyperphosphatemia. GNAS mutations involving the paternal Gsα exons also cause most of these AHO features, but without evidence for hormonal resistance, hence the term pseudopseudohypoparathyroidism (PPHP). Autosomal dominant pseudohypoparathyroidism type Ib (PHP1B) due to maternal GNAS or STX16 mutations (deletions, duplications, insertions, and inversions) is associated with epigenetic changes at one or several differentially methylated regions (DMRs) within GNAS. Unlike the inactivating Gsα mutations that cause PHP1A and PPHP, hormonal resistance is caused in all PHP1B variants by impaired Gsα expression due to loss of methylation at GNAS exon A/B, which can be associated in some familial cases with epigenetic changes at the other maternal GNAS DMRs. The genetic defect(s) responsible for sporadic PHP1B, the most frequent variant of this disorder, remain(s) unknown for the majority of patients. However, characteristic epigenetic GNAS changes can be readily detected that include a gain of methylation at the neuroendocrine secretory protein (NESP) DMR. Multiple genetic or epigenetic GNAS abnormalities can thus impair Gsα function or expression, consequently leading to inadequate cAMP-dependent signaling events downstream of various Gsα-coupled receptors.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Seven Menevse T, Iwasaki Y, Yavas Abali Z, Gurpinar Tosun B, Helvacioglu D, Dogru Ö, Bugdayci O, Cyr SM, Güran T, Bereket A, Bastepe M, Turan S. Venous Thrombosis in a Pseudohypoparathyroidism Patient with a Novel GNAS Frameshift Mutation and Complete Resolution of Vascular Calcifications with Acetazolamide Treatment. Horm Res Paediatr 2023; 97:404-415. [PMID: 37906994 PMCID: PMC11058113 DOI: 10.1159/000534456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION Pseudohypoparathyroidism type IA (PHP1A) is characterized by end-organ resistance to multiple hormones and Albright's hereditary osteodystrophy (AHO). PHP1A is caused by inactivating mutations of the GNAS gene encoding the α-subunit of the stimulatory G protein (Gsα). In line with the underlying genetic defect, impaired inhibition of platelet aggregation has been demonstrated in some patients. However, no PHP1A case with thrombotic events has been described. Also, PHP1A cases typically have subcutaneous ossifications, but soft tissue calcifications are another common finding. Treatment options for those and other nonhormonal features of PHP1A are limited. CASE PRESENTATION A female patient presented with short stature, fatigue, and exercise-induced carpopedal spasms at age 117/12 years. Diagnosis of PHP1A was made based on hypocalcemia, hyperphosphatemia, elevated serum parathyroid hormone, and AHO features, including short stature and brachydactyly. A novel frameshift variant was detected in the last exon of GNAS (c.1065_1068delGCGT, p.R356Tfs*47), showing complete loss of baseline and receptor-stimulated activity in transfected cells. The patient developed venous thrombosis and vascular and subcutaneous calcifications on both forearms after venous puncture on the right and extravasation of calcium gluconate during treatment on the left. The thrombosis and calcifications completely resolved following treatment with low-molecular-weight heparin and acetazolamide for 5 and 8 months, respectively. CONCLUSIONS This case represents the first PHP1A patient displaying thrombosis and the first successful use of acetazolamide for PHP1A-associated soft tissue calcifications, thus providing new insights into the treatment of non-endocrinological features in this disease.
Collapse
Affiliation(s)
- Tuba Seven Menevse
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Yorihiro Iwasaki
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zehra Yavas Abali
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Busra Gurpinar Tosun
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Didem Helvacioglu
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Ömer Dogru
- Department of Paediatric Haematology and Oncology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Onur Bugdayci
- Department of Radiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Sajin M Cyr
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tulay Güran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Yang W, Zuo Y, Zhang N, Wang K, Zhang R, Chen Z, He Q. GNAS locus: bone related diseases and mouse models. Front Endocrinol (Lausanne) 2023; 14:1255864. [PMID: 37920253 PMCID: PMC10619756 DOI: 10.3389/fendo.2023.1255864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
GNASis a complex locus characterized by multiple transcripts and an imprinting effect. It orchestrates a variety of physiological processes via numerous signaling pathways. Human diseases associated with the GNAS gene encompass fibrous dysplasia (FD), Albright's Hereditary Osteodystrophy (AHO), parathyroid hormone(PTH) resistance, and Progressive Osseous Heteroplasia (POH), among others. To facilitate the study of the GNAS locus and its associated diseases, researchers have developed a range of mouse models. In this review, we will systematically explore the GNAS locus, its related signaling pathways, the bone diseases associated with it, and the mouse models pertinent to these bone diseases.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yiyi Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nuo Zhang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kangning Wang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Runze Zhang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziyi Chen
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qing He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Iwasaki Y, Aksu C, Reyes M, Ay B, He Q, Bastepe M. The long-range interaction between two GNAS imprinting control regions delineates pseudohypoparathyroidism type 1B pathogenesis. J Clin Invest 2023; 133:e167953. [PMID: 36853809 PMCID: PMC10104902 DOI: 10.1172/jci167953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Genetic defects of GNAS, the imprinted gene encoding the stimulatory G protein α-subunit, are responsible for multiple diseases. Abnormal GNAS imprinting causes pseudohypoparathyroidism type 1B (PHP1B), a prototype of mammalian end-organ hormone resistance. Hypomethylation at the maternally methylated GNAS A/B region is the only shared defect in patients with PHP1B. In autosomal dominant (AD) PHP1B kindreds, A/B hypomethylation is associated with maternal microdeletions at either the GNAS NESP55 differentially methylated region or the STX16 gene located approximately 170 kb upstream. Functional evidence is meager regarding the causality of these microdeletions. Moreover, the mechanisms linking A/B methylation and the putative imprinting control regions (ICRs) NESP-ICR and STX16-ICR remain unknown. Here, we generated a human embryonic stem cell model of AD-PHP1B by introducing ICR deletions using CRISPR/Cas9. With this model, we showed that the NESP-ICR is required for methylation and transcriptional silencing of A/B on the maternal allele. We also found that the SXT16-ICR is a long-range enhancer of NESP55 transcription, which originates from the maternal NESP-ICR. Furthermore, we demonstrated that the STX16-ICR is an embryonic stage-specific enhancer enabled by the direct binding of pluripotency factors. Our findings uncover an essential GNAS imprinting control mechanism and advance the molecular understanding of PHP1B pathogenesis.
Collapse
Affiliation(s)
- Yorihiro Iwasaki
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Cagri Aksu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Birol Ay
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of the Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Kottler ML. Pseudo-hypoparathyroïdie et ses variants. Med Sci (Paris) 2022; 38:655-662. [DOI: 10.1051/medsci/2022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Les pseudohypoparathyroïdies (PHP) sont des maladies rares, caractérisées par une résistance à l’action rénale de la parathormone. Le défaut génétique est localisé au locus GNAS, qui code la sous-unité alpha stimulatrice des protéines G (Gαs). Ce locus est le siège de régulations complexes, épissage alternatif et empreinte parentale éteigant de façon tissu-spécifique l’expression de l’allèle paternel. Des mutations hétérozygotes perte de fonction, des épimutations responsables d’une perte d’expression sont associées à un large spectre pathologique : PHP1A, PHP1B, ossification hétérotopique, ostéodystophie, obésité, retard de croissance in utero, etc., dont les mécanismes restent encore incomplètement connus.
Collapse
|
10
|
Huang S, He Y, Lin X, Sun S, Zheng F. Clinical and genetic analysis of pseudohypoparathyroidism complicated by hypokalemia: a case report and review of the literature. BMC Endocr Disord 2022; 22:98. [PMID: 35410271 PMCID: PMC9004107 DOI: 10.1186/s12902-022-01011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) encompasses a highly heterogenous group of disorders, characterized by parathyroid hormone (PTH) resistance caused by mutations in the GNAS gene or other upstream targets. Here, we investigate the characteristics of a female patient diagnosed with PHP complicated with hypokalemia, and her family members. CASE PRESENTATION AND GENE ANALYSIS A 27-year-old female patient occasionally exhibited asymptomatic hypocalcemia and hypokalemia during her pregnancy 1 year ago. Seven months after delivery, she experienced tetany and dysphonia with diarrhea. Tetany symptoms were relieved after intravenous calcium gluconate supplementation and she was then transferred to our Hospital. Laboratory assessments of the patient revealed hypokalemia, hypocalcemia and hyperphosphatemia despite elevated PTH levels. CT scanning of the brain revealed globus pallidus calcification. Possible mutations in GNAS and hypokalemia related genes were identified using WES, exon copies of STX16 were analized by MLPA and the methylation status of GNAS in three differential methylated regions (DMRs) was analyzed by methylation-specific polymerase chain reaction, followed by confirmation with gene sequencing. The patient was clinically diagnosed with PHP-1b. Loss of methylation in the A/B region and hypermethylation in the NESP55 region were detected. No other mutations in GNAS or hypokalemia related genes and no deletions of STX16 exons were detected. A negative family history and abnormal DMRs in GNAS led to a diagnosis of sporadic PHP-1b of the patient. CONCLUSIONS Hypokalemia is a rare disorder associated with PHP-1b. Analysis of genetic and epigenetic mutations can aid in the diagnosis and accurate subtyping of PHP.
Collapse
Affiliation(s)
- Shaohan Huang
- Department of endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingzi He
- Department of endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xihua Lin
- Department of endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuiya Sun
- Department of endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenping Zheng
- Department of endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Milioto A, Reyes M, Hanna P, Kiuchi Z, Turan S, Zeve D, Agarwal C, Grigelioniene G, Chen A, Mericq V, Frangos M, Ten S, Mantovani G, Salusky IB, Tebben P, Jüppner H. Lack of GNAS Remethylation During Oogenesis May Be a Cause of Sporadic Pseudohypoparathyroidism Type Ib. J Clin Endocrinol Metab 2022; 107:e1610-e1619. [PMID: 34791361 PMCID: PMC8947795 DOI: 10.1210/clinem/dgab830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/11/2022]
Abstract
CONTEXT Pseudohypoparathyroidism type Ib (PHP1B) is characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone resistance in the proximal renal tubules. Maternal pathogenic STX16/GNAS variants leading to maternal epigenetic GNAS changes impair expression of the stimulatory G protein alpha-subunit (Gsα) thereby causing autosomal dominant PHP1B. In contrast, genetic defects responsible for sporadic PHP1B (sporPHP1B) remain mostly unknown. OBJECTIVE Determine whether PHP1B encountered after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) causes GNAS remethylation defects similar to those in sporPHP1B. DESIGN Retrospective analysis. RESULTS Nine among 36 sporPHP1B patients investigated since 2000, all with loss of methylation (LOM) at the 3 maternal GNAS differentially methylated regions (DMRs) and gain of methylation at the paternal NESP DMR, had been conceived through IVF or ICSI. Besides abnormal GNAS methylation, IVF/ICSI PHP1B cases revealed no additional imprinting defects. Three of these PHP1B patients have dizygotic twins, and 4 have IVF/ICSI-conceived siblings, all with normal GNAS methylation; 2 unaffected younger siblings were conceived naturally. CONCLUSION Sporadic and IVF/ICSI-conceived PHP1B patients revealed indistinguishable epigenetic changes at all 4 GNAS DMRs, thus suggesting a similar underlying disease mechanism. Given that remethylation at the 3 maternal DMRs occurs during oogenesis, male factors are unlikely to cause LOM postfertilization. Instead, at least some of the sporPHP1B variants could be caused by a defect or defects in an oocyte-expressed gene that is required for fertility and for re-establishing maternal GNAS methylation imprints. It remains uncertain, however, whether the lack of GNAS remethylation alone and the resulting reduction in Gsα expression is sufficient to impair oocyte maturation.
Collapse
Affiliation(s)
- Angelo Milioto
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick Hanna
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zentaro Kiuchi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Daniel Zeve
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
| | | | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Ang Chen
- Any Chen, Arizona Kidney Disease and Hypertension Center, Flagstaff, AZ, USA
| | - Veronica Mericq
- Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| | | | - Svetlana Ten
- Consultant of Pediatric Endocrinology, Richmond University Medical Center, Staten Island, NY, USA
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Isidro B Salusky
- Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peter Tebben
- Department of Internal Medicine and Pediatrics, Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Brambilla I, Rossi F, Pistone C, Licari A, De Filippo M, Votto M, Tondina E, Guarracino C. Pseudohypoparathyroidism: a diagnosis to consider once a PTH elevation is detected. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022194. [PMID: 35666115 PMCID: PMC9494184 DOI: 10.23750/abm.v93is3.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIM Pseudohypoparathyroidism (PHP) is a rare disease, which can occur in the youth, characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH) in target organs. This condition encompasses different conditions which differ between one another by different clinical, biochemically, and genetic features. METHODS Herein we report the clinical history of a boy with PHP1B with an interesting clinical presentation. He came in fact to the attention of the Emergency Department because of a spontaneously resolving epileptic attack, lasting about 15 minutes, characterized by loss of consciousness, fall to the ground, tonic-clonic shocks, and sphincter release. Moreover, the personal history was characterized by congenital long QT syndrome (LQTS), with a documented mutation of the KCNQ1 gene, treated with beta-blockers (nadolol). RESULTS The simultaneous presence of symptomatic acute hypocalcemia and long QT syndrome undoubtedly required particular attention both in the management of the onset and in the more in-depth subsequent diagnostics. In this regard, laboratory tests and molecular analyzes have proved to be crucial in the diagnostic process. Conclusions: this case underlines the diagnostic path complexity in patients with PTH elevation and the importance of considering all the possible differential diagnoses in order to undertake a timely and correct course of treatment.
Collapse
Affiliation(s)
- Ilaria Brambilla
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federico Rossi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Carmelo Pistone
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria De Filippo
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Martina Votto
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Enrico Tondina
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Carmen Guarracino
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
13
|
Antoun J, Williamson D, Hubler M, Shoemaker AH. Calcitriol and Levothyroxine Dosing for Patients With Pseudohypoparathyroidism. J Endocr Soc 2021; 5:bvab161. [PMID: 34765856 PMCID: PMC8579912 DOI: 10.1210/jendso/bvab161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudohypoparathyroidism (PHP) is a rare hormone resistance syndrome caused by mutations in GNAS. This cross-sectional study investigated whether PHP patients with parathyroid hormone (PTH), thyrotropin (thyroid stimulating hormone; TSH), and free thyroxine (T4) levels at goal required higher doses of levothyroxine and calcitriol than recommended by current guidelines to overcome mineral ion abnormalities due to hormone resistance. Baseline demographic and clinical data of participants enrolled in PHP research studies between 2012-2021 were collected via retrospective chart review. Longitudinally, data were recorded at a maximum frequency of once a year starting at 1 year of age. The PTH at goal (PAG) group was defined as PTH < 150 pg/mL and calcium ≥ 8.4 mg/dL, and the TSH and free T4 at goal (TAG) group was defined as TSH < 5 mIU/L and free T4 ≥ 0.8 ng/dL. The PAG group (n = 74) was prescribed higher calcitriol doses than the PTH not at goal (PNAG) group (n = 50) (0.9 ± 1.1 vs 0.5 ± 0.9 mcg/day, P = 0.04) and 21% of individual patients were prescribed ≥ 1.5 mcg of calcitriol daily. This remained true after normalization for body weight (0.013 ± 0.015 vs 0.0067 ± 0.0095 mcg/kg/day, P = 0.008). There was no statistically significant difference in levothyroxine dosing between the TAG group (n = 122) and TSH and free T4 not at goal (TNAG) group (n = 45) when normalized for weight (2.0 ± 0.7 vs 1.8 ± 0.7 mcg/kg/day, P = 0.2). More than one-third of patients with PHP had PTH levels not at goal and some patients required calcitriol doses ≥ 1.5 mcg/day to meet current treatment goals.
Collapse
Affiliation(s)
| | - Dylan Williamson
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Merla Hubler
- Department of Pediatrics, University of Tennessee Health Science Center, Chattanooga, TN 37403, USA
| | - Ashley H Shoemaker
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
14
|
Mandl A, Burbelo PD, Di Pasquale G, Tay YS, Welch J, Lionakis MS, Rosenzweig SD, Waldman MA, Warner BM, Walitt B, Collins MT, Balow JE, Chiorini JA, Simonds WF, Agarwal SK, Blau JE, Weinstein LS. Parathyroid Hormone Resistance and Autoantibodies to the PTH1 Receptor. N Engl J Med 2021; 385:1974-1980. [PMID: 34788508 PMCID: PMC9088239 DOI: 10.1056/nejmoa2109409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe two cases of acquired parathyroid hormone (PTH) resistance consequent to the development of serum PTH type 1 receptor (PTH1R) autoantibodies, which block PTH binding and signaling. Both cases were associated with other autoimmune manifestations, and one case was associated with atypical membranous glomerulonephritis. In vitro binding and signaling assays identified the presence of PTH1R-blocking IgG autoantibodies, which were not present in serum samples from patients with other renal or autoimmune disorders. (Funded by the Intramural Research Programs of the National Institute of Diabetes and Digestive and Kidney Diseases and others.).
Collapse
Affiliation(s)
- Adel Mandl
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Peter D Burbelo
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Giovanni Di Pasquale
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - You Sher Tay
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - James Welch
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Michail S Lionakis
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Sergio D Rosenzweig
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Meryl A Waldman
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Blake M Warner
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Brian Walitt
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Michael T Collins
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - James E Balow
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - John A Chiorini
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - William F Simonds
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Sunita K Agarwal
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Jenny E Blau
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| | - Lee S Weinstein
- From the Metabolic Diseases Branch (A.M., J.W., W.F.S., S.K.A., J.E.B., L.S.W.) and the Kidney Diseases Branch (M.A.W., J.E.B.), National Institute of Diabetes and Digestive and Kidney Diseases, the Adeno-Associated Virus Biology Section (P.D.B., G.D.P., J.A.C.), Salivary Disorders Unit (B.M.W.), and Skeletal Disorders and Mineral Homeostasis Section (M.T.C.), National Institute of Dental and Craniofacial Research, the Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (M.S.L.), the Symptom Management Branch, National Institute of Nursing Research (B.W.), and the Department of Laboratory Medicine, Clinical Center (S.D.R.), National Institutes of Health, Bethesda, MD; and Kaiser Permanente, Sacramento, CA (Y.S.T.)
| |
Collapse
|
15
|
Ramalho E Silva JD, da Rocha GFMA, Oliveira MJM. An intricate case of sporadic pseudohypoparathyroidism type 1B with a review of literature. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:112-116. [PMID: 33320452 PMCID: PMC10528691 DOI: 10.20945/2359-3997000000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 11/23/2022]
Abstract
Pseudohypoparathyroidism comprehends an assorted group of genetically rare disorders that share end-organ resistance to parathyroid hormone. Genetic and epigenetic modifications on guanine nucleotide-binding protein alpha-stimulating gene locus are the most common underlying mechanisms associated with pseudohypoparathyroidism. Biochemical and molecular analysis stratify pseudohypoparathyroidism into types 1A, 1B, 1C, and 2. We describe an unusual case of sporadic pseudohypoparathyroidism type 1B. A 34-year-old Caucasian woman was admitted to the emergency department, with persistent asthenia, limb paresthesias, and tactile hyposensitivity. Her physical examination, previous personal and family histories were unsuspicious, except for mild, intermittent and self-limited complaints of paresthesia during her two pregnancies, but no detailed workup was done. No typical features of Albright hereditary osteodystrophy were observed. The initial laboratory investigation showed elevated parathyroid hormone level (311.2 pg/mL), hypocalcemia (albumin-corrected serum calcium 4.3 mg/dL), hypocalciuria, hyperphosphatemia, hypophosphaturia, and vitamin D deficiency. Combined calcium, vitamin D, and magnesium supplementation was commenced, with symptomatic and analytical improvement. Albeit resolution of vitamin D deficiency, the patient relapsed with mild and intermittent lower limb paresthesias. Pseudohypoparathyroidism was confirmed by molecular identification of the 3-kb STX16 deletion. The treatment was readjusted, and one year later, symptomatic remission was attained. Clinical and biochemical features, and their respective course, along with lack of distinctive features of Albright hereditary osteodystrophy pointed to pseudohypoparathyroidism type 1B. A careful follow-up is needed to avoid complications and recurrence. Once correction of hypocalcemia and hyperphosphatemia is achieved, with no reported complications and recurrence, a good prognosis is anticipated, comparable to the general population.
Collapse
Affiliation(s)
- José Diogo Ramalho E Silva
- Departamento de Endocrinologia e Nutrição, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal,
| | | | - Maria João Martins Oliveira
- Departamento de Endocrinologia e Nutrição, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| |
Collapse
|
16
|
Danzig J, Li D, Jan de Beur S, Levine MA. High-throughput Molecular Analysis of Pseudohypoparathyroidism 1b Patients Reveals Novel Genetic and Epigenetic Defects. J Clin Endocrinol Metab 2021; 106:e4603-e4620. [PMID: 34157100 PMCID: PMC8677598 DOI: 10.1210/clinem/dgab460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with pseudohypoparathyroidism type 1b (PHP1b) show disordered imprinting of the maternal GNAS allele or paternal uniparental disomy (UPD). Genetic deletions in STX16 or in upstream exons of GNAS are present in many familial but not sporadic cases. OBJECTIVE Characterization of epigenetic and genetic defects in patients with PHP1b. DESIGN AND PATIENTS DNA from 84 subjects, including 26 subjects with sporadic PHP1b, 27 affected subjects and 17 unaffected and/or obligate gene carriers from 12 PHP1b families, 11 healthy individuals, and 3 subjects with PHP1a was subjected to quantitative pyrosequencing of GNAS differentially methylated regions (DMRs), microarray analysis, and microsatellite haplotype analysis. SETTING Academic medical center. MAIN OUTCOME MEASUREMENTS Molecular pathology of PHP1b. RESULTS Healthy subjects, unaffected family members and obligate carriers of paternal PHP1b alleles, and subjects with PHP1a showed normal methylation of all DMRs. All PHP1b subjects showed loss of methylation (LOM) at the exon A/B DMR. Affected members of 9 PHP1b kindreds showed LOM only at the exon A/B DMR, which was associated with a 3-kb deletion of STX16 exons 4 through 6 in 7 families and a novel deletion of STX16 and adjacent NEPEPL1 in 1 family. A novel NESP deletion was found in 1 of 2 other families with more extensive methylation defects. One sporadic PHP1b had UPD of 20q, 2 had 3-kb STX16 deletions, and 5 had apparent epigenetic mosaicism. CONCLUSIONS We found diverse patterns of defective methylation and identified novel or previously known mutations in 9 of 12 PHP1b families.
Collapse
Affiliation(s)
- Jennifer Danzig
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, and The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Romanet P, Galluso J, Kamenicky P, Hage M, Theodoropoulou M, Roche C, Graillon T, Etchevers HC, De Murat D, Mougel G, Figarella-Branger D, Dufour H, Cuny T, Assié G, Barlier A. Somatotroph Tumors and the Epigenetic Status of the GNAS Locus. Int J Mol Sci 2021; 22:ijms22147570. [PMID: 34299200 PMCID: PMC8306130 DOI: 10.3390/ijms22147570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Forty percent of somatotroph tumors harbor recurrent activating GNAS mutations, historically called the gsp oncogene. In gsp-negative somatotroph tumors, GNAS expression itself is highly variable; those with GNAS overexpression most resemble phenotypically those carrying the gsp oncogene. GNAS is monoallelically expressed in the normal pituitary due to methylation-based imprinting. We hypothesize that changes in GNAS imprinting of gsp-negative tumors affect GNAS expression levels and tumorigenesis. We characterized the GNAS locus in two independent somatotroph tumor cohorts: one of 23 tumors previously published (PMID: 31883967) and classified by pan-genomic analysis, and a second with 82 tumors. Multi-omics analysis of the first cohort identified a significant difference between gsp-negative and gsp-positive tumors in the methylation index at the known differentially methylated region (DMR) of the GNAS A/B transcript promoter, which was confirmed in the larger series of 82 tumors. GNAS allelic expression was analyzed using a polymorphic Fok1 cleavage site in 32 heterozygous gsp-negative tumors. GNAS expression was significantly reduced in the 14 tumors with relaxed GNAS imprinting and biallelic expression, compared to 18 tumors with monoallelic expression. Tumors with relaxed GNAS imprinting showed significantly lower SSTR2 and AIP expression levels. Altered A/B DMR methylation was found exclusively in gsp-negative somatotroph tumors. 43% of gsp-negative tumors showed GNAS imprinting relaxation, which correlated with lower GNAS, SSTR2 and AIP expression, indicating lower sensitivity to somatostatin analogues and potentially aggressive behavior.
Collapse
Affiliation(s)
- Pauline Romanet
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception, Hospital Laboratory of Molecular Biology, 13385 Marseille, France; (P.R.); (J.G.); (G.M.)
| | - Justine Galluso
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception, Hospital Laboratory of Molecular Biology, 13385 Marseille, France; (P.R.); (J.G.); (G.M.)
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, 94270 Le Kremlin-Bicêtre, Île-de-France, France; (P.K.); (M.H.)
| | - Mirella Hage
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, 94270 Le Kremlin-Bicêtre, Île-de-France, France; (P.K.); (M.H.)
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig Maximilian University Munich, 80336 Munich, Germany;
| | - Catherine Roche
- APHM, La Conception Hospital, Laboratory of Molecular Biology, 13385 Marseille, France;
| | - Thomas Graillon
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital Department of Neurosurgery, 13385 Marseille, France; (T.G.); (H.D.)
| | - Heather C. Etchevers
- Aix Marseille Univ, INSERM, MMG, UMR1251, Marmara Institute, 13385 Marseille, France;
| | - Daniel De Murat
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR8104, F-75014 Paris, France; (D.D.M.); (G.A.)
| | - Grégory Mougel
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception, Hospital Laboratory of Molecular Biology, 13385 Marseille, France; (P.R.); (J.G.); (G.M.)
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13385 Marseille, France;
| | - Henry Dufour
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital Department of Neurosurgery, 13385 Marseille, France; (T.G.); (H.D.)
| | - Thomas Cuny
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, Department of Endocrinology, Hospital La Conception, 13385 Marseille, France;
| | - Guillaume Assié
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR8104, F-75014 Paris, France; (D.D.M.); (G.A.)
- Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique—Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Anne Barlier
- Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Conception, Hospital Laboratory of Molecular Biology, 13385 Marseille, France; (P.R.); (J.G.); (G.M.)
- Correspondence:
| |
Collapse
|
18
|
Abstract
Parathyroid hormone (PTH), which is primarily regulated by extracellular calcium changes, controls calcium and phosphate homeostasis. Different diseases are derived from PTH deficiency (hypoparathyroidism), excess (hyperparathyroidism) and resistance (pseudohypoparathyroidism, PHP). Pseudohypoparathyroidism was historically classified into subtypes according to the presence or not of inherited PTH resistance associated or not with features of Albright's hereditary osteodystrophy and deep and progressive ectopic ossifications. The growing knowledge on the PTH/PTHrP signaling pathway showed that molecular defects affecting different members of this pathway determined distinct, yet clinically related disorders, leading to the proposal of a new nomenclature and classification encompassing all disorders, collectively termed inactivating PTH/PTHrP signaling disorders (iPPSD).
Collapse
Affiliation(s)
- Giovanna Mantovani
- University of Milan, Dept. Clinical Sciences and Commmunity Health, Via Lamarmora 5, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| |
Collapse
|
19
|
Kiuchi Z, Reyes M, Brickman AS, Jüppner H. A Distinct Variant of Pseudohypoparathyroidism (PHP) First Characterized Some 41 Years Ago Is Caused by the 3-kb STX16 Deletion. JBMR Plus 2021; 5:e10505. [PMID: 34258502 PMCID: PMC8260810 DOI: 10.1002/jbm4.10505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
In 1980, Farfel and colleagues (NEJM, 1980;303:237-42) provided first evidence for two distinct variants of pseudohypoparathyroidism (PHP) that present with hypocalcemia and impaired parathyroid hormone (PTH)-stimulated urinary cAMP and phosphate excretion, either in the presence or absence of Albright's hereditary osteodystrophy (AHO). An "abnormal allele" and an "unexpressed allele" were considered as underlying defects, predictions that turned out to be correct for both forms of PHP. Patients affected by the first variant (now referred to as PHP1A) were later shown to be carriers of inactivating mutations involving the maternal GNAS exons encoding Gsα. Patients affected by the second variant (now referred to as PHP1B) were shown in the current study to carry a maternal 3-kb STX16 deletion, the most frequent cause of autosomal dominant PHP1B, which is associated with loss of methylation at GNAS exon A/B that reduces or abolishes maternal Gsα expression. However, the distinct maternal mutations leading to either PHP1A or PHP1B are disease-causing only because paternal Gsα expression in the proximal renal tubules is silenced, ie, "unexpressed." Our findings resolve at the molecular level carefully conducted investigations reported some 41 years ago that had provided first clues for the existence of two distinct PHP variants. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zentaro Kiuchi
- Endocrine Unit Massachusetts General Hospital and Harvard Medical School Boston MA USA
| | - Monica Reyes
- Endocrine Unit Massachusetts General Hospital and Harvard Medical School Boston MA USA
| | - Arnold S Brickman
- School of Medicine University of California Los Angeles Los Angeles CA USA
| | - Harald Jüppner
- Endocrine Unit Massachusetts General Hospital and Harvard Medical School Boston MA USA.,Pediatric Nephrology Unit Massachusetts General Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
20
|
Elli FM, Mantovani G. Pseudohypoparathyroidism, acrodysostosis, progressive osseous heteroplasia: different names for the same spectrum of diseases? Endocrine 2021; 72:611-618. [PMID: 33179219 PMCID: PMC8159830 DOI: 10.1007/s12020-020-02533-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022]
Abstract
Pseudohypoparathyroidism (PHP), the first known post-receptorial hormone resistance, derives from a partial deficiency of the α subunit of the stimulatory G protein (Gsα), a key component of the PTH/PTHrP signaling pathway. Since its first description, different studies unveiled, beside the molecular basis for PHP, the existence of different subtypes and of diseases in differential diagnosis associated with genetic alterations in other genes of the PTH/PTHrP pathway. The clinical and molecular overlap among PHP subtypes and with different but related disorders make both differential diagnosis and genetic counseling challenging. Recently, a proposal to group all these conditions under the novel term "inactivating PTH/PTHrP signaling disorders (iPPSD)" was promoted and, soon afterwards, the first international consensus statement on the diagnosis and management of these disorders has been published. This review will focus on the major and minor features characterizing PHP/iPPSDs as a group and on the specificities as well as the overlap associated with the most frequent subtypes.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
21
|
Abstract
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several differentially methylated regions (DMRs). GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. PHP type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal exons 1-13. Heterozygosity of these maternal GNAS mutations cause PTH-resistant hypocalcemia and hyperphosphatemia because paternal Gsα expression is suppressed in certain organs thus leading to little or no Gsα protein in the proximal renal tubules and other tissues. Besides biochemical abnormalities, PHP1A patients show developmental abnormalities, referred to as Albright's hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who carry paternal Gsα-specific mutations and typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss of methylation at the A/B DMR alone or at all maternally methylated GNAS exons. Loss of methylation of exon A/B and the resulting biallelic expression of A/B transcript reduces Gsα expression thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, which is the most frequent PHP1B variant. However, this disease variant remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Harald Jüppner, MD, Endocrine Unit, Thier 10, 50 Blossom Street, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Papadopoulou A, Bountouvi E, Karachaliou FE. The Molecular Basis of Calcium and Phosphorus Inherited Metabolic Disorders. Genes (Basel) 2021; 12:genes12050734. [PMID: 34068220 PMCID: PMC8153134 DOI: 10.3390/genes12050734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca) and Phosphorus (P) hold a leading part in many skeletal and extra-skeletal biological processes. Their tight normal range in serum mirrors their critical role in human well-being. The signalling “voyage” starts at Calcium Sensing Receptor (CaSR) localized on the surface of the parathyroid glands, which captures the “oscillations” of extracellular ionized Ca and transfers the signal downstream. Parathyroid hormone (PTH), Vitamin D, Fibroblast Growth Factor (FGF23) and other receptors or ion-transporters, work synergistically and establish a highly regulated signalling circuit between the bone, kidneys, and intestine to ensure the maintenance of Ca and P homeostasis. Any deviation from this well-orchestrated scheme may result in mild or severe pathologies expressed by biochemical and/or clinical features. Inherited disorders of Ca and P metabolism are rare. However, delayed diagnosis or misdiagnosis may cost patient’s quality of life or even life expectancy. Unravelling the thread of the molecular pathways involving Ca and P signaling, we can better understand the link between genetic alterations and biochemical and/or clinical phenotypes and help in diagnosis and early therapeutic intervention.
Collapse
|
23
|
Luo D, Qi X, Liu L, Su Y, Fang L, Guan Q. Genetic and Epigenetic Characteristics of Autosomal Dominant Pseudohypoparathyroidism Type 1B: Case Reports and Literature Review. Horm Metab Res 2021; 53:225-235. [PMID: 33513624 DOI: 10.1055/a-1341-9891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autosomal dominant pseudohypoparathyroidism 1B (AD-PHP1B) is a rare endocrine and imprinted disorder. The objective of this study is to clarify the imprinted regulation of the guanine nucleotide binding-protein α-stimulating activity polypeptide 1 (GNAS) cluster in the occurrence and development of AD-PHP1B based on animal and clinical patient studies. The methylation-specific multiples ligation-dependent probe amplification (MS-MLPA) was conducted to detect the copy number variation in syntaxin-16 (STX16) gene and methylation status of the GNAS differentially methylated regions (DMRs). Long-range PCR was used to confirm deletion at STX16 gene. In the first family, DNA analysis of the proband and proband's mother revealed an isolated loss of methylation (LOM) at exon A/B and a 3.0 kb STX16 deletion. The patient's healthy grandmother had the 3.0 kb STX16 deletion but no epigenetic abnormality. The patient's healthy maternal aunt showed no genetic or epigenetic abnormality. In the second family, the analysis of long-range PCR revealed the 3.0 kb STX16 deletion for the proband but not her children. In this study, 3.0 kb STX16 deletion causes isolated LOM at exon A/B in two families, which is the most common genetic mutation of AD-PHP1B. The deletion involving NESP55 or AS or genomic rearrangements of GNAS can also result in AD-PHP1B, but it's rare. LOM at exon A/B DMR is prerequisite methylation defect of AD-PHP1B. STX16 and NESP55 directly control the imprinting at exon A/B, while AS controls the imprinting at exon A/B by regulating the transcriptional level of NESP55.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Xiangyu Qi
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Luna Liu
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Yu Su
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Li Fang
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology and Metabolism, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
24
|
Reyes M, Kagami M, Kawashima S, Pallotta J, Schnabel D, Fukami M, Jüppner H. A Novel GNAS Duplication Associated With Loss-of-Methylation Restricted to Exon A/B Causes Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res 2021; 36:546-552. [PMID: 33180333 PMCID: PMC8048081 DOI: 10.1002/jbmr.4209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 11/09/2022]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized by resistance to parathyroid hormone (PTH) leading to hypocalcemia and hyperphosphatemia, and in some cases resistance toward additional hormones. Patients affected by this disorder all share a loss-of-methylation (LOM) at the differentially methylated GNAS exon A/B, which reduces expression of the stimulatory G protein α-subunit (Gsα) from the maternal allele. This leads in the proximal renal tubules, where the paternal GNAS allele does not contribute much to expression of this signaling protein, to little or no Gsα expression thereby causing PTH resistance. We now describe a PHP1B patient with a de novo genomic GNAS duplication of approximately 88 kb, which is associated with LOM restricted to exon A/B alone. Multiplex ligation-dependent probe amplification (MLPA), comparative genomic hybridization (CGH), and whole-genome sequencing (WGS) established that the duplicated DNA fragment extends from GNAS exon AS1 (telomeric breakpoint) to a small region between two imperfect repeats just upstream of LOC105372695 (centromeric breakpoint). Our novel duplication is considerably shorter than previously described duplications/triplications in that portion of chromosome 20q13 and it does not affect methylation at exons AS and XL. Based on these and previous findings, it appears plausible that the identified genomic abnormality disrupts in cis the actions of a transcript that is required for establishing or maintaining exon A/B methylation. Our findings extend the molecular causes of PHP1B and provide additional insights into structural GNAS features that are required for maintaining maternal Gsα expression and for preventing PTH-resistance. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Johanna Pallotta
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, Charité University Medicine, Berlin, Germany
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Choufani S, Ko JM, Lou Y, Shuman C, Fishman L, Weksberg R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes (Basel) 2021; 12:genes12020172. [PMID: 33513760 PMCID: PMC7911624 DOI: 10.3390/genes12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Jung Min Ko
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youliang Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Cheryl Shuman
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Leona Fishman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
26
|
Vlachopapadopoulou EA, Anagnostou E, Dikaiakou E, Hanna P, Tsolia M, Michalacos S, Linglart A, Karavanaki K. Pseudohypoparathyroidism type 1B (PHP1B), a rare disorder encountered in adolescence. J Pediatr Endocrinol Metab 2020; 33:1475-1479. [PMID: 33027051 DOI: 10.1515/jpem-2020-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Objectives The objective of this paper is to report a peculiar case of a patient with pseudohypoparathyroidism type 1b (PHP1B). Pseudohypoparathyroidism (PHP) refers to a group of disorders characterized by hypocalcemia, hyperphosphatemia, and elevated parathyroid hormone (PTH) concentrations as the result of end-organ unresponsiveness to PTH. Case presentation We present a 14-year-old boy, who was admitted with severe symptomatic hypocalcaemia, absence of dysmorphic features and Albright's hereditary osteodystrophy features. Laboratory investigations revealed markedly low serum calcium, high phosphate, markedly elevated PTH levels and vitamin D insufficiency, while magnesium, albumin, ALP and TSH were normal. The clinical and laboratory findings were consistent with PHP1B. Molecular analysis revealed loss of methylation at the AB DMR of the GNAS locus, confirming the diagnosis. Yet no STX16 deletion was detected. Conclusions It is possible that delSTX16- patients carry a defect in an element that controls the methylation both at the GNAS-A/B DMR and at the GNAS-AS2. This rare case emphasizes the need of individualized molecular analysis in PHP1B patients in order to elucidate the possible molecular defect.
Collapse
Affiliation(s)
| | - Elli Anagnostou
- Department of Endocrinology-Growth and Development, Children's Hospital "P. & A. Kyriakou", Athens, Greece
| | - Eirini Dikaiakou
- Department of Endocrinology-Growth and Development, Children's Hospital "P. & A. Kyriakou", Athens, Greece
| | - Patrick Hanna
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Paris, France
| | - Maria Tsolia
- 2nd Department of Paediatrics, University of Athens, "P & A Kyriakou" Children's Hospital, Athens, Greece
| | - Stefanos Michalacos
- Department of Endocrinology-Growth and Development, Children's Hospital "P. & A. Kyriakou", Athens, Greece
| | - Agnès Linglart
- APHP Reference Center for rare disorders of the Calcium and Phosphate, Bicêtre Hospital, Paris Sud University, Paris, France
| | - Kyriaki Karavanaki
- 2nd Department of Paediatrics, University of Athens, "P & A Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
27
|
Li D, Bupp C, March ME, Hakonarson H, Levine MA. Intragenic Deletions of GNAS in Pseudohypoparathyroidism Type 1A Identify a New Region Affecting Methylation of Exon A/B. J Clin Endocrinol Metab 2020; 105:5841615. [PMID: 32436958 PMCID: PMC7947960 DOI: 10.1210/clinem/dgaa286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Pseudohypoparathyroidism type 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) are caused by inactivating mutations in the exons of GNAS that encode the alpha-subunit of the stimulatory G protein (Gsα). In some cases abnormal methylation of exon A/B of GNAS, a hallmark of PHP1B, has been reported. OBJECTIVE To identify the underlying genetic basis for PHP1A/PPHP in patients in whom molecular defects were not detected by GNAS sequencing and microarray-based analysis of copy number variations. METHODS Whole genome sequencing (WGS) and pyrosequencing of differentially methylated regions (DMRs) of GNAS using genomic deoxyribonucleic acid from affected patients. RESULTS We identified 2 novel heterozygous GNAS deletions: a 6.4 kb deletion that includes exon 2 of GNAS in the first proband that was associated with normal methylation (57%) of exon A/B DMR, and a 1438 bp deletion in a second PHP1A patient that encompasses the promoter region and 5' untranslated region of Gsα transcripts, which was inherited from his mother with PPHP. This deletion was associated with reduced methylation (32%) of exon A/B DMR. CONCLUSIONS WGS can detect exonic and intronic mutations, including deletions that are too small to be identified by microarray analysis, and therefore is more sensitive than other techniques for molecular analysis of PHP1A/PPHP. One of the deletions we identified led to reduced methylation of exon A/B DMR, further refining a region needed for normal imprinting of this DMR. We propose that deletion of this region can explain why some PHP1A patients have reduced of methylation of the exon A/B DMR.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Michael E March
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Correspondence and Reprint Requests: Michael A. Levine, MD, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Abramson Research Center, Room 510A, 3615 Civic Center Boulevard, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
28
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Ramirez AG, Germain-Lee EL, Groussin L, Hamdy NA, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, de Nanclares GP, Linglart A. Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. Horm Res Paediatr 2020; 93:182-196. [PMID: 32756064 PMCID: PMC8140671 DOI: 10.1159/000508985] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patients affected by pseudohypoparathyroidism (PHP) or related disorders are characterized by physical findings that may include brachydactyly, a short stature, a stocky build, early-onset obesity, ectopic ossifications, and neurodevelopmental deficits, as well as hormonal resistance most prominently to parathyroid hormone (PTH). In addition to these alterations, patients may develop other hormonal resistances, leading to overt or subclinical hypothyroidism, hypogonadism and growth hormone (GH) deficiency, impaired growth without measurable evidence for hormonal abnormalities, type 2 diabetes, and skeletal issues with potentially severe limitation of mobility. PHP and related disorders are primarily clinical diagnoses. Given the variability of the clinical, radiological, and biochemical presentation, establishment of the molecular diagnosis is of critical importance for patients. It facilitates management, including prevention of complications, screening and treatment of endocrine deficits, supportive measures, and appropriate genetic counselling. Based on the first international consensus statement for these disorders, this article provides an updated and ready-to-use tool to help physicians and patients outlining relevant interventions and their timing. A life-long coordinated and multidisciplinary approach is recommended, starting as far as possible in early infancy and continuing throughout adulthood with an appropriate and timely transition from pediatric to adult care.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Endocrinology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - S. Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- Italian Progressive Osseous Heteroplasia Association (IPOHA), Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and Related Disorders Patient Association, Jouars-Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of Medicine for Adolescents, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicetre, France
| | - Guillemette Devernois
- K20, French PHP and Related Disorders Patient Association, Jouars-Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M. Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Emily L. Germain-Lee
- Albright Center and Center for Rare Bone Disorders, Division of Pediatric Endocrinology and Diabetes, Connecticut Children’s Medical Center, Farmington, CT, USA,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen A.T. Hamdy
- Division of Endocrinology and Centre for Bone Quality, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick Hanna
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France,APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Nina Knight
- Acrodysostosis Support and Research patients’ group, London, UK
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France,APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain,Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A. Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain,Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebeca Rodado
- AEPHP, Spanish PHP and Related Disorders Patient Association, Almeria, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham, UK
| | - Ashley H. Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M. Shore
- Departments of Orthopedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Philip Woods
- Acrodysostosis Support and Research patients’ group, London, UK
| | - M. Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Agnès Linglart
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France,APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| |
Collapse
|
29
|
Hanin G, Ferguson-Smith AC. The evolution of genomic imprinting: Epigenetic control of mammary gland development and postnatal resource control. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1476. [PMID: 31877240 DOI: 10.1002/wsbm.1476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Genomic imprinting is an epigenetically regulated process leading to gene expression according to its parental origin. Imprinting is essential for prenatal growth and development, regulating nutritional resources to offspring, and contributing to a favored theory about the evolution of imprinting being due to a conflict between maternal and paternal genomes for the control of prenatal resources-the so-called kinship hypothesis. Genomic imprinting has been mainly studied during embryonic and placental development; however, maternal nutrient provisioning is not restricted to the prenatal period. In this context, the mammary gland acts at the maternal-offspring interface providing milk to the newborn. Maternal care including lactation supports the offspring, delivering nutrients and bioactive molecules protecting against infections and contributing to healthy organ development and immune maturation. The normal developmental cycle of the mammary gland-pregnancy, lactation, involution-is vital for this process, raising the question of whether genomic imprinting might also play a role in postnatal nutrient transfer by controlling mammary gland development. Characterizing the function and epigenetic regulation of imprinted genes in the mammary gland cycle may therefore provide novel insights into the evolution of imprinting since the offspring's paternal genome is absent from the mammary gland, in addition to increasing our knowledge of postnatal nutrition and its relation to life-long health. This article is categorized under: Developmental Biology > Developmental Processes in Health and Disease.
Collapse
Affiliation(s)
- Geula Hanin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
30
|
Schneller-Pavelescu L, Vergara de Caso E, Pastor-Tomás N, Gutiérrez Agulló M, Ruiz Pérez L, Betlloch Mas I. Presentation of pseudohypoparathyroidism and pseudopseudohypoparathyroidism with skin lesions: Case reports and review. Pediatr Dermatol 2019; 36:355-359. [PMID: 30809832 DOI: 10.1111/pde.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report three cases of patients with pseudohypoparathyroidism or pseudopseudohypoparathyroidism. These diseases are considered GNAS inactivating mutation syndromes that are characterized by a diversity of alterations among which a particular phenotype and specific endocrine or ossification abnormalities may be found. These patients may present with hard cutaneous nodules, which can represent osteoma cutis. The presence of these lesions in pediatric patients should prompt the dermatologist's consideration of this group of diseases when reaching a diagnosis. A multidisciplinary team of pediatricians, endocrinologists, geneticists, and dermatologists should carefully evaluate these patients.
Collapse
Affiliation(s)
- Luca Schneller-Pavelescu
- Department of Dermatology, General University Hospital of Alicante, Healthcare and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | - Eduardo Vergara de Caso
- Department of Dermatology, General University Hospital of Alicante, Healthcare and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | | | - María Gutiérrez Agulló
- Genetics Laboratory, General University Hospital of Alicante, Healthcare and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | - Lorea Ruiz Pérez
- Department of Pediatrics, General University Hospital of Alicante, Healthcare and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | - Isabel Betlloch Mas
- Department of Dermatology, General University Hospital of Alicante, Healthcare and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
31
|
Sparber P, Filatova A, Khantemirova M, Skoblov M. The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics 2019; 12:42. [PMID: 30871545 PMCID: PMC6416829 DOI: 10.1186/s12920-019-0487-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Thousands of long non-coding RNA (lncRNA) genes are annotated in the human genome. Recent studies showed the key role of lncRNAs in a variety of fundamental cellular processes. Dysregulation of lncRNAs can drive tumorigenesis and they are now considered to be a promising therapeutic target in cancer. However, how lncRNAs contribute to the development of hereditary diseases in human is still mostly unknown. Results This review is focused on hereditary diseases in the pathogenesis of which long non-coding RNAs play an important role. Conclusions Fundamental research in the field of molecular genetics of lncRNA is necessary for a more complete understanding of their significance. Future research will help translate this knowledge into clinical practice which will not only lead to an increase in the diagnostic rate but also in the future can help with the development of etiotropic treatments for hereditary diseases.
Collapse
Affiliation(s)
- Peter Sparber
- Research Center for Medical Genetics, Moscow, Russia.
| | | | - Mira Khantemirova
- Novosibirsk State University, Novosibirsk, Russia.,Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Mikhail Skoblov
- Research Center for Medical Genetics, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
32
|
Elli FM, deSanctis L, Maffini MA, Bordogna P, Tessaris D, Pirelli A, Arosio M, Linglart A, Mantovani G. Association of GNAS imprinting defects and deletions of chromosome 2 in two patients: clues explaining phenotypic heterogeneity in pseudohypoparathyroidism type 1B/iPPSD3. Clin Epigenetics 2019; 11:3. [PMID: 30616679 PMCID: PMC6322333 DOI: 10.1186/s13148-018-0607-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The term pseudohypoparathyroidism (PHP) describes disorders derived from resistance to the parathyroid hormone. Albright hereditary osteodystrophy (AHO) is a disorder with several physical features that can occur alone or in association with PHP. The subtype 1B, classically associated with resistance to PTH and TSH, derives from the epigenetic dysregulation of the GNAS locus. Patients showing features of AHO were described, but no explanation for such phenotypic heterogeneity is available. An AHO-like phenotype was associated with the loss of genetic information stored in chromosome 2q37, making this genomic region an interesting object of study as it could contain modifier genes involved in the development of AHO features in patients with GNAS imprinting defects. The present study aimed to screen a series of 65 patients affected with GNAS imprinting defects, with or without signs of AHO, for the presence of 2q37 deletions in order to find genes involved in the clinical variability. RESULTS The molecular investigations performed on our cohort of patients with GNAS imprinting defects identified two overlapping terminal deletions of the long arm of chromosome 2. The smaller deletion was of approximately 3 Mb and contained 38 genes, one or more of which is potentially involved in the clinical presentation. Patients with the deletions were both affected by a combination of the most pathognomic AHO-like features, brachydactyly, cognitive impairment and/or behavioural defects. Our results support the hypothesis that additional genetic factors besides GNAS methylation defects are involved in the development of a complex phenotype in the subgroup of patients showing signs of AHO. CONCLUSIONS For the first time, the present work describes PHP patients with hormone resistance and AHO signs simultaneously affected by GNAS imprinting defects and 2q37 deletions. Although further studies are needed to confirm the cause of these two rare molecular alterations and to identify candidate genes, this finding provides novel interesting clues for the identification of factors involved in the still unexplained clinical variability observed in PHP1B.
Collapse
Affiliation(s)
- F M Elli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - L deSanctis
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - M A Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| | - D Tessaris
- Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - A Pirelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Arosio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Linglart
- APHP, Paediatric Endocrinology and Diabetology for Children, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris-Sud Hospital, 94270, Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Diabetology, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, 94270, Le Kremlin-Bicêtre, France
| | - G Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Abstract
Pseudohypoparathyroidism (PHP) refers to a heterogeneous group of uncommon, yet related metabolic disorders that are characterized by impaired activation of the Gsα/cAMP/PKA signaling pathway by parathyroid hormone (PTH) and other hormones that interact with Gsa-coupled receptors. Proximal renal tubular resistance to PTH and thus hypocalcemia and hyperphosphatemia, frequently in presence of brachydactyly, ectopic ossification, early-onset obesity, or short stature are common features of PHP. Registries and large cohorts of patients are needed to conduct clinical and genetic research, to improve the still limited knowledge regarding the underlying disease mechanisms, and allow the development of novel therapies.
Collapse
Affiliation(s)
- Agnès Linglart
- INSERM-U1185, Paris Sud Paris-Saclay University, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France; APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Network OSCAR and 'Platform of Expertise Paris Sud for Rare Diseases, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France; APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France.
| | - Michael A Levine
- Division of Endocrinology and Diabetes, Center for Bone Health, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman, School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom street, Boston, MA 02114, USA; Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom street, Boston, MA 02114, USA
| |
Collapse
|
34
|
Elli FM, Pereda A, Linglart A, Perez de Nanclares G, Mantovani G. Parathyroid hormone resistance syndromes - Inactivating PTH/PTHrP signaling disorders (iPPSDs). Best Pract Res Clin Endocrinol Metab 2018; 32:941-954. [PMID: 30665554 DOI: 10.1016/j.beem.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic disorders caused by impairments of the Gsα/cAMP/PKA pathway affecting the signaling of PTH/PTHrP lead to features caused by non-responsiveness of target organs, in turn leading to manifestations similar to the deficiency of the hormone itself. Pseudohypoparathyroidism (PHP) and related disorders derive from a defect of the α subunit of the stimulatory G protein (Gsα) or of downstream effectors of the same pathway, such as the PKA regulatory subunit 1A and the phosphodiesterase type 4D. The increasing knowledge on these diseases made the actual classification of PHP outdated as it does not include related conditions such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), so that a new nomenclature and classification has been recently proposed grouping these disorders under the term "inactivating PTH/PTHrP signaling disorder" (iPPSD). This review will focus on the pathophysiology, clinical and molecular aspects of these rare, heterogeneous but closely related diseases.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain.
| | - Agnès Linglart
- APHP, Department of Paediatric Endocrinology and Diabetes for Children, Bicêtre Paris-Sud Hospital, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France.
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain.
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
35
|
Hanna P, Grybek V, de Nanclares GP, Tran LC, de Sanctis L, Elli F, Errea J, Francou B, Kamenicky P, Linglart L, Pereda A, Rothenbuhler A, Tessaris D, Thiele S, Usardi A, Shoemaker AH, Kottler ML, Jüppner H, Mantovani G, Linglart A. Genetic and Epigenetic Defects at the GNAS Locus Lead to Distinct Patterns of Skeletal Growth but Similar Early-Onset Obesity. J Bone Miner Res 2018; 33:1480-1488. [PMID: 29693731 PMCID: PMC6105438 DOI: 10.1002/jbmr.3450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 01/17/2023]
Abstract
Pseudohypoparathyroidism type 1A (PHP1A), pseudoPHP (PPHP), and PHP type 1B (PHP1B) are caused by maternal and paternal GNAS mutations and abnormal methylation at maternal GNAS promoter(s), respectively. Adult PHP1A patients are reportedly obese and short, whereas most PPHP patients are born small. In addition to parathyroid hormone (PTH) resistance, PHP1A and PHP1B patients may display early-onset obesity. Because early-onset and severe obesity and short stature are daily burdens for PHP1A patients, we aimed at improving knowledge on the contribution of the GNAS transcripts to fetal and postnatal growth and fat storage. Through an international collaboration, we collected growth and weight data from birth until adulthood for 306 PHP1A/PPHP and 220 PHP1B patients. PHP1A/PPHP patients were smaller at birth than healthy controls, especially PPHP (length Z-score: PHP1A -1.1 ± 1.8; PPHP -3.0 ± 1.5). Short stature is observed in 64% and 59% of adult PHP1A and PPHP patients. PHP1B patients displayed early postnatal overgrowth (height Z-score at 1 year: 2.2 ± 1.3 and 1.3 ± 1.5 in autosomal dominant and sporadic PHP1B) followed by a gradual decrease in growth velocity resulting in normal adult height (Z-score for both: -0.4 ± 1.1). Early-onset obesity characterizes GNAS alterations and is associated with significant overweight and obesity in adults (bodey mass index [BMI] Z-score: 1.4 ± 2.6, 2.1 ± 2.0, and 1.4 ± 1.9 in PPHP, PHP1A, and PHP1B, respectively), indicating that reduced Gsα expression is a contributing factor. The growth impairment in PHP1A/PPHP may be due to Gsα haploinsufficiency in the growth plates; the paternal XLαs transcript likely contributes to prenatal growth; for all disease variants, a reduced pubertal growth spurt may be due to accelerated growth plate closure. Consequently, early diagnosis and close follow-up is needed in patients with GNAS defects to screen and intervene in case of early-onset obesity and decreased growth velocity. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Patrick Hanna
- INSERM U1169 and Paris Sud Paris-Saclay university, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Virginie Grybek
- INSERM U1169 and Paris Sud Paris-Saclay university, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Léa C. Tran
- Caen University Hospital, Molecular Genetics Laboratory, Université Caen Normandie, Medical School, BioTARGEN, Caen Normandy University, Caen, France
| | - Luisa de Sanctis
- Paediatric Endocrinology Unit and department of Public Health and Pediatric Sciences University of Torino, Torino, Italy
| | - Francesca Elli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Javier Errea
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Bruno Francou
- APHP, Department of molecular genetics, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Peter Kamenicky
- APHP, Department of endocrinology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Léa Linglart
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Arrate Pereda
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Daniele Tessaris
- Paediatric Endocrinology Unit and department of Public Health and Pediatric Sciences University of Torino, Torino, Italy
| | - Susanne Thiele
- Division of Experimental Pediatric Endocrinology and Diabetes Department of Pediatrics, Center of brain, behavior and metabolism, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | | | - Marie-Laure Kottler
- Caen University Hospital, Molecular Genetics Laboratory, Université Caen Normandie, Medical School, BioTARGEN, Caen Normandy University, Caen, France
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Giovanna Mantovani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Agnès Linglart
- INSERM U1169 and Paris Sud Paris-Saclay university, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Reference Center for rare disorders of the calcium and phosphate metabolism, filière OSCAR and Plateforme d’Expertise Maladies Rares Paris-Sud, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| |
Collapse
|
36
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Freson K, García Ramirez A, Germain-Lee EL, Groussin L, Hamdy N, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Kottler ML, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, Perez de Nanclares G, Linglart A. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018; 14:476-500. [PMID: 29959430 PMCID: PMC6541219 DOI: 10.1038/s41574-018-0042-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- IPOHA, Italian Progressive Osseous Heteroplasia Association, Cerignola, Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of medicine for adolescents, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Guillemette Devernois
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Aurora García Ramirez
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Emily L Germain-Lee
- Albright Center & Center for Rare Bone Disorders, Division of Pediatric Endocrinology & Diabetes, Connecticut Children's Medical Center, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen Hamdy
- Department of Medicine, Division of Endocrinology and Centre for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Hanna
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- INSERM U1185, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Nina Knight
- UK acrodysostosis patients' group, London, UK
| | - Marie-Laure Kottler
- Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Caen University Hospital, Caen, France
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain
- Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, CIBERobn, ISCIII, Madrid, Spain
- Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Rodado
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - Ashley H Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | | | - M Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain.
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France.
| |
Collapse
|
37
|
Xu R, Hu J, Zhou X, Yang Y. Heterotopic ossification: Mechanistic insights and clinical challenges. Bone 2018; 109:134-142. [PMID: 28855144 DOI: 10.1016/j.bone.2017.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
Bone formation is exquisitely controlled both spatially and temporally. Heterotopic ossification (HO) is pathological bone formation in soft tissues that often leads to deleterious outcomes. Inherited genetic forms of HO can be life-threatening and can happen as early as in infancy. However, there is currently no effective treatment for HO as the underlying cellular and molecular mechanisms have not been completely elucidated. Trauma-induced non-genetic forms of HO often occur as a common complication after surgeries or accidents, and the location of HO occurrence largely determines the symptom and outcome. While it has been difficult to determine the complicated factors causing HO, recent advancement in identifying cellular and molecular mechanism causing the genetic forms of HO may provide important insights in all HO. Here in this review, we summarize recent studies on HO to provide a current status of both clinical options of HO treatments and mechanical understanding of HO.
Collapse
Affiliation(s)
- Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China
| | - Jiajie Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China.
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.
| |
Collapse
|
38
|
Mantovani G, Elli FM. Multiple hormone resistance and alterations of G-protein-coupled receptors signaling. Best Pract Res Clin Endocrinol Metab 2018; 32:141-154. [PMID: 29678282 DOI: 10.1016/j.beem.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic disorders deriving from the non-responsiveness of target organs to hormones, which manifest clinically similar to the deficiency of a given hormone itself, derive from molecular alterations affecting specific hormone receptors. Pseudohypoparathyroidism (PHP) and related disorders exemplify an unusual form of hormone resistance as the underlying molecular defect is a partial deficiency of the α subunit of the stimulatory G protein (Gsα), a key regulator of cAMP signaling pathway, or, as more recently described, of downstream effector proteins of the same pathway, such as PKA regulatory subunit 1A (R1A) and phosphodyestarase type 4D (PDE4D). In this group of diseases, resistance to hormones such as PTH, TSH, gonadotropins and GHRH may be variably present, so that the clinical and molecular overlap among these different but related disorders represents a challenge for endocrinologists as to differential diagnosis and genetic counseling. This review will describe the presenting features of multiple resistance in PHP and related disorders, focusing on both our current understanding and future challenges.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
39
|
Abstract
GNAS is a complex imprinted gene encoding the alpha-subunit of the stimulatory heterotrimeric G protein (Gsα). GNAS gives rise to additional gene products that exhibit exclusively maternal or paternal expression, such as XLαs, a large variant of Gsα that shows exclusively paternal expression and is partly identical to the latter. Gsα itself is expressed biallelically in most tissues, although the expression occurs predominantly from the maternal allele in a small set of tissues, such as renal proximal tubules. Inactivating mutations in Gsα-coding GNAS exons are responsible for Albright's hereditary osteodystrophy (AHO), which refers to a constellation of physical and developmental disorders including obesity, short stature, brachydactyly, cognitive impairment, and heterotopic ossification. Patients with Gsα mutations can present with AHO in the presence or absence of end-organ resistance to multiple hormones including parathyroid hormone. Maternal Gsα mutations lead to AHO with hormone resistance (i.e. pseudohypoparathyroidism type-Ia), whereas paternal mutations cause AHO alone (i.e. pseudo-pseudohypoparathyroidism). Heterotopic ossification associated with AHO develops through intramembranous bone formation and is limited to dermis and subcutis. In rare cases carrying Gsα mutations, however, ossifications progress into deep connective tissue and skeletal muscle, a disorder termed progressive osseous heteroplasia (POH). Here I briefly review the genetic, clinical, and molecular aspects of these disorders caused by inactivating GNAS mutations, with particular emphasis on heterotopic ossification.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
40
|
Underbjerg L, Malmstroem S, Sikjaer T, Rejnmark L. Bone Status Among Patients With Nonsurgical Hypoparathyroidism, Autosomal Dominant Hypocalcaemia, and Pseudohypoparathyroidism: A Cohort Study. J Bone Miner Res 2018; 33:467-477. [PMID: 29087612 DOI: 10.1002/jbmr.3328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Abstract
Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Line Underbjerg
- Department of Endocrinology and Internal Medicine, Tage-Hansens Gade (THG), Aarhus University Hospital, Aarhus, Denmark
| | - Sofie Malmstroem
- Department of Endocrinology and Internal Medicine, Tage-Hansens Gade (THG), Aarhus University Hospital, Aarhus, Denmark
| | - Tanja Sikjaer
- Department of Endocrinology and Internal Medicine, Tage-Hansens Gade (THG), Aarhus University Hospital, Aarhus, Denmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Tage-Hansens Gade (THG), Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Elli FM, Bordogna P, Arosio M, Spada A, Mantovani G. Mosaicism for GNAS methylation defects associated with pseudohypoparathyroidism type 1B arose in early post-zygotic phases. Clin Epigenetics 2018; 10:16. [PMID: 29445425 PMCID: PMC5801752 DOI: 10.1186/s13148-018-0449-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pseudohypoparathyroidism type 1B (PHP1B; MIM#603233) is a rare imprinting disorder (ID), associated with the GNAS locus, characterized by parathyroid hormone (PTH) resistance in the absence of other endocrine or physical abnormalities. Sporadic PHP1B cases, with no known underlying primary genetic lesions, could represent true stochastic errors in early embryonic maintenance of methylation. Previous data confirmed the existence of different degrees of methylation defects associated with PHP1B and suggested the presence of mosaicism, a phenomenon already described in the context of other IDs. Results With respect to mosaic conditions, the study of multiple tissues is a necessary approach; thus, we investigated somatic cell lines (peripheral blood and buccal epithelium and cells from the urine sediment) descending from different germ layers from 19 PHP patients (11 spor-PHP1B, 4 GNAS mutated PHP1A, and 4 PHP with no GNAS (epi)genetic defects) and 5 healthy controls. We identified 11 patients with epigenetic defects, further subdivided in groups with complete or partial methylation defects. The recurrence of specific patterns of partial methylation defects limited to specific CpGs was confirmed by checking methylation profiles of spor-PHP1B patients diagnosed in our lab (n = 56). Underlying primary genetic defects, such as uniparental disomy or deletion, potentially causative for the detected partial methylation were excluded in all samples. Conclusions Our data showed no differences of methylation levels between organs and tissues from the same patient, so we concluded that the epimutation occurred in early post-zygotic phases and that the partial defects were mosaics. The number of patients with no detectable (epi)genetic GNAS defects was too small to exclude epimutations occurring in later post-zygotic phases, affecting only selected tissues different from blood, thus leading to underdiagnosis during routine molecular diagnosis. Finally, we found no correlation between methylation ratios, representing the proportion of epimutated cells, and the clinical presentation, further confirming the hypothesis of a threshold effect of the GNAS loss of imprinting leading to an "all-or-none" phenotype.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
| | - Paolo Bordogna
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza, 35-20122 Milan, Italy
- Endocrinology and Metabolic Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
42
|
Reyes M, Karaca A, Bastepe M, Gulcelik NE, Jüppner H. A novel deletion involving GNAS exon 1 causes PHP1A and further refines the region required for normal methylation at exon A/B. Bone 2017; 103:281-286. [PMID: 28711660 PMCID: PMC5943703 DOI: 10.1016/j.bone.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
GNAS exons 1-13 encode the biallelically expressed alpha-subunit of the stimulatory G protein (Gαs). Additional transcripts derived from this locus use alternative first exons that undergo parent-specific methylation, thus allowing transcription only from the non-modified allele. Pseudohypoparathyroidism type Ia (PHP1A) is characterized by Albright's Hereditary Osteodystrophy (AHO) and resistance to multiple hormones; this disorder is caused by maternal inactivating mutations involving Gαs exons. In contrast, pseudohypoparathyroidism type Ib (PHP1B) is characterized mostly by resistance to PTH and often mild TSH resistance, usually without AHO features. The autosomal dominant variant of PHP1B (AD-PHP1B) is caused by maternal deletions in GNAS or STX16 that reduce Gαs expression through loss-of-methylation at GNAS exon A/B alone or at multiple differentially methylated regions (DMR). Several large maternal deletions involve not only GNAS exons 1-13, but also one or several GNAS DMRs, thus causing PHP1A combined with apparent GNAS epigenetic changes that are indistinguishable from those observed in PHP1B. Some of these deletions include a large CpG island extending from exon A/B to the intron between GNAS exons 1 and 2, but there is no evidence for parent-specific exon 1 methylation. We now describe a family in which the female proband and her daughter presented with hypocalcemia, elevated PTH levels, shortened metacarpals, and obesity, but without obvious neurocognitive abnormalities. A maternally inherited 2015-bp deletion that includes GNAS exon 1 was identified thereby establishing the diagnosis of PHP1A. The centromeric deletion breakpoint is located 178bp upstream of exon 1, yet no methylation changes were observed at exon A/B. This novel deletion therefore refines further the region between exon A/B and exon 1 that is critical for establishing or maintaining normal methylation at GNAS exon A/B.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anara Karaca
- Ankara Training and Research Hospital, Endocrinology and Metabolism, Ankara, Turkey
| | - Murat Bastepe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nese Ersoz Gulcelik
- Ankara Training and Research Hospital, Endocrinology and Metabolism, Ankara, Turkey
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Carroll RW, Katz ML, Paul E, Jüppner H. Case 17-2017. A 14-Year-Old Boy with Acute Fear of Choking while Swallowing. N Engl J Med 2017; 376:2266-2275. [PMID: 28591527 PMCID: PMC5939933 DOI: 10.1056/nejmcpc1616019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ryan W Carroll
- From the Department of Pediatrics, Massachusetts General Hospital (R.W.C., M.L.K., E.P., H.J.), the Department of Pediatrics, Harvard Medical School (R.W.C., M.L.K., E.P., H.J.), and Joslin Diabetes Center (M.L.K.) - all in Boston
| | - Michelle L Katz
- From the Department of Pediatrics, Massachusetts General Hospital (R.W.C., M.L.K., E.P., H.J.), the Department of Pediatrics, Harvard Medical School (R.W.C., M.L.K., E.P., H.J.), and Joslin Diabetes Center (M.L.K.) - all in Boston
| | - Elahna Paul
- From the Department of Pediatrics, Massachusetts General Hospital (R.W.C., M.L.K., E.P., H.J.), the Department of Pediatrics, Harvard Medical School (R.W.C., M.L.K., E.P., H.J.), and Joslin Diabetes Center (M.L.K.) - all in Boston
| | - Harald Jüppner
- From the Department of Pediatrics, Massachusetts General Hospital (R.W.C., M.L.K., E.P., H.J.), the Department of Pediatrics, Harvard Medical School (R.W.C., M.L.K., E.P., H.J.), and Joslin Diabetes Center (M.L.K.) - all in Boston
| |
Collapse
|
44
|
Bastepe M, Turan S, He Q. Heterotrimeric G proteins in the control of parathyroid hormone actions. J Mol Endocrinol 2017; 58:R203-R224. [PMID: 28363951 PMCID: PMC5650080 DOI: 10.1530/jme-16-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH) is a key regulator of skeletal physiology and calcium and phosphate homeostasis. It acts on bone and kidney to stimulate bone turnover, increase the circulating levels of 1,25 dihydroxyvitamin D and calcium and inhibit the reabsorption of phosphate from the glomerular filtrate. Dysregulated PTH actions contribute to or are the cause of several endocrine disorders. This calciotropic hormone exerts its actions via binding to the PTH/PTH-related peptide receptor (PTH1R), which couples to multiple heterotrimeric G proteins, including Gs and Gq/11 Genetic mutations affecting the activity or expression of the alpha-subunit of Gs, encoded by the GNAS complex locus, are responsible for several human diseases for which the clinical findings result, at least partly, from aberrant PTH signaling. Here, we review the bone and renal actions of PTH with respect to the different signaling pathways downstream of these G proteins, as well as the disorders caused by GNAS mutations.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine UnitDepartment of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Serap Turan
- Department of Pediatric EndocrinologyMarmara University School of Medicine, Istanbul, Turkey
| | - Qing He
- Endocrine UnitDepartment of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Elhamamsy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet 2017; 34:549-562. [PMID: 28281142 PMCID: PMC5427654 DOI: 10.1007/s10815-017-0895-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic imprinting is a complex epigenetic process that contributes substantially to embryogenesis, reproduction, and gametogenesis. Only small fraction of genes within the whole genome undergoes imprinting. Imprinted genes are expressed in a monoallelic parent-of-origin-specific manner, which means that only one of the two inherited alleles is expressed either from the paternal or maternal side. Imprinted genes are typically arranged in clusters controlled by differentially methylated regions or imprinting control regions. Any defect or relaxation in imprinting process can cause loss of imprinting in the key imprinted loci. Loss of imprinting in most cases has a harmful effect on fetal development and can result in neurological, developmental, and metabolic disorders. Since DNA methylation and histone modifications play a key role in the process of imprinting. This review focuses on the role of DNA methylation in imprinting process and describes DNA methylation aberrations in different imprinting disorders.
Collapse
Affiliation(s)
- Amr Rafat Elhamamsy
- Department of Clinical Pharmacy, School of Pharmacy, Tanta University, Tanta, 31512, Gharbia, Egypt.
| |
Collapse
|
46
|
Park HS, Kim CG, Hong N, Lee SJ, Seo DH, Rhee Y. Osteosarcoma in a Patient With Pseudohypoparathyroidism Type 1b Due to Paternal Uniparental Disomy of Chromosome 20q. J Bone Miner Res 2017; 32:770-775. [PMID: 27859596 DOI: 10.1002/jbmr.3043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/07/2022]
Abstract
It is assumed that a persistent high level of parathyroid hormone (PTH) might have a relation with bone malignancy. However, there has been no report of osteosarcoma associated with pseudohypoparathyroidism type 1b (PHP1b), which is accompanied by high PTH. PHP1b is the result of resistance to PTH in certain end-organ tissues, especially the kidney; the response in bone is unaffected because it normally expresses stimulatory G protein equally from both parental alleles. A 21-year-old male, presenting with gum swelling at the right mandible, was referred to a dental clinic. A curative surgical resection by segmental mandibulectomy was performed and the pathologic findings of the mass were consistent with osteoblastic osteosarcoma. His laboratory results showed a low calcium level despite high PTH, and he did not have any features of Albright hereditary osteodystrophy; therefore, PHP1b was suspected. Multiplex ligation-dependent probe amplification and microsatellite marker analyses of chromosome 20 confirmed the diagnosis and identified paternal uniparental disomy of chromosome 20q (patUPD20). To the best of our knowledge, this is the first report of osteosarcoma in a patient with PHP1b due to patUPD20. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hye-Sun Park
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Joo Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Hea Seo
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Elli FM, Boldrin V, Pirelli A, Spada A, Mantovani G. The Complex GNAS Imprinted Locus and Mesenchymal Stem Cells Differentiation. Horm Metab Res 2017; 49:250-258. [PMID: 27756094 DOI: 10.1055/s-0042-115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
All tissues and organs derive from stem cells, which are undifferentiated cells able to differentiate into specialized cells and self-renewal. In mammals, there are embryonic stem cells that generate germ layers, and adult stem cells, which act as a repair system for the body and maintain the normal turnover of regenerative organs. Mesenchymal stem cells (MSCs) are nonhematopoietic adult multipotent cells, which reside in virtually all postnatal organs and tissues, and, under appropriate in vitro conditions, are capable to differentiate into osteogenic, adipogenic, chondrogenic, myogenic, and neurogenic lineages. Their commitment and differentiation depend on several interacting signaling pathways and transcription factors. Most GNAS-based disorders have the common feature of episodic de novo formation of islands of extraskeletal, qualitatively normal, bone in skin and subcutaneous fat. The tissue distribution of these lesions suggests that pathogenesis involves abnormal differentiation of MSCs and/or more committed precursor cells that are present in subcutaneous tissues. Data coming from transgenic mice support the concept that GNAS is a key factor in the regulation of lineage switching between osteoblast and adipocyte fates, and that its role may be to prevent bone formation in tissues where bone should not form. Despite the growing knowledge about the process of heterotopic ossification in rare genetic disorders, the pathophysiological mechanisms by which alterations of cAMP signaling lead to ectopic bone formation in the context of mesenchymal tissues is not fully understood.
Collapse
Affiliation(s)
- F M Elli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Boldrin
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Pirelli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Spada
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
48
|
Tafaj O, Jüppner H. Pseudohypoparathyroidism: one gene, several syndromes. J Endocrinol Invest 2017; 40:347-356. [PMID: 27995443 DOI: 10.1007/s40618-016-0588-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several sites. GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Heterozygous inactivating mutations involving the maternal GNAS exons 1-13 cause PHP type Ia (PHP1A). Because of much reduced paternal Gsα expression in certain tissues, such as the proximal renal tubules, thyroid, and pituitary, there is little or no Gsα protein in the presence of maternal GNAS mutations, thus leading to PTH-resistant hypocalcemia and hyperphosphatemia. When located on the paternal allele, the same or similar GNAS mutations are the cause of PPHP. Besides biochemical abnormalities, patients affected by PHP1A show developmental abnormalities, referred to as Albrights hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss-of-methylation (LOM) at exon A/B alone or at all maternally methylated GNAS exons. LOM at exon A/B and the resulting biallelic expression of A/B transcripts reduces Gsα expression, thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, the most frequent disease variant, which remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).
Collapse
Affiliation(s)
- O Tafaj
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 10, 50 Blossom Street, Boston, MA, 02114, USA
| | - H Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 10, 50 Blossom Street, Boston, MA, 02114, USA.
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Grigelioniene G, Nevalainen PI, Reyes M, Thiele S, Tafaj O, Molinaro A, Takatani R, Ala-Houhala M, Nilsson D, Eisfeldt J, Lindstrand A, Kottler ML, Mäkitie O, Jüppner H. A Large Inversion Involving GNAS Exon A/B and All Exons Encoding Gsα Is Associated With Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res 2017; 32:776-783. [PMID: 28084650 PMCID: PMC5395346 DOI: 10.1002/jbmr.3083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/31/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giedre Grigelioniene
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Pasi I Nevalainen
- Endocrine Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susanne Thiele
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Olta Tafaj
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Angelo Molinaro
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rieko Takatani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marja Ala-Houhala
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - Marie-Laure Kottler
- Centre Hospitalier Universitaire de Caen, Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphorus Metabolism, Caen, France
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Abstract
Hypothyroidism may occur in association with congenital parathyroid disorders determining parathyroid hormone insufficiency, which is characterized by hypocalcemia and concomitant inappropriately low secretion of parathormone (PTH). The association is often due to loss of function of genes common to thyroid and parathyroid glands embryonic development. Hypothyroidism associated with hypoparathyroidism is generally mild and not associated with goiter; moreover, it is usually part of a multisystemic involvement not restricted to endocrine function as occurs in patients with 22q11 microdeletion/DiGeorge syndrome, the most frequent disorders. Hypothyroidism and hypoparathyroidism may also follow endocrine glands' damages due to autoimmunity or chronic iron overload in thalassemic disorders, both genetically determined conditions. Finally, besides PTH deficiency, hypocalcemia can be due to PTH resistance in pseudohypoparathyroidism; when hormone resistance is generalized, patients can suffer from hypothyroidism due to TSH resistance. In evaluating patients with hypothyroidism and hypocalcemia, physical examination and clinical history are essential to drive the diagnostic process, while routine genetic screening is not recommended.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Service, Department of Biomedical Sciences, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|