1
|
Maeoka Y, Okamoto T, Wu Y, Saito A, Asada R, Matsuhisa K, Terao M, Takada S, Masaki T, Imaizumi K, Kaneko M. Renal medullary tonicity regulates RNF183 expression in the collecting ducts via NFAT5. Biochem Biophys Res Commun 2019; 514:436-442. [PMID: 31053298 DOI: 10.1016/j.bbrc.2019.04.168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Nuclear factor of activated T-cells 5 (NFAT5) directly binds to the promoter of the RING finger protein 183 (RNF183) gene and induces its transcription under hypertonic conditions in mouse inner-medullary collecting duct (mIMCD-3) cells. However, there is no specific anti-RNF183 antibody for immunostaining; therefore, it is unclear whether NFAT5 regulates RNF183 expression in vivo and where RNF183 is localized in the kidney. This study investigated NFAT5-regulated in vivo RNF183 expression and localization using CRISPR/Cas9-mediated RNF183-green fluorescent protein (RNF183-GFP) knock-in mice. GFP with linker sequences was introduced upstream of an RNF183 open reading frame in exon 3 by homologous recombination through a donor plasmid. Immunofluorescence staining using GFP antibody revealed that GFP signals gradually increase from the outer medulla down to the inner medulla and colocalize with aquaporin-2. Furosemide treatment dramatically decreased RNF183 expression in the renal medulla, consistent with the decrease in NFAT5 protein and target gene mRNA expression. Furosemide treatment of mIMCD-3 cells did not affect mRNA expression and RNF183 promoter activities. These results indicated that RNF183 is predominantly expressed in the renal medullary collecting ducts, and that decreased renal medullary tonicity by furosemide treatment decreases RNF183 expression by NFAT5 downregulation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takumi Okamoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yan Wu
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, MO, USA
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
2
|
Shakhmatova EI, Bogolepova AE, Dubina MV, Natochin YV. Effect of oleamide on water and sodium ion transport in osmoregulatory organs of vertebrates. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093015060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Qureshi S, Galiveeti S, Bichet DG, Roth J. Diabetes insipidus: celebrating a century of vasopressin therapy. Endocrinology 2014; 155:4605-21. [PMID: 25211589 DOI: 10.1210/en.2014-1385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus, widely known to the ancients for polyuria and glycosuria, budded off diabetes insipidus (DI) about 200 years ago, based on the glucose-free polyuria that characterized a subset of patients. In the late 19th century, clinicians identified the posterior pituitary as the site of pathology, and pharmacologists found multiple bioactivities there. Early in the 20th century, the amelioration of the polyuria with extracts of the posterior pituitary inaugurated a new era in therapy and advanced the hypothesis that DI was due to a hormone deficiency. Decades later, a subset of patients with polyuria unresponsive to therapy were recognized, leading to the distinction between central DI and nephrogenic DI, an early example of a hormone-resistant condition. Recognition that the posterior pituitary had 2 hormones was followed by du Vigneaud's Nobel Prize winning isolation, sequencing, and chemical synthesis of oxytocin and vasopressin. The pure hormones accelerated the development of bioassays and immunoassays that confirmed the hormone deficiency in vasopressin-sensitive DI and abundant levels of hormone in patients with the nephrogenic disorder. With both forms of the disease, acquired and inborn defects were recognized. Emerging concepts of receptors and of genetic analysis led to the recognition of patients with mutations in the genes for 1) arginine vasopressin (AVP), 2) the AVP receptor 2 (AVPR2), and 3) the aquaporin 2 water channel (AQP2). We recount here the multiple skeins of clinical and laboratory research that intersected frequently over the centuries since the first recognition of DI.
Collapse
Affiliation(s)
- Sana Qureshi
- Laboratory of Diabetes and Diabetes-Related Disorders (S.Q., S.G., J.R.), Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York 11030; Albert Einstein College of Medicine (S.Q., J.R.), Yeshiva University, Bronx, New York 10461; James J Peters VA Medical Center (S.G.), Mount Sinai Medical Center Health System, Bronx, New York 10029; Hôpital du Sacré-Coeur de Montréal (D.G.B.), Groupe des Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada H4J IC5; and Hofstra North Shore-Long Island Jewish School of Medicine (J.R.), North Shore-Long Island Jewish Health System, Hempstead, New York 11549
| | | | | | | |
Collapse
|
4
|
Fock E, Lavrova E, Parnova R. Colonization of frog Rana temporaria L. urinary bladder by Gram-negative bacteria leads to decreased effect of arginine-vasotocin on water reabsorption from the urinary bladder. ACTA ACUST UNITED AC 2013; 319:487-94. [PMID: 23836531 DOI: 10.1002/jez.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 11/08/2022]
Abstract
In frogs and toads the urinary bladder is very important for the maintenance of water balance due to its ability to store water which can be reabsorbed under the action of arginine-vasotocin (AVT). The usage of isolated bladders as a model for studying the osmotic water permeability (OWP) regulation has a disadvantage which relates to high variability of AVT effect among individuals, some showing insensitivity to the hormone. We hypothesized that the response of the bladder to AVT could depend on the colonization of the mucosal epithelium by Gram-negative bacteria. To test this, paired hemibladders of the frog Rana temporaria were used for measurement of OWP and for analysis of Gram-negative bacteria in the bladder tissue or isolated epithelial cells. Among the 206 frogs studied, 41% were infected by different Enterobacteriaceae, with prevalence of Hafnia alvei and Escherichia coli. In infected bladders the basal level of OWP was unchanged, whereas OWP stimulated by AVT was reduced (non-infected: 2.53 ± 0.13, n = 59, infected: 1.21 ± 0.17 µL min(-1) cm(-2), n = 38, for the 15 min of AVT action, P < 0.001). In the sample, 100% of hemibladders that responded to AVT very weakly (OWP <0.5 µL min(-1) cm(-2)) had a bacterial infection. Overnight treatment of hemibladders with mucosal lipopolysaccharide E. coli decreased OWP induced by AVT, forskolin, or IBMX lowering basal and stimulated level of cAMP. The data obtained indicate that the frog bladder epithelium could be colonized by Gram-negative bacteria, probably of cloacal origin, leading to reduction of sensitivity to AVT and to impairment of the urinary bladder to provide osmoregulation.
Collapse
Affiliation(s)
- Ekaterina Fock
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | | | | |
Collapse
|
5
|
Walker RJ, Leader JP, Bedford JJ, Gobe G, Davis G, Vos FE, deJong S, Schollum JBW. Chronic interstitial fibrosis in the rat kidney induced by long-term (6-mo) exposure to lithium. Am J Physiol Renal Physiol 2012; 304:F300-7. [PMID: 23171555 DOI: 10.1152/ajprenal.00182.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a lack of suitable animal models that replicate the slowly progressive chronic interstitial fibrosis that is characteristic of many human chronic nephropathies. We describe a chronic long-term (6-mo) model of lithium-induced renal fibrosis, with minimal active inflammation, which mimics chronic kidney interstitial fibrosis seen in the human kidney. Rats received lithium via their chow (60 mmol lithium/kg food) daily for 6 mo. No animals died during the exposure. Nephrogenic diabetes insipidus was established by 3 wk and persisted for the 6 mo. Following metabolic studies, the animals were killed at 1, 3, and 6 mo and the kidneys were processed for histological and immunohistochemical studies. Progressive interstitial fibrosis, characterized by increasing numbers of myofibroblasts, enhanced transforming growth factor-β(1) expression and interstitial collagen deposition, and a minimal inflammatory cellular response was evident. Elucidation of the underlying mechanisms of injury in this model will provide a greater understanding of chronic interstitial fibrosis and allow the development of intervention strategies to prevent injury.
Collapse
Affiliation(s)
- Robert J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9016, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
Carlson LA, Boberg J, HÖgstedt B. Some physiological and clinical implications of lipid mobilization from adipose tissue
1. Compr Physiol 2011. [DOI: 10.1002/cphy.cp050163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Scow RO. Perfusion of isolated adipose tissue: FFA release and blood flow in rat parametrial fat body. Compr Physiol 2011. [DOI: 10.1002/cphy.cp050145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Abstract
This chapter describes the effects of the natural methylxanthines caffeine and theophylline on kidney function. Theophylline in particular was used traditionally to increase urine out put until more potent diuretics became available in the middle of the last century. The mildly diuretic actions of both methylxanthines are mainly the result of inhibition of tubular fluid reabsorption along the renal proximal tubule. Based upon the use of specific adenosine receptor antagonists and the observation of a complete loss of diuresis in mice with targeted deletion of the A1AR gene, transport inhibition by methylxanthines is mediated mainly by antagonism of adenosine A1 receptors (A1AR) in the proximal tubule. Methylxanthines are weak renal vasodilators, and they act as competitive antagonists against adenosine-induced preglomerular vasoconstriction. Caffeine and theophylline stimulate the secretion of renin by inhibition of adenosine receptors and removal of the general inhibitory brake function of endogenous adenosine. Since enhanced intrarenal adenosine levels lead to reduced glomerular filtration rate in several pathological conditions theophylline has been tested for its therapeutic potential in the renal impairment following administration of nephrotoxic substances such as radiocontrast media, cisplatin, calcineurin inhibitors or following ischemia-reperfusion injury. In experimental animals functional improvements have been observed in all of these conditions, but available clinical data in humans are insufficient to affirm a definite therapeutic efficacy of methylxanthines in the prevention of nephrotoxic or postischemic renal injury.
Collapse
Affiliation(s)
- Hartmut Osswald
- Department of Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | | |
Collapse
|
30
|
|
31
|
|
32
|
|
33
|
Abstract
Vasopressin promotes renal water reabsorption decreasing excretion of free water to dilute plasma and lower serum osmolality. We have good understanding of the causes, mechanisms and consequences of this vasopressin-dependent renal water movement. In comparison, vasopressin actions on renal electrolytes including sodium excretion and its consequences have been less well understood. This is so for investigation and discussions of the renal actions of vasopressin are framed primarily around water metabolism rather than any direct effect on salt handling. The fact that water moves in biological systems, to include the mammalian kidney, only by osmosis passively down its concentration gradient is implicit in such discussion but often not overtly addressed. This can cause confusion. Moreover, although vasopressin action on renal sodium excretion via the V2 receptor is critical to water transport, it is masked easily being situational--for instance, dependent on hydration state. It is now clear that an increase in sodium reabsorption along the distal nephron (CNT + CD) mediated by activation of the epithelial Na(+) channel (ENaC) by vasopressin makes an important contribution to maintenance of the axial corticomedullary osmotic gradient necessary for maximal water reabsorption. Thus, we need to modify slightly our understanding of vasopressin and its renal actions to include the idea that while vasopressin decreases free water excretion to dilute plasma, it does this, in part, by promoting sodium reabsorption and consequently decreasing sodium excretion via ENaC activated along the distal nephron.
Collapse
|
34
|
Baba WI, Smith AJ, Townshend MM. A comparison of the effects of ethacrynic acid and a mercurial diuretic (mersalyl) on sodium transport across the isolated frog skin. BRITISH JOURNAL OF PHARMACOLOGY AND CHEMOTHERAPY 2010; 28:238-45. [PMID: 19108219 DOI: 10.1111/j.1476-5381.1966.tb01890.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Bugaj V, Pochynyuk O, Stockand JD. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol 2009; 297:F1411-8. [PMID: 19692483 DOI: 10.1152/ajprenal.00371.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC.
Collapse
Affiliation(s)
- Vladislav Bugaj
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
36
|
Bugaj V, Pochynyuk O, Stockand JD. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol 2009. [PMID: 19692483 DOI: 10.1152/ajprenal.00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC.
Collapse
Affiliation(s)
- Vladislav Bugaj
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
37
|
Blount MA, Mistry AC, Fröhlich O, Price SR, Chen G, Sands JM, Klein JD. Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol Renal Physiol 2008; 295:F295-9. [PMID: 18495802 PMCID: PMC2494505 DOI: 10.1152/ajprenal.00102.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022] Open
Abstract
The UT-A1 urea transporter plays an important role in the urine concentrating mechanism. Vasopressin (or cAMP) increases urea permeability in perfused terminal inner medullary collecting ducts and increases the abundance of phosphorylated UT-A1, suggesting regulation by phosphorylation. We performed a phosphopeptide analysis that strongly suggested that a PKA consensus site(s) in the central loop region of UT-A1 was/were phosphorylated. Serine 486 was most strongly identified, with other potential sites at serine 499 and threonine 524. Phosphomutation constructs of each residue were made and transiently transfected into LLC-PK1 cells to assay for UT-A1 phosphorylation. The basal level of UT-A1 phosphorylation was unaltered by mutation of these sites. We injected oocytes, assayed [14C]urea flux, and determined that mutation of these sites did not alter basal urea transport activity. Next, we tested the effect of stimulating cAMP production with forskolin. Forskolin increased wild-type UT-A1 and T524A phosphorylation in LLC-PK1 cells and increased urea flux in oocytes. In contrast, the S486A and S499A mutants demonstrated loss of forskolin-stimulated UT-A1 phosphorylation and reduced urea flux. In LLC-PK1 cells, we assessed biotinylated UT-A1. Wild-type UT-A1, S486A, and S499A accumulated in the membrane in response to forskolin. However, in the S486A/S499A double mutant, forskolin-stimulated UT-A1 membrane accumulation and urea flux were totally blocked. We conclude that the phosphorylation of UT-A1 on both serines 486 and 499 is important for activity and that this phosphorylation may be involved in UT-A1 membrane accumulation.
Collapse
Affiliation(s)
- Mitsi A Blount
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Jeanrenaud B. Adipose tissue dynamics and regulation, revisited. ERGEBNISSE DER PHYSIOLOGIE, BIOLOGISCHEN CHEMIE UND EXPERIMENTELLEN PHARMAKOLOGIE 2007; 60:57-140. [PMID: 4298672 DOI: 10.1007/bfb0107251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Shaw S, Marples D. N-ethylmaleimide causes aquaporin-2 trafficking in the renal inner medullary collecting duct by direct activation of protein kinase A. Am J Physiol Renal Physiol 2004; 288:F832-9. [PMID: 15536172 DOI: 10.1152/ajprenal.00041.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antidiuretic hormone arginine vasopressin increases the osmotic water permeability of the renal collecting ducts by inducing the shuttling of aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical plasma membrane of the principal cells. This process has been demonstrated to be dependent on the cytoskeleton and protein kinase A (PKA). Previous studies in the toad urinary bladder, a functional homologue of the renal collecting duct, have demonstrated that the sulfhydryl reagent N-ethylmaleimide (NEM) is also able to activate the vasopressin-sensitive water permeability pathway in this tissue. The aim of the present study was to investigate the effects of NEM on AQP2 trafficking in a mammalian system. We show that NEM causes translocation of AQP2 from the cytosol to the plasma membrane in rat inner medullary collecting ducts; like the response to arginine vasopressin, this action was also dependent on an intact cytoskeleton and PKA. This effect is not mediated by cAMP but results from direct activation of PKA by NEM.
Collapse
Affiliation(s)
- Stephen Shaw
- School of Biomedical Sciences, Worsley Bldg., Univ. of Leeds, Leeds LS2 9NQ, United Kingdom
| | | |
Collapse
|
40
|
Granier S, Terrillon S, Pascal R, Déméné H, Bouvier M, Guillon G, Mendre C. A cyclic peptide mimicking the third intracellular loop of the V2 vasopressin receptor inhibits signaling through its interaction with receptor dimer and G protein. J Biol Chem 2004; 279:50904-14. [PMID: 15452133 DOI: 10.1074/jbc.m405089200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the mechanism by which a peptide mimicking the third cytoplasmic loop of the vasopressin V2 receptor inhibits signaling. This loop was synthesized as a cyclic peptide (i3 cyc) that adopted defined secondary structure in solution. We found that i3 cyc inhibited the adenylyl cyclase activity induced by vasopressin or a nonhydrolyzable analog of GTP, guanosine 5'-O-(3-thio)triphosphate. This peptide also affected the specific binding of [3H]AVP by converting vasopressin binding sites from a high to a low affinity state without any effect on the global maximal binding capacity. The inhibitory actions of i3 cyc could also be observed in the presence of maximally uncoupling concentration of guanosine 5'-O-(3-thio)triphosphate, indicating a direct effect on the receptor itself and not exclusively on the interaction between the Gs protein and the V2 receptor (V2-R). Bioluminescence resonance energy-transfer experiments confirmed this assumption, because i3 cyc induced a significant inhibition of the bioluminescence resonance energy-transfer signal between the Renilla reniformis luciferase and the enhanced yellow fluorescent protein fused V2-R. This suggests that the proper arrangement of the dimer could be an important prerequisite for triggering Gs protein activation. In addition to its effect on the receptor itself, the peptide exerted some of its actions at the G protein level, because it could also inhibit guanosine 5'-O-(3-thio)triphosphate-stimulated AC activity. Taken together, the data demonstrate that a peptide mimicking V2-R third intracellular loop affects both the dimeric structural organization of the receptor and has direct inhibitory action on Gs.
Collapse
Affiliation(s)
- Sébastien Granier
- Unité INSERM U469, CCIPE, 141 rue de la Cardonille, 34094 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Fock EM, Lavrova EA, Bachteeva VT, Chernigovskaya EV, Parnova RG. Nitric oxide inhibits arginine-vasotocin-induced increase of water osmotic permeability in frog urinary bladder. Pflugers Arch 2004; 448:197-203. [PMID: 14722776 DOI: 10.1007/s00424-003-1233-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
The present study addressed the question of whether nitric oxide (NO) participates in regulation of osmotic water permeability in the urinary bladder of the frog Rana temporaria L. Experiments were carried out on isolated, paired hemi-bladders filled with amphibian Ringer solution diluted 1:10 with distilled water. Sodium nitroprusside (SNP, 125-250 micro M), an NO donor, markedly attenuated the increase of osmotic water flow elicited by arginine-vasotocin (AVT) (AVT 10(-10) M: 2.20+/-0.26; AVT plus 200 micro M SNP: 1.21+/-0.15 micro l/min cm(2), n=20, P<0.001). This effect of SNP was apparent only in the presence of 50 micro M zaprinast, an inhibitor of the cGMP-specific phosphodiesterase-5 (PDE5). In the presence of zaprinast, SNP elevated cGMP production significantly both in control and AVT-stimulated urinary bladders, but had no effect on the level of cAMP (AVT 5 x 10(-10) M: 7.6+/-0.6; AVT plus SNP 200 micro M: 7.5+/-0.4 pmol/mg protein, n=8, N.S.). 1 H-[1,2,4]-oxadiazole-[4,3-a]-quinoxalin-1-one (ODQ, 25-100 micro M), an inhibitor of soluble guanylate cyclase, enhanced the AVT-induced water flow, decreased the SNP-stimulated increase of cGMP in the bladder tissue and almost abolished the inhibitory effect of SNP on the AVT-induced hydroosmotic response. 8-( p-Chlorophenylthio)-cGMP (8-pCPT-cGMP, 25 or 50 micro M), a membrane-permeable cGMP analogue specific for cGMP-dependent protein kinase (PKG), inhibited, whereas 2 micro M KT-5823, an inhibitor of PKG, significantly stimulated the increase of water flow induced by AVT. The inhibitory effect of SNP on AVT-induced water flow was almost completely reversed by KT-5823, but not by 50-100 micro M erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), an inhibitor of cGMP-activated PDE2. Immunohistochemistry of urinary bladder slices with antibodies against different types of NO synthase (NOS) revealed a positive immunostaining for neuronal NOS (nNOS) in the mucosal epithelium. These results suggest that in the frog urinary bladder endogenous NO is involved in regulation of water osmotic permeability. NO inhibits the AVT-induced increase of water flow at least partly by activation of PKG, which interferes with the hydroosmotic effect of AVT probably at (a) post-cAMP step(s).
Collapse
Affiliation(s)
- Ekaterina M Fock
- Laboratory of Kidney Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 M. Thorez Ave., 194223, Saint Petersburg, Russia
| | | | | | | | | |
Collapse
|
42
|
Larsen EH. Hans H. Ussing--scientific work: contemporary significance and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:2-15. [PMID: 12421533 DOI: 10.1016/s0005-2736(02)00592-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a zoologist, Hans H. Ussing began his scientific career by studying the marine plankton fauna in East Greenland. This brought him in contact with August Krogh at the time George de Hevesy, Niels Bohr and Krogh planned the application of artificial radioactive isotopes for studying the dynamic state of the living organism. Following his studies of protein turnover of body tissues with deuterium-labeled amino acids, Ussing initiated a new era of studies of transport across epithelial membranes. Theoretical difficulties in the interpretation of tracer fluxes resulted in novel concepts such as exchange diffusion, unidirectional fluxes, flux-ratio equation, and solvent drag. Combining methods of biophysics with radioactive isotope technology, Ussing introduced and defined the phrases 'short-circuit current', 'active transport pathway' and 'shunt pathway', and with frog skin as experimental model, he unambiguously proved active transport of sodium ions. Conceived in his electric circuit analogue of frog skin, Ussing associated transepithelial ion fluxes with the hitherto puzzling 'bioelectric potentials'. The two-membrane hypothesis of frog skin initiated the study of epithelial transport at the cellular level and raised new questions about cellular mechanisms of actions of hormones and drugs. His theoretical treatment of osmotic water fluxes versus fluxes of deuterium labeled water resulted in the discovery of epithelial water channels. His discovery of paracellular transport in frog skin bridged studies of high and low resistance epithelia and generalized the description of epithelial transport. He devoted the last decade of his scientific life to solute-coupled water transport. He introduced the sodium recirculation theory of isotonic transport, and in an experimental study, he obtained the evidence for recirculation of sodium ions in toad small intestine. In penetrating analyses of essential aspects of epithelial membrane transport, Ussing provided insights of general applicability and powerful analytical methods for the study of intestine, kidney, respiratory epithelia, and exocrine glands-of equal importance to biology and medicine.
Collapse
Affiliation(s)
- Erik Hviid Larsen
- August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
43
|
Milde H, Weber WM, Salzet M, Clauss W. Regulation of Na(+) transport across leech skin by peptide hormones and neurotransmitters. J Exp Biol 2001; 204:1509-17. [PMID: 11273812 DOI: 10.1242/jeb.204.8.1509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An increase in intracellular cyclic AMP concentration stimulates transepithelial Na(+) transport across the skin of the leech Hirudo medicinalis, but it is unclear how cytosolic cyclic AMP levels are elevated in vivo. In search of this external stimulus, we performed Ussing chamber experiments to test several peptide hormones and neurotransmitters for their effect on Na(+) transport across leech dorsal integument. Although all the peptide hormones under investigation significantly affected ion transport across leech integument, none of them mimicked the effect of an experimental rise in intracellular cyclic AMP level. The invertebrate peptides conopressin and angiotensin II amide inhibited short-circuit-current- (I(sc)) and amiloride-sensitive Na(+) transport (I(amil)), although to slightly different degrees. The vertebrate peptide hormones 8-arginine-vasopressin and 8-lysine-vasopressin both produced an inhibition of I(amil) comparable with that caused by angiotensin II amide. However, 8-lysine-vasopressin reduced I(sc), whereas 8-arginine-vasopressin induced a moderate increase in I(sc). The neurotransmitter dopamine, which occurs in the leech central nervous system in relatively large amounts, and its precursor l-dopamine both induced large decreases in I(sc) and I(amil). However, the reactions evoked by the catecholamines showed no pronounced similarity to the effects of intracellular cyclic AMP. Two other neurotransmitters known to occur in leeches, serotonin (5-hydroxytryptamine) and gamma-n-aminobutyric acid (GABA), had no influence on transepithelial ion transport in leech skin.
Collapse
Affiliation(s)
- H Milde
- Institute for Animal Physiology, Justus-Liebig-University Giessen, Wartweg 95, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
Blocker-induced noise analysis and laser scanning confocal microscopy were used to test the idea that cAMP-mediated vesicle exocytosis/endocytosis may be a mechanism for regulation of functional epithelial Na+ channels (ENaCs) at apical membranes of A6 epithelia. After forskolin stimulation of Na+ transport and labeling apical membranes with the fluorescent dye N-(3-triethylammoniumpropyl)4-(6-4 diethylaminophenyl) hexatrienyl pyridinium dibromide (FM 4-64), ENaC densities (N(T)) decreased exponentially (time constant approximately 20 min) from mean values of 320 to 98 channels/cell within 55 min during washout of forskolin. Two populations of apical membrane-labeled vesicles appeared in the cytosol within 55 min, reaching mean values near 18 vesicles/cell, compared with five vesicles per cell in control, unstimulated tissues. The majority of cAMP-dependent endocytosed vesicles remained within a few micrometers of the apical membranes for the duration of the experiments. A minority of vesicles migrated to >5 microm below the apical membrane. Because steady states require identical rates of endocytosis and exocytosis, and because forskolin increased endocytic rates by fivefold or more, cAMP/protein kinase A acts kinetically not only to increase rates of cycling of vesicles at the apical membranes, but also principally to increase exocytic rates. These observations are consistent with and support, but do not prove, that vesicle trafficking is a mechanism for cAMP-mediated regulation of apical membrane channel densities in A6 epithelia.
Collapse
Affiliation(s)
- M B Butterworth
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | | | | |
Collapse
|
45
|
Edinger RS, Rokaw MD, Johnson JP. Vasopressin stimulates sodium transport in A6 cells via a phosphatidylinositide 3-kinase-dependent pathway. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F575-9. [PMID: 10516282 DOI: 10.1152/ajprenal.1999.277.4.f575] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzyme phosphatidylinositide 3-kinase (PI3K) phosphorylates the D-3 position of the inositol ring of inositol phospholipids and produces 3-phosphorylated inositides. These novel second messengers are thought to mediate diverse cellular signaling functions. The fungal metabolite wortmannin covalently binds to PI3K and selectively inhibits its activity. The role of PI3K in basal and hormone-stimulated transepithelial sodium transport was examined using this specific inhibitor. Wortmannin, 50 nM, did not affect basal, aldosterone-stimulated, or insulin-stimulated transport in A6 cells. Wortmannin completely inhibits vasopressin stimulation of transport in these cells. Vasopressin stimulates PI3K activity in A6 cells. Vasopressin stimulation of transport is also blocked by 5 microM LY-294002, a second inhibitor of PI3K. One-hour preincubation with wortmannin blocked vasopressin stimulation of protein kinase A activity in the cells. Sodium transport responses to exogenous cAMP and forskolin, which directly activates adenylate cyclase, were not affected by wortmannin. These results indicate that wortmannin inhibits vasopressin stimulation of Na(+) transport at a site proximal to activation of adenylate cyclase. The results suggest that PI3K may be involved in receptor activation by vasopressin.
Collapse
Affiliation(s)
- R S Edinger
- Renal-Electrolyte Division, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
46
|
Tamaoki J, Kondo M, Takeuchi S, Takemura H, Nagai A. Vasopressin stimulates ciliary motility of rabbit tracheal epithelium: role of V1b receptor-mediated Ca2+ mobilization. Am J Respir Cell Mol Biol 1998; 19:293-9. [PMID: 9698602 DOI: 10.1165/ajrcmb.19.2.3134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Arginine vasopressin (AVP) has recently been shown to exist in and to be released from airway epithelial cells, but the physiologic role of this hormone in airway epithelial function is unknown. To determine whether AVP affects ciliary motility, and if so, to elucidate the mechanism of action and the subtype of AVP receptors involved, we measured ciliary beat frequency (CBF) and the intracellular Ca2+ concentration ([Ca2+]i) of cultured rabbit tracheal epithelium with a photoelectric method and the fura-2 fluorescence method, respectively. Addition of AVP caused a rapid increase in CBF, followed by a decline and a subsequent sustained response. The ciliary stimulatory action was dose dependent, the maximal peak increase from the baseline CBF being 20.6 +/- 4.7% (mean +/- SE, P < 0.001), and this effect was reduced to 5.9 +/- 2. 0% by the V1 receptor antagonist OPC-21268 (P < 0.01), but not by the V2 receptor antagonist OPC-31260. The AVP-induced increase in CBF was not altered by the protein kinase A (PKA) inhibitor Rp-adenosine-3',5'-cyclic monophosphorothioate triethylamine (Rp-cAMPS) or by Ca2+-free solution containing ethylene glycol-bis-(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), but was abolished by pretreatment with thapsigargin. Exposure of cells to AVP elicited a transient increase in [Ca2+]i, an effect that was likewise abolished by thapsigargin. The rank-order potency of AVP analogues to increase [Ca2+]i was AVP = [deamino1, D-3-(pyridyl) Ala2-Arg8] vasopressin (DP-VP), a specific V1b receptor agonist > [Phe2, Ile3, Orn8] vasopressin (PO-VT), a V1a agonist > 1-desamino-8-D-arginine vasopressin (dDAVP), a V2 agonist. Moreover, OPC-21268 greatly attenuated the action of AVP, whereas OPC-31260 was without effect. These results suggest that AVP stimulates ciliary motility of rabbit tracheal epithelium through mobilization of Ca2+ from thapsigargin-sensitive stores, and that this effect may be mediated by V1b receptors.
Collapse
Affiliation(s)
- J Tamaoki
- First Department of Medicine, Tokyo Women's Medical College, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Uchiyama M, Takeuchi T, Matsuda K. Effects of homologous natriuretic peptides in isolated skin of the bullfrog, Rana catesbeiana. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 120:37-42. [PMID: 9827014 DOI: 10.1016/s0742-8413(98)00003-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The effects of frog atrial (fANP), brain (fBNP) and C-type natriuretic peptide (fCNP) on transepithelial ion transport were investigated in the bullfrog, Rana catesbeiana. The transepithelial potential difference (PD) and short-circuit current (Isc) of the abdominal skin were measured according to the technique of Ussing and Zerahn. When the abdominal skin was exposed to homologous natriuretic peptides (NPs) at concentrations ranging from 4 x 10(-13) to 5 x 10(-7) M, no significant changes in PD or Isc were observed. The influence of the NPs on the arginine vasotocin (AVT)-induced increase in Isc was then examined. Treatments with ANP and BNP (4 x 10(-9)-4 x 10(-8) M) inhibited the increase in the AVT (10(-8) M)-induced Isc. Furthermore, fCNP I and fCNP II (5 x 10(-13)-5 x 10(-7) M) did not significantly inhibit the increase in the AVT-induced Isc. The cyclic GMP analog, 8-BrcGMP, (> 10(-4) M) with AVT inhibited the increase of AVT-induced ISc, as well as fANP and fBNP. HS-142-1, an inhibitor of particulate guanylyl cyclase, (10(-5) g ml-1) significantly reduced the inhibitory action of fANP on the increase of AVT-induced Isc. These results suggest that fANP and fBNP act through the guanylyl cyclase systems to increase cellular cGMP and modulate AVT-induced epithelial transport in a concentration-dependent manner. It is also suggested that fCNPs have no effect on the natriferic response in the skin of the bullfrog.
Collapse
Affiliation(s)
- M Uchiyama
- Department of Biology, Faculty of Science, Toyama University, Japan.
| | | | | |
Collapse
|
48
|
Abstract
To characterize the vasopressin-adenylate cyclase (AC) signaling pathway in control of Na+ reabsorption in cultured renal (A6) cells, we determined the distribution of AC with a cytochemical technique using 5'-adenylylimidodiphosphate as substrate and cerium chloride as capturing agent. The addition of forskolin to the medium to stimulate AC activity increased the production of reaction deposits at the enzyme sites. To ensure that the cells were close to their physiological states, cytochemical reactions were performed on unfixed tissues. Subsequent postfixation adequately preserved the morphological features of the cells. AC was mainly restricted to the lateral folds of the cells while the apical membranes were devoid of any deposits. This result provided evidence that the V2-AC pathway is not present in the apical membrane and, hence, any vasopressin action on apical Na+ channels from the luminal side of the cell must involve other signaling pathways. The cytochemical results provided further morphological evidence of the functional coupling between the basolateral and apical membranes of renal cells. We examined the idea that highly variable basal rates of Na+ transport in young differentiating cell cultures may be related to the degree of AC activity. Cytochemical results apparently revealed highly variable amounts of deposits in these cells, but by quantitative analysis of AC activity we could find no significant differences between cells of 6, 14, and 21 days.
Collapse
Affiliation(s)
- W J Els
- Department of Anatomy and Cell Biology, University of Cape Town Medical School, Observatory, South Africa.
| | | |
Collapse
|
49
|
|
50
|
Parnova RG, Schakhmatova EI, Plesneva SA, Getmanova EV, Korolev EV, Komissarchik YY, Natochin YV. Role of prostaglandin E2 in regulation of low and high water osmotic permeability in frog urinary bladder. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1356:160-70. [PMID: 9150274 DOI: 10.1016/s0167-4889(96)00175-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The water osmotic permeability of frog urinary bladder was found to be increased from 0.08 +/- 0.01 to 1.28 +/- 0.20 microl/min cm2 when serosal bathing medium was changed 4 times for a fresh Ringer solution. High epithelium permeability is accompanied by an increased content of cyclic AMP in the bladder tissue (by 42%, P < 0.01), higher activity of both basal and forskolin-stimulated membrane adenylate cyclase (AC) (by 109% and 74%, respectively, P < 0.05) and by appearance of aggregates of intramembranous particles in the apical membrane. The water flow was inhibited by 10(-9)-10(-5) M prostaglandin E2 (PGE2); the inhibitory effect was eliminated in the presence of 10(-4) M N-ethylmaleimide. The increase of water permeability due to changes of the bathing medium was accompanied by a decrease of serosal PGE2 concentration from 14.8 +/- 1.0 in the 1st solution to 0.6 +/- 0.1 nM in the 5th. 10(-6) M PGE2 in vitro inhibited the activity of membrane AC from highly permeable bladders by 33.4% (P < 0.02). Pretreatment of the membranes with 10 microg/ml pertussis toxin (PT) completely reversed this effect (+149%, P < 0.01). A significant activation of AC was also observed under 10(-10) M PGE2 (by 196%). These data demonstrate that the water permeability could be markedly increased independently of ADH, suggesting that the trigger role in activation of water transport is played by a decreased level of PGE2 which could stimulate AC.
Collapse
Affiliation(s)
- R G Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|