1
|
Naor S, Adam E, Schiby G, Gratzinger D. A personalized approach to lymphoproliferations in patients with inborn errors of immunity. Semin Diagn Pathol 2023; 40:408-419. [PMID: 37479638 DOI: 10.1053/j.semdp.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Biopsies from patients with inborn error of immunity (IEI) may pose a diagnostic challenge due to the abnormal anatomy of their lymphoid organs and the tendency for the development of lymphoproliferations in various organs, some of which may lead to the wrong impression of malignant lymphoma which may prompt aggressive unnecessary treatment. In this article we will review typical histologic findings in various IEI's described in the literature and discuss the appropriate approach to the diagnosis of lymphoproliferations in these patients by presenting illustrative cases.
Collapse
Affiliation(s)
- Shachar Naor
- Institute of Pathology, Sheba Medical Center, Ramat Gan, Israel.
| | - Etai Adam
- Division of Pediatric Hematology and Oncology, Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Ginette Schiby
- Institute of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Dita Gratzinger
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Crater JM, Dunn DC, Nixon DF, Furler O’Brien RL. A History and Atlas of the Human CD4 + T Helper Cell. Biomedicines 2023; 11:2608. [PMID: 37892982 PMCID: PMC10604283 DOI: 10.3390/biomedicines11102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
CD4+ T cells have orchestrated and regulated immunity since the introduction of jawed vertebrates, yet our understanding of CD4+ T cell evolution, development, and cellular physiology has only begun to be unearthed in the past few decades. Discoveries of genetic diseases that ablate this cellular population have provided insight into their critical functions while transcriptomics, proteomics, and high-resolution microscopy have recently revealed new insights into CD4+ T cell anatomy and physiology. This article compiles historical, microscopic, and multi-omics data that can be used as a reference atlas and index to dissect cellular physiology within these influential cells and further understand pathologies like HIV infection that inflict human CD4+ T cells.
Collapse
Affiliation(s)
| | | | | | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY 10021, USA
| |
Collapse
|
3
|
Peng Y, Chen Y, Wang Y, Wang W, Qiao S, Lan J, Wang M. Dysbiosis and primary B-cell immunodeficiencies: current knowledge and future perspective. Immunol Res 2023; 71:528-536. [PMID: 36933165 DOI: 10.1007/s12026-023-09365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023]
Abstract
According to Elie Metchnikoff, an originator of modern immunology, several pivotal functions for disease and health are provided by indigenous microbiota. Nonetheless, important mechanistic insights have been elucidated more recently, owing to the growing availability of DNA sequencing technology. There are 10 to 100 trillion symbiotic microbes (such as viruses, bacteria, and yeast) in each human gut microbiota. Both locally and systemically, the gut microbiota has been demonstrated to impact immune homeostasis. Primary B-cell immunodeficiencies (PBIDs) are a group of primary immunodeficiency diseases (PIDs) referring to the dysregulated antibody production due to either intrinsic genetic defects or failures in functions of B cells. Recent studies have found that PBIDs cause disruptions in the gut's typical homeostatic systems, resulting in inadequate immune surveillance in the gastrointestinal (GI) tract, which is linked to increased dysbiosis, which is characterized by a disruption in the microbial homeostasis. This study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the crosstalk between the gut microbiome and PBID, the factors shaping the gut microbiota in PBID, as well as the potential clinical approaches for restoring a normal microbial community.
Collapse
Affiliation(s)
- Ye Peng
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Wensong Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Sai Qiao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Jianping Lan
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| | - Manling Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| |
Collapse
|
4
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
5
|
Jardine L, Schim van der Loeff I, Haq IJ, Sproat TDR. Gestational Development of the Human Immune System. Immunol Allergy Clin North Am 2023; 43:1-15. [PMID: 36410996 DOI: 10.1016/j.iac.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Building an immune system is a monumental task critical to the survival of the fetus and newborn. A functional fetal immune system must complement the maternal immune system in handling in utero infection; abstain from damaging non-self-reactions that would compromise the materno-fetal interface; mobilize in response to infection and equip mucosal tissues for pathogen exposure at birth. There is growing appreciation that immune cells also have noncanonical roles in development and specifically may contribute to tissue morphogenesis. In this review we detail how hematopoietic and lymphoid organs jointly establish cellular constituents of the immune system; how these constituents are organized in 2 mucosal sites-gut and lung-where early life immune function has long-term consequences for health; and how exemplar diseases of prematurity and inborn errors of immunity reveal dominant pathways in prenatal immunity.
Collapse
Affiliation(s)
- Laura Jardine
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom; Haematology Department, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Iram J Haq
- Translational and Clinical Research Institute, Newcastle University, Faculty of Medical Sciences, Newcastle Upon Tyne NE2 4HH, United Kingdom; Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Thomas D R Sproat
- Neonatal Unit, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Richardson Road, Newcastle Upon Tyne NE1 4LP, United Kingdom
| |
Collapse
|
6
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
7
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
8
|
Tahiat A, Yagoubi A, Ladj MS, Belbouab R, Aggoune S, Atek L, Bouziane D, Melzi S, Boubidi C, Drali W, Bendahmane C, Iguerguesdaoune H, Taguemount S, Soufane A, Oukil A, Ketfi A, Messaoudi H, Boukhenfouf N, Ifri MA, Bencharif Madani T, Belhadj H, Benhala KN, Khiari M, Cherif N, Smati L, Arada Z, Zeroual Z, Bouzerar Z, Ibsaine O, Maouche H, Boukari R, Djenouhat K. Diagnostic and Predictive Contribution of Autoantibodies Screening in a Large Series of Patients With Primary Immunodeficiencies. Front Immunol 2021; 12:665322. [PMID: 33868317 PMCID: PMC8047634 DOI: 10.3389/fimmu.2021.665322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the diagnostic and predictive contribution of autoantibodies screening in patients with primary immunodeficiencies (PIDs). Methods In the present study, PID patients and healthy controls have been screened for 54 different autoantibodies. The results of autoantibodies screening in PID patients were correlated to the presence of autoimmune diseases. Results A total of 299 PID patients were included in this study with a predominance of antibody deficiencies (27.8%) followed by immunodeficiencies affecting cellular and humoral immunity (26.1%) and complement deficiencies (22.7%). Autoimmune manifestations were present in 82 (27.4%) patients. Autoimmune cytopenia (10.4%) was the most common autoimmune disease followed by gastrointestinal disorders (10.0%), rheumatologic diseases (3.7%), and endocrine disorders (3.3%). Autoantibodies were found in 32.4% of PID patients and 15.8% of healthy controls (P < 0.0005). Anti-nuclear antibodies (ANA) (10.0%), transglutaminase antibody (TGA) (8.4%), RBC antibodies (6.7%), anti-smooth muscle antibody (ASMA) (5.4%), and ASCA (5.0%) were the most common autoantibodies in our series. Sixty-seven out of the 82 patients with autoimmune manifestations (81.7%) were positive for one or more autoantibodies. Eleven out of the 14 patients (78.6%) with immune thrombocytopenia had positive platelet-bound IgM. The frequencies of ASCA and ANCA among patients with IBD were 47.4% and 21.0% respectively. All patients with celiac disease had TGA-IgA, while six out of the 11 patients with rheumatologic diseases had ANA (54.5%). Almost one third of patients (30/97) with positive autoantibodies had no autoimmune manifestations. ANA, rheumatoid factor, ASMA, anti-phospholipid antibodies and ANCA were often detected while specific AID was absent. Despite the low positive predictive value of TGA-IgA and ASCA for celiac disease and inflammatory bowel disease respectively, screening for these antibodies identified undiagnosed disease in four patients with positive TGA-IgA and two others with positive ASCA. Conclusion The present study provides valuable information about the frequency and the diagnostic/predictive value of a large panel of autoantibodies in PIDs. Given the frequent association of some AIDs with certain PIDs, screening for corresponding autoantibodies would be recommended. However, positivity for autoantibodies should be interpreted with caution in patients with PIDs due to their low positive predictive value.
Collapse
Affiliation(s)
- Azzeddine Tahiat
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Abdelghani Yagoubi
- Pediatric Gastroenterology, Centre Algérois de Pédiatrie, Algiers, Algeria
| | - Mohamed Samir Ladj
- Department of Pediatrics, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Reda Belbouab
- Department of Pediatrics, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Samira Aggoune
- Department of Pediatrics, El-Harrach Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Laziz Atek
- Department of Pediatrics, El-Harrach Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Djamila Bouziane
- Department of Pediatrics, Ain Taya Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Souhila Melzi
- Department of Pediatrics, Bab El-Oued University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Chahinez Boubidi
- Department of Pediatrics A, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Warda Drali
- Department of Pediatrics B, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | | | - Hamza Iguerguesdaoune
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Sihem Taguemount
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Asma Soufane
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Asma Oukil
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Abdalbasset Ketfi
- Department of Pneumology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Hassen Messaoudi
- Department of Internal Medicine, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | | | | | | | - Hayet Belhadj
- Department of Pediatrics, Central Hospital of the Army, Algiers, Algeria
| | - Keltoum Nafissa Benhala
- Department of Pediatrics A, Beni Messous University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Mokhtar Khiari
- Department of Pediatrics A, Beni Messous University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Nacera Cherif
- Department of Pediatrics B, Beni Messous University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Leila Smati
- Department of Pediatrics, Bologhine Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Zakia Arada
- Department of Pediatrics B, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Zoulikha Zeroual
- Department of Pediatrics A, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Zair Bouzerar
- Department of Pediatrics, Bab El-Oued University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Ouardia Ibsaine
- Department of Pediatrics, Ain Taya Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Hachemi Maouche
- Department of Pediatrics, El-Harrach Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Rachida Boukari
- Department of Pediatrics, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Kamel Djenouhat
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
9
|
Lehman H, Gordon C. The Skin as a Window into Primary Immune Deficiency Diseases: Atopic Dermatitis and Chronic Mucocutaneous Candidiasis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:788-798. [PMID: 30832893 DOI: 10.1016/j.jaip.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Primary immune deficiency diseases characteristically present with recurrent, severe, or unusual infections. These infections may often involve the skin, with mucocutaneous candidal infections seen in a variety of different primary immune deficiencies. Primary immune deficiencies may also present with noninfectious cutaneous complications, of which eczema is the most common. In a patient with suspected primary immune deficiency, the presence of eczema or candidal skin infections offers critical information about the underlying immune defect, either the presence of atopy or defect in the TH17 pathway, respectively. These skin manifestations also are often early or heralding findings of the underlying immunologic disease. Therefore, awareness of associations between these skin findings and specific immune deficiencies may aide in the early detection and treatment of serious or life-threatening immunologic defects. This review specifically will focus on the primary immune deficiencies commonly associated with eczema or mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY.
| | - Christopher Gordon
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
10
|
Kalina T, Bakardjieva M, Blom M, Perez-Andres M, Barendregt B, Kanderová V, Bonroy C, Philippé J, Blanco E, Pico-Knijnenburg I, Paping JHMP, Wolska-Kuśnierz B, Pac M, Tkazcyk J, Haerynck F, Akar HH, Formánková R, Freiberger T, Svatoň M, Šedivá A, Arriba-Méndez S, Orfao A, van Dongen JJM, van der Burg M. EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children. Front Immunol 2020; 11:371. [PMID: 32265901 PMCID: PMC7096355 DOI: 10.3389/fimmu.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of patients with suspicion of primary immunodeficiency (PID). In this technical report we evaluate the performance of the SCID-RTE tube that explores the presence of recent thymic emigrants (RTE) together with T-cell activation status and maturation stages and discuss its applicability in the context of the broader EuroFlow PID flow cytometry testing algorithm for diagnostic orientation of PID of the lymphoid system. We have analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of age with a genetically defined primary immunodeficiency disorder: 15 severe combined immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n = 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1), FOXP3 (n = 1), del22q11.2 (DiGeorge n = 4), CDC42 (n = 1) and FAS (n = 1)]. In addition, 44 healthy controls in the same age group were analyzed using the SCID-RTE tube in four EuroFlow laboratories using a standardized 8-color approach. RTE were defined as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified patients with PID by low levels or absence of RTE in comparison to controls as well as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded 100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for Omenn syndrome. Another dominant finding was the increased numbers of activated CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE tube together with the previously published PIDOT tube form a sensitive and complete cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID) as well as for children identified via newborn screening programs for SCID with low or absent T-cell receptor excision circles (TRECs).
Collapse
Affiliation(s)
- Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Maartje Blom
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Perez-Andres
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Barbara Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veronika Kanderová
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elena Blanco
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jitse H M P Paping
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jakub Tkazcyk
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Filomeen Haerynck
- PID Research Lab, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Ghent, Belgium
| | - Himmet Haluk Akar
- Department of Pediatric Immunology and Allergy, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul Health Sciences University, Istanbul, Turkey
| | - Renata Formánková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia
| | - Michael Svatoň
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
| | - Sonia Arriba-Méndez
- Servicio de Pediatría, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
11
|
Bulkhi AA, Dasso JF, Schuetz C, Walter JE. Approaches to patients with variants in RAG genes: from diagnosis to timely treatment. Expert Rev Clin Immunol 2019; 15:1033-1046. [PMID: 31535575 DOI: 10.1080/1744666x.2020.1670060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Patients with primary immunodeficiency secondary to abnormal recombinase activating genes (RAG) can present with broad clinical phenotypes ranging from early severe infections to autoimmune complications and inflammation. Immunological phenotype may also vary from T-B- severe combined immunodeficiency to combined immunodeficiency or antibody deficiencies with near-normal T and B cell counts and even preserved specific antibody response to pathogens. It is not uncommon that RAG variants of uncertain significance are identified by serendipity during a broad genetic screening process and pathogenic RAG variants are increasingly recognized among all age groups, including adults. Establishing the pathogenicity and clinical relevance of novel RAG variants can be challenging since RAG genes are highly polymorphic. This review paper aims to summarize clinical phenotypes of RAG deficiencies and provide practical guidance for confirming the direct link between specific RAG variants and clinical disease. Lastly, we will review the current understanding of treatment option for patients with varying severity of RAG deficiencies. Area covered: This review discusses the different phenotypes and immunological aspects of RAG deficiencies, the diagnosis dilemma facing clinicians, and an overview of current and advancement in treatments. Expert opinion: A careful analysis of immunological and clinical data and their correlation with genetic findings helps to determine the significance of the genetic polymorphism. Advances in functional assays, as well as anti-cytokine antibodies, make it easier to resolve the diagnostic dilemma.
Collapse
Affiliation(s)
- Adeeb A Bulkhi
- Department of Internal Medicine, College of Medicine, Umm Al-Qura University , Makkah , Saudi Arabia.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Joseph F Dasso
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,Division of Allergy and Immunology, Massachusetts General Hospital for Children , Boston , MA , USA
| |
Collapse
|
12
|
Abstract
While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.
Collapse
|
13
|
Shi M, Jevremovic D, Otteson GE, Timm MM, Olteanu H, Horna P. Single Antibody Detection of T-Cell Receptor αβ Clonality by Flow Cytometry Rapidly Identifies Mature T-Cell Neoplasms and Monotypic Small CD8-Positive Subsets of Uncertain Significance. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:99-107. [PMID: 30972977 DOI: 10.1002/cyto.b.21782] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The diagnosis of T-cell neoplasms is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. The description of an antibody specific for one of two mutually exclusive T-cell receptor (TCR) β-chain constant regions (TRBC1) provide an opportunity to facilitate the detection of clonal TCRαβ T-cells based on TRBC-restriction. METHODS Twenty patients with mature T-cell neoplasms and 44 patients without evidence of T-cell neoplasia were studied. Peripheral blood (51), bone marrow (10), and lymph node (3) specimens were evaluated by 9-color flow cytometry including TRBC1 (CD2/CD3/CD4/CD5/CD7/CD8/CD45/TCRγδ/TRBC1 and/or CD2/CD3/CD4/CD5/CD7/CD8/CD26/CD45/TRBC1). Monophasic TRBC1 expression on any immunophenotypically distinct CD4-positive or CD8-positive/TCRγδ-negative T-cell subset was considered indicative of clonality. RESULTS Monophasic (clonal) TRBC1 expression was identified on immunophenotypically abnormal T-cells from all 20 patients with T-cell malignancies (100% sensitivity), including 17 cases with either >97% or <3% TRBC1-positive events, and three cases with monophasic homogenous TRBC1-dim expression. All immunophenotypically distinct CD4-positive and CD8-positive/TCRγδ-negative T-cell subsets from 44 patients without T-cell malignancies showed the expected mixture of TRBC1-positive and TRBC-1-negative subpopulations (non-clonal), except for seven patients (16%) with very small CD8-positive T-cell subsets exhibiting a monophasic (clonal) pattern. CONCLUSION Inclusion of a single anti-TRBC1 antibody into a diagnostic T-cell flow cytometry panel facilitates the rapid identification of T-cell neoplasms, in addition to small monotypic CD8-positive subsets of uncertain significance. © 2019 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael M Timm
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Abstract
Recombination-activating genes (
RAG)
1 and
RAG2 initiate the molecular processes that lead to lymphocyte receptor formation through VDJ recombination. Nonsense mutations in
RAG1/
RAG2 cause the most profound immunodeficiency syndrome, severe combined immunodeficiency (SCID). Other severe and less-severe clinical phenotypes due to mutations in
RAG genes are now recognized. The degree of residual protein function may permit some lymphocyte receptor formation, which confers a less-severe clinical phenotype. Many of the non-SCID phenotypes are associated with autoimmunity. New findings into the effect of mutations in
RAG1/2 on the developing T- and B-lymphocyte receptor give insight into the development of autoimmunity. This article summarizes recent findings and places the genetic and molecular findings in a clinical context.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
The microbiome and immunodeficiencies: Lessons from rare diseases. J Autoimmun 2019; 98:132-148. [PMID: 30704941 DOI: 10.1016/j.jaut.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders of the immune system, associated with a considerable increase in susceptibility to infections. PIDs can also predispose to malignancy, inflammation and autoimmunity. There is increasing awareness that some aspects of the immune dysregulation in PIDs may be linked to intestinal microbiota. Indeed, the gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both locally and systemically. Recent studies have indicated that genetic defects causing PIDs lead to perturbations in the conventional mechanisms underlying homeostasis in the gut, resulting in poor immune surveillance at the intestinal barrier, which associates with altered intestinal permeability and bacterial translocation. Consistently, a substantial proportion of PID patients presents with clinically challenging IBD-like pathology. Here, we describe the current body of literature reporting on dysbiosis of the gut microbiota in different PIDs and how this can be either the result or cause of immune dysregulation. Further, we report how infections in PIDs enhance pathobionts colonization and speculate how, in turn, pathobionts may be responsible for increased disease susceptibility and secondary infections in these patients. The potential relationship between the microbial composition in the intestine and other sites, such as the oral cavity and skin, is also highlighted. Finally, we provide evidence, in preclinical models of PIDs, for the efficacy of microbiota manipulation to ameliorate disease complications, and suggest that the potential use of dietary intervention to correct dysbiotic flora in PID patients may hold promise.
Collapse
|
16
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Delmonte OM, Schuetz C, Notarangelo LD. RAG Deficiency: Two Genes, Many Diseases. J Clin Immunol 2018; 38:646-655. [PMID: 30046960 PMCID: PMC6643099 DOI: 10.1007/s10875-018-0537-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To review the clinical and laboratory spectrum of RAG gene defects in humans, and discuss the mechanisms underlying phenotypic heterogeneity, the basis of immune dysregulation, and the current and perspective treatment modalities. METHODS Literature review and analysis of medical records RESULTS: RAG gene defects in humans are associated with a surprisingly broad spectrum of clinical and immunological phenotypes. Correlation between in vitro recombination activity of the mutant RAG proteins and the clinical phenotype has been observed. Altered T and B cell development in this disease is associated with defects of immune tolerance. Hematopoietic cell transplantation is the treatment of choice for the most severe forms of the disease, but a high rate of graft failure has been observed. CONCLUSIONS Phenotypic heterogeneity of RAG gene defects in humans may represent a diagnostic challenge. There is a need to improve treatment for severe, early-onset forms of the disease. Optimal treatment modalities for patients with delayed-onset disease presenting with autoimmunity and/or inflammation remain to be defined.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Gennery AR. Advances in genetic and molecular understanding of Omenn syndrome - implications for the future. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1478287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Andrew R Gennery
- Clinical Resource Building, Floor 4, Block 2, Great North Children’s Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
19
|
Wang HW, Raffeld M. Molecular assessment of clonality in lymphoid neoplasms. Semin Hematol 2018; 56:37-45. [PMID: 30573043 DOI: 10.1053/j.seminhematol.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023]
Abstract
Molecular clonality assays in B- and T-cell lymphoproliferative disorders often provide critical information in establishing a diagnosis of a lymphoproliferative disorder. These assays rely on the unique genetic structures that serve as assay targets, created in the process of generating immunoglobulin and T-cell receptors during B- and T-cell development. Molecular clonality assays are generally used when flow cytometry or immunohistochemistry has not sufficiently clarified the benign or malignant nature of a lymphoid proliferation. Additionally, since molecular clonality assays are tumor specific, they allow the clinician to distinguish recurrences from second tumors, and have the sensitivity to monitor minimal residual disease. In this review, we discuss the principles underlying these tests, the current approaches to clonality testing, some of the pitfalls in their interpretation, and the future applications of next generation sequencing technology to clonality testing.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Raffeld
- Molecular Diagnostics Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
20
|
Abstract
Hypomorphic Rag mutations in humans cause Omenn Syndrome (OS) a severe immunodeficiency associated with autoimmune-like manifestations mediated by oligoclonal activated T and B cells. The clinical and immunological spectrum of OS presentation is extremely broad. However, the role played by environmental triggers in the disease pathogenesis remains largely unknown. We have recently shown in a murine model that gut microbiota has a substantial role in determining the distinctive immune dysregulation of OS. Here, we describe how dysbiosis and loss of T cell tolerance to commensals influence the expression of autoimmunity at the barrier site and beyond, and the disease hallmark hyper-IgE. We discuss how commensal antigens and gut-derived pathogenic T cells could potentially modulate skin immunity to determine cutaneous degenerations in OS. These mechanisms may have broader implications for a deeper understanding of the role of gut microbes in influencing barriers integrity and host physiology.
Collapse
Affiliation(s)
- Rosita Rigoni
- Milan Unit, Istituto di Ricerca Genetica e
Biomedica, Consiglio Nazionale delle Ricerche, Milan,
Italy,Humanitas Clinical and Research
Center, Rozzano, Milan, Italy
| | - Fabio Grassi
- Istituto Nazionale Genetica Molecolare,
Department of Medical Biotechnology and Translational Medicine, University of
Milan, Milan, Italy,Institute for Research in
Biomedicine, Bellinzona, Switzerland
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e
Biomedica, Consiglio Nazionale delle Ricerche, Milan,
Italy,Telethon Institute for Gene Therapy, Division
of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a
Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan,
Italy
| | - Barbara Cassani
- Milan Unit, Istituto di Ricerca Genetica e
Biomedica, Consiglio Nazionale delle Ricerche, Milan,
Italy,Humanitas Clinical and Research
Center, Rozzano, Milan, Italy,CONTACT Barbara Cassani Humanitas Clinical and Research Center, via Manzoni
56, 20089 Rozzano (Mi), Italy
| |
Collapse
|
21
|
Abstract
Severe combined immunodeficiency disorders represent pediatric emergencies due to absence of adaptive immune responses to infections. The conditions result from either intrinsic defects in T-cell development (ie, severe combined immunodeficiency disease [SCID]) or congenital athymia (eg, complete DiGeorge anomaly). Hematopoietic stem cell transplant provides the only clinically approved cure for SCID, although gene therapy research trials are showing significant promise. For greatest survival, patients should undergo transplant before 3.5 months of age and before the onset of infections. Newborn screening programs have yielded successful early identification and treatment of infants with SCID and congenital athymia in the United States.
Collapse
|
22
|
Abstract
The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate the V(D)J recombination process, which ultimately enables the generation of T cells and B cells with a diversified repertoire of antigen-specific receptors. Mutations of the RAG genes in humans are associated with a broad spectrum of clinical phenotypes, ranging from severe combined immunodeficiency to autoimmunity. Recently, novel insights into the phenotypic diversity of this disease have been provided by resolving the crystal structure of the RAG complex, by developing novel assays to test recombination activity of the mutant RAG proteins and by characterizing the molecular and cellular basis of immune dysregulation in patients with RAG deficiency.
Collapse
|
23
|
Björkman A, Du L, Felgentreff K, Rosner C, Pankaj Kamdar R, Kokaraki G, Matsumoto Y, Davies EG, van der Burg M, Notarangelo LD, Hammarström L, Pan-Hammarström Q. DNA-PKcs Is Involved in Ig Class Switch Recombination in Human B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:5608-15. [DOI: 10.4049/jimmunol.1501633] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 01/03/2023]
|
24
|
Omenn syndrome associated with a functional reversion due to a somatic second-site mutation in CARD11 deficiency. Blood 2015; 126:1658-69. [PMID: 26289640 DOI: 10.1182/blood-2015-03-631374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023] Open
Abstract
Omenn syndrome (OS) is a severe immunodeficiency associated with erythroderma, lymphoproliferation, elevated IgE, and hyperactive oligoclonal T cells. A restricted T-cell repertoire caused by defective thymic T-cell development and selection, lymphopenia with homeostatic proliferation, and lack of regulatory T cells are considered key factors in OS pathogenesis. We report 2 siblings presenting with cytomegalovirus (CMV) and Pneumocystis jirovecii infections and recurrent sepsis; one developed all clinical features of OS. Both carried homozygous germline mutations in CARD11 (p.Cys150*), impairing NF-κB signaling and IL-2 production. A somatic second-site mutation reverting the stop codon to a missense mutation (p.Cys150Leu) was detected in tissue-infiltrating T cells of the OS patient. Expression of p.Cys150Leu in CARD11-deficient T cells largely reconstituted NF-κB signaling. The reversion likely occurred in a prethymic T-cell precursor, leading to a chimeric T-cell repertoire. We speculate that in our patient the functional advantage of the revertant T cells in the context of persistent CMV infection, combined with lack of regulatory T cells, may have been sufficient to favor OS. This first observation of OS in a patient with a T-cell activation defect suggests that severely defective T-cell development or homeostatic proliferation in a lymphopenic environment are not required for this severe immunopathology.
Collapse
|
25
|
Abstract
INTRODUCTION OR BACKGROUND The V(D)J recombination is a DNA rearrangement process that generates the diversity of T and B lymphocyte immune repertoire. It proceeds through the generation of a DNA double-strand break (DNA-DSB) by the Rag1/2 lymphoid-specific factors, which is repaired by the non-homologous end joining (NHEJ) DNA repair pathway. V(D)J recombination also constitutes a checkpoint in the lymphoid development. SOURCES OF DATA V(D)J recombination defect results in severe combined immune deficiency (SCID) with a lack of T and B lymphocytes. AREAS OF AGREEMENT The V(D)J recombination represents one of the few programmed molecular events leading to DNA-DSBs that strictly relies on NHEJ. Two NHEJ factors, Artemis and XLF/Cernunnos, were identified through the molecular studies of SCID patients. Mutations in PRKDC and DNA Ligase IV genes also result in SCID. GROWING POINTS Studies in mice have demonstrated that XLF/Cernunnos is dispensable for V(D)J recombination in lymphoid cells but not for the repair of genotoxic-induced DNA-DSBs, which raises the question of the implication of Rag1/2 factors in the DNA repair phase of V(D)J recombination. AREAS TIMELY FOR DEVELOPING RESEARCH New factors of NHEJ, such as PAXX, are being identified. Patients with NHEJ deficiency (XRCC4) without immune deficiency were recently reported. We, therefore, may not have yet the complete picture of DNA-DSB repair in the context of V(D)J recombination.
Collapse
Affiliation(s)
- Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| |
Collapse
|
26
|
Mathieu AL, Verronese E, Rice GI, Fouyssac F, Bertrand Y, Picard C, Chansel M, Walter JE, Notarangelo LD, Butte MJ, Nadeau KC, Csomos K, Chen DJ, Chen K, Delgado A, Rigal C, Bardin C, Schuetz C, Moshous D, Reumaux H, Plenat F, Phan A, Zabot MT, Balme B, Viel S, Bienvenu J, Cochat P, van der Burg M, Caux C, Kemp EH, Rouvet I, Malcus C, Méritet JF, Lim A, Crow YJ, Fabien N, Ménétrier-Caux C, De Villartay JP, Walzer T, Belot A. PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator-dependent autoimmunity. J Allergy Clin Immunol 2015; 135:1578-88.e5. [PMID: 25842288 PMCID: PMC4487867 DOI: 10.1016/j.jaci.2015.01.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 12/28/2014] [Accepted: 01/06/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND PRKDC encodes for DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a kinase that forms part of a complex (DNA-dependent protein kinase [DNA-PK]) crucial for DNA double-strand break repair and V(D)J recombination. In mice DNA-PK also interacts with the transcription factor autoimmune regulator (AIRE) to promote central T-cell tolerance. OBJECTIVE We sought to understand the causes of an inflammatory disease with granuloma and autoimmunity associated with decreasing T- and B-cell counts over time that had been diagnosed in 2 unrelated patients. METHODS Genetic, molecular, and functional analyses were performed to characterize an inflammatory disease evocative of a combined immunodeficiency. RESULTS We identified PRKDC mutations in both patients. These patients exhibited a defect in DNA double-strand break repair and V(D)J recombination. Whole-blood mRNA analysis revealed a strong interferon signature. On activation, memory T cells displayed a skewed cytokine response typical of TH2 and TH1 but not TH17. Moreover, mutated DNA-PKcs did not promote AIRE-dependent transcription of peripheral tissue antigens in vitro. The latter defect correlated in vivo with production of anti-calcium-sensing receptor autoantibodies, which are typically found in AIRE-deficient patients. In addition, 9 months after bone marrow transplantation, patient 1 had Hashimoto thyroiditis, suggesting that organ-specific autoimmunity might be linked to nonhematopoietic cells, such as AIRE-expressing thymic epithelial cells. CONCLUSION Deficiency of DNA-PKcs, a key AIRE partner, can present as an inflammatory disease with organ-specific autoimmunity, suggesting a role for DNA-PKcs in regulating autoimmune responses and maintaining AIRE-dependent tolerance in human subjects.
Collapse
Affiliation(s)
- Anne-Laure Mathieu
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France
| | - Estelle Verronese
- Université de Lyon, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Plateforme d'Innovation en Immuno-monitoring et Immunothérapie, Centre Léon Bérard, and in the framework of the LABEX DevWeCan (ANR-10-LABX-0061) of University de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), Lyon, France
| | - Gillian I Rice
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Centre, Manchester, United Kingdom
| | - Fanny Fouyssac
- Pediatric Haematology and Oncology Department, Children Hospital-CHU NANCY Vandoeuvre les Nancy, Nancy, France
| | - Yves Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique (Hospices Civils de Lyon), Université Claude Bernard Lyon I, Lyon, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Sorbonne Paris Cité, Paris Descartes University, Imagine Institute, Paris Descartes University, Paris, France
| | - Marie Chansel
- INSERM UMR 1163, Laboratoire Dynamique du Génome et Système Immunitaire Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jolan E Walter
- Pediatric Allergy & Immunology and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, Calif
| | - Kari Christine Nadeau
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, Calif
| | - Krisztian Csomos
- Pediatric Allergy & Immunology and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - David J Chen
- Division of Molecular Radiation Biology Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Karin Chen
- Department of Pediatrics, Division of Allergy, Immunology & Rheumatology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ana Delgado
- Université de Lyon, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Plateforme d'Innovation en Immuno-monitoring et Immunothérapie, Centre Léon Bérard, and in the framework of the LABEX DevWeCan (ANR-10-LABX-0061) of University de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), Lyon, France
| | - Chantal Rigal
- Université de Lyon, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Plateforme d'Innovation en Immuno-monitoring et Immunothérapie, Centre Léon Bérard, and in the framework of the LABEX DevWeCan (ANR-10-LABX-0061) of University de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), Lyon, France
| | - Christine Bardin
- Université de Lyon, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Plateforme d'Innovation en Immuno-monitoring et Immunothérapie, Centre Léon Bérard, and in the framework of the LABEX DevWeCan (ANR-10-LABX-0061) of University de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), Lyon, France
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Despina Moshous
- INSERM UMR 1163, Laboratoire Dynamique du Génome et Système Immunitaire Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Héloïse Reumaux
- Pediatric Rheumatology and Emergency Unit, Jeanne de Flandre Hospital, Lille, France
| | - François Plenat
- Pathology Department, Hémato-Oncologie Pédiatrique, CHU Nancy, Nancy, France
| | - Alice Phan
- Pediatric Rheumatology, Nephrology and Dermatology Department and EPICIME Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France
| | | | - Brigitte Balme
- Pathology Department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Viel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France; Immunobiology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Jacques Bienvenu
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France; Immunobiology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Pierre Cochat
- Pediatric Rheumatology, Nephrology and Dermatology Department and EPICIME Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christophe Caux
- Université de Lyon, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Plateforme d'Innovation en Immuno-monitoring et Immunothérapie, Centre Léon Bérard, and in the framework of the LABEX DevWeCan (ANR-10-LABX-0061) of University de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), Lyon, France
| | - E Helen Kemp
- Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Isabelle Rouvet
- Biotechnology Department, Hospices Civils de Lyon, Lyon, France
| | - Christophe Malcus
- Cell Immunology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Annick Lim
- Immunoscope Group, Immunology Department, Institut Pasteur, Paris, France
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Centre, Manchester, United Kingdom
| | - Nicole Fabien
- Immunobiology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Christine Ménétrier-Caux
- Université de Lyon, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Plateforme d'Innovation en Immuno-monitoring et Immunothérapie, Centre Léon Bérard, and in the framework of the LABEX DevWeCan (ANR-10-LABX-0061) of University de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), Lyon, France
| | - Jean-Pierre De Villartay
- INSERM UMR 1163, Laboratoire Dynamique du Génome et Système Immunitaire Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Thierry Walzer
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France
| | - Alexandre Belot
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; CNRS, UMR5308, Lyon, France; Pediatric Rheumatology, Nephrology and Dermatology Department and EPICIME Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France.
| |
Collapse
|
27
|
Compound heterozygous mutation of Rag1 leading to Omenn syndrome. PLoS One 2015; 10:e0121489. [PMID: 25849362 PMCID: PMC4388548 DOI: 10.1371/journal.pone.0121489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Omenn syndrome is a primary immunodeficiency disorder, featuring susceptibility to infections and autoreactive T cells and resulting from defective genomic rearrangement of genes for the T cell and B cell receptors. The most frequent etiologies are hypomorphic mutations in "non-core" regions of the Rag1 or Rag2 genes, the protein products of which are critical members of the cellular apparatus for V(D)J recombination. In this report, we describe an infant with Omenn syndrome with a previously unreported termination mutation (p.R142*) in Rag1 on one allele and a partially characterized substitution mutation (p.V779M) in a "core" region of the other Rag1 allele. Using a cellular recombination assay, we found that while the p.R142* mutation completely abolished V(D)J recombination activity, the p.V779M mutation conferred a severe, but not total, loss of V(D)J recombination activity. The recombination defect of the V779 mutant was not due to overall misfolding of Rag1, however, as this mutant supported wild-type levels of V(D)J cleavage. These findings provide insight into the role of this poorly understood region of Rag1 and support the role of Rag1 in a post-cleavage stage of recombination.
Collapse
|
28
|
Abstract
Cutaneous manifestations are common in primary immune deficiency diseases, affecting between 40 % and 70 % of patients with diagnosed primary immune deficiency. Skin infections characterize many primary immune deficiencies, but there are also frequent noninfectious cutaneous manifestations seen in many of these disorders, including eczematous lesions, erythroderma, cutaneous granulomas, dysplasia of skin, hair, and nails, autoimmune conditions, and frank vasculitis. For the patient with suspected primary immunodeficiency, much can be inferred by evaluating the presenting cutaneous findings, including various infectious susceptibilities, presence of atopy, and evidence of impaired or overactive inflammatory response. The skin manifestations of primary immune deficiency diseases are often early or heralding findings of the underlying immunologic disease. Therefore, awareness of associations between skin findings and immune deficiency may aide in the early detection and treatment of serious or life-threatening immunologic defects. This review summarizes the common skin manifestations of primary immune deficiency diseases and provides the reader with a differential diagnosis of primary immune defects to consider for the most common skin manifestations.
Collapse
|
29
|
Chiarini M, Sottini A, Bertoli D, Serana F, Caimi L, Rasia S, Capra R, Imberti L. Newly produced T and B lymphocytes and T-cell receptor repertoire diversity are reduced in peripheral blood of fingolimod-treated multiple sclerosis patients. Mult Scler 2014; 21:726-34. [PMID: 25392322 DOI: 10.1177/1352458514551456] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/17/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fingolimod inhibits lymphocyte egress from lymphoid tissues, thus altering the composition of the peripheral lymphocyte pool of multiple sclerosis patients. OBJECTIVE The objective of this paper is to evaluate whether fingolimod determines a decrease of newly produced T- and B-lymphocytes in the blood and a reduction in the T-cell receptor repertoire diversity that may affect immune surveillance. METHODS Blood samples were obtained from multiple sclerosis patients before fingolimod therapy initiation and then after six and 12 months. Newly produced T and B lymphocytes were measured by quantifying T-cell receptor excision circles and K-deleting recombination excision circles by real-time PCR, while recent thymic emigrants, naive CD8(+) lymphocytes, immature and naive B cells were determined by immune phenotyping. T-cell receptor repertoire was analyzed by complementarity determining region 3 spectratyping. RESULTS Newly produced T and B lymphocytes were significantly reduced in peripheral blood of fingolimod-treated patients. The decrease was particularly evident in the T-cell compartment. T-cell repertoire restrictions, already present before therapy, significantly increased after 12 months of treatment. CONCLUSIONS These results do not have direct clinical implications but they may be useful for further understanding the mode of action of this immunotherapy for multiple sclerosis patients.
Collapse
Affiliation(s)
| | | | | | | | - L Caimi
- CREA, Diagnostics Department
| | - S Rasia
- Multiple Sclerosis Center, Spedali Civili of Brescia, Italy
| | - R Capra
- Multiple Sclerosis Center, Spedali Civili of Brescia, Italy
| | | |
Collapse
|
30
|
Marrella V, Poliani PL, Notarangelo LD, Grassi F, Villa A. Rag defects and thymic stroma: lessons from animal models. Front Immunol 2014; 5:259. [PMID: 25076946 PMCID: PMC4114104 DOI: 10.3389/fimmu.2014.00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
Thymocytes and thymic epithelial cells (TECs) cross-talk is essential to support T cell development and preserve thymic architecture and maturation of TECs and Foxp3(+) natural regulatory T cells. Accordingly, disruption of thymic lymphostromal cross-talk may have major implications on the thymic mechanisms that govern T cell tolerance. Several genetic defects have been described in humans that affect early stages of T cell development [leading to severe combined immune deficiency (SCID)] or late stages in thymocyte maturation (resulting in combined immunodeficiency). Hypomorphic mutations in SCID-causing genes may allow for generation of a limited pool of T lymphocytes with a restricted repertoire. These conditions are often associated with infiltration of peripheral tissues by activated T cells and immune dysregulation, as best exemplified by Omenn syndrome (OS). In this review, we will discuss our recent findings on abnormalities of thymic microenvironment in OS with a special focus of defective maturation of TECs, altered distribution of thymic dendritic cells and impairment of deletional and non-deletional mechanisms of central tolerance. Here, taking advantage of mouse models of OS and atypical SCID, we will discuss how modifications in stromal compartment impact and shape lymphocyte differentiation, and vice versa how inefficient T cell signaling results in defective stromal maturation. These findings are instrumental to understand the extent to which novel therapeutic strategies should act on thymic stroma to achieve full immune reconstitution.
Collapse
Affiliation(s)
- Veronica Marrella
- Milan Unit, Institute of Genetics and Biomedic Research, National Research Council , Milan , Italy ; Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico , Rozzano , Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Anna Villa
- Milan Unit, Institute of Genetics and Biomedic Research, National Research Council , Milan , Italy ; Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico , Rozzano , Italy
| |
Collapse
|
31
|
IJspeert H, Driessen GJ, Moorhouse MJ, Hartwig NG, Wolska-Kusnierz B, Kalwak K, Pituch-Noworolska A, Kondratenko I, van Montfrans JM, Mejstrikova E, Lankester AC, Langerak AW, van Gent DC, Stubbs AP, van Dongen JJM, van der Burg M. Similar recombination-activating gene (RAG) mutations result in similar immunobiological effects but in different clinical phenotypes. J Allergy Clin Immunol 2014; 133:1124-33. [PMID: 24418478 PMCID: PMC7112318 DOI: 10.1016/j.jaci.2013.11.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 11/03/2022]
Abstract
BACKGROUND V(D)J recombination takes place during lymphocyte development to generate a large repertoire of T- and B-cell receptors. Mutations in recombination-activating gene 1 (RAG1) and RAG2 result in loss or reduction of V(D)J recombination. It is known that different mutations in RAG genes vary in residual recombinase activity and give rise to a broad spectrum of clinical phenotypes. OBJECTIVE We sought to study the immunologic mechanisms causing the clinical spectrum of RAG deficiency. METHODS We included 22 patients with similar RAG1 mutations (c.519delT or c.368_369delAA) resulting in N-terminal truncated RAG1 protein with residual recombination activity but presenting with different clinical phenotypes. We studied precursor B-cell development, immunoglobulin and T-cell receptor repertoire formation, receptor editing, and B- and T-cell numbers. RESULTS Clinically, patients were divided into 3 main categories: T(-)B(-) severe combined immunodeficiency, Omenn syndrome, and combined immunodeficiency. All patients showed a block in the precursor B-cell development, low B- and T-cell numbers, normal immunoglobulin gene use, limited B- and T-cell repertoires, and slightly impaired receptor editing. CONCLUSION This study demonstrates that similar RAG mutations can result in similar immunobiological effects but different clinical phenotypes, indicating that the level of residual recombinase activity is not the only determinant for clinical outcome. We postulate a model in which the type and moment of antigenic pressure affect the clinical phenotypes of these patients.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gertjan J Driessen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael J Moorhouse
- Department of Blood Cell Research, Stichting Sanquin Bloedvoorziening, Amsterdam, The Netherlands
| | - Nico G Hartwig
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Irina Kondratenko
- Department of Clinical Immunology, Russian State Children's Hospital, Moscow, Russia
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, Teaching Hospital Motol and 2nd Medical School, Charles University, Prague, Czech Republic
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
33
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
34
|
Martinez-Martinez L, Vazquez-Ortiz M, Gonzalez-Santesteban C, Martin-Nalda A, Vicente A, Plaza AM, Badell I, Alsina L, de la Calle-Martin O. From Severe Combined Immunodeficiency to Omenn syndrome after hematopoietic stem cell transplantation in a RAG1 deficient family. Pediatr Allergy Immunol 2012; 23:660-6. [PMID: 22882342 DOI: 10.1111/j.1399-3038.2012.01339.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Mutations in RAG genes cause a spectrum of severe immunodeficiencies ranging from Severe Combined Immunodeficiency (SCID) T-B-NK+ to Omenn syndrome (OS) through intermediate phenotypes, even for the same alteration. Nowadays, hematopoietic stem cell transplantation (HSCT) is the unique curative treatment available. METHODS We describe three related patients from a Moroccan consanguineous family. Patient 1 developed at 1 month of age moderate eczematous dermatitis with eosinophilia, followed by infections and enteritis. He was transplanted and received reduced intensity conditioning regimen previous to HSCT. His brother, patient 2, was born preterm with a severe neonatal erythroderma, hepatosplenomegaly and lymphadenopathy. Patient 3, cousin of the two siblings, was also born preterm and fulfilled all criteria for classical OS. Immunological evaluation was performed and RAG genes were sequenced. RESULTS Immunological data from all three patients were very diversed, from T lymphopenia to marked lymphocytosis, and different degrees of eosinophilia and IgE levels. Non-responder T cells and absent B cells were constant. All patients presented the same homozygous mutation in RAG1 gene (c.631delT). Patient 1 fully recovered both clinically and immunologically after HSCT. Two years later, he lost the accomplished lymphoid chimera and the disease relapsed as a classical OS, leading to patient's death. CONCLUSIONS This is the first report of a RAG1 deficient patient with a changed clinical and immunological phenotype from SCID to OS after HSCT. The use of a myeloablative conditioning regimen that eliminates reminiscent T cells might have improved patient's outcome and it should be considered in similar cases.
Collapse
Affiliation(s)
- Laura Martinez-Martinez
- Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Pare Claret, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anti-CD3ε mAb improves thymic architecture and prevents autoimmune manifestations in a mouse model of Omenn syndrome: therapeutic implications. Blood 2012; 120:1005-14. [PMID: 22723555 DOI: 10.1182/blood-2012-01-406827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Omenn syndrome (OS) is an atypical primary immunodeficiency characterized by severe autoimmunity because of activated T cells infiltrating target organs. The impaired recombinase activity in OS severely affects expression of the pre-T-cell receptor complex in immature thymocytes, which is crucial for an efficient development of the thymic epithelial component. Anti-CD3ε monoclonal antibody (mAb) treatment in RAG2(-/-) mice was previously shown to mimic pre-TCR signaling promoting thymic expansion. Here we show the effect of anti-CD3ε mAb administration in the RAG2(R229Q) mouse model, which closely recapitulates human OS. These animals, in spite of the inability to induce the autoimmune regulator, displayed a significant amelioration in thymic epithelial compartment and an important reduction of peripheral T-cell activation and tissue infiltration. Furthermore, by injecting a high number of RAG2(R229Q) progenitors into RAG2(-/-) animals previously conditioned with anti-CD3ε mAb, we detected autoimmune regulator expression together with the absence of peripheral immunopathology. These observations indicate that improving epithelial thymic function might ameliorate the detrimental behavior of the cell-autonomous RAG defect. Our data provide important therapeutic proof of concept for future clinical applications of anti-CD3ε mAb treatment in severe combined immunodeficiency forms characterized by poor thymus function and autoimmunity.
Collapse
|
36
|
Yu GP, Nadeau KC, Berk DR, de Saint Basile G, Lambert N, Knapnougel P, Roberts J, Kavanau K, Dunn E, Stiehm ER, Lewis DB, Umetsu DT, Puck JM, Cowan MJ. Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID. Pediatr Transplant 2011; 15:733-41. [PMID: 21883749 PMCID: PMC3196791 DOI: 10.1111/j.1399-3046.2011.01563.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are few reports of clinical presentation, genotype, and HCT outcomes for patients with T-B+NK+ SCID. Between 1981 and 2007, eight of 84 patients with SCID who received and/or were followed after HCT at UCSF had the T-B+NK+ phenotype. One additional patient with T-B+NK+ SCID was identified as the sibling of a patient treated at UCSF. Chart reviews were performed. Molecular analyses of IL7R, IL2RG, JAK3, and the genes encoding the CD3 T-cell receptor components δ (CD3D), ε (CD3E), and ζ (CD3Z) were carried out. IL7R mutations were documented in four patients and CD3D mutations in two others. Three patients had no defects found. Only two of nine patients had an HLA-matched related HCT donor. Both survived, and neither developed GVHD. Five of seven recipients of haploidentical grafts survived. Although the majority of reported cases of T-B+NK+ SCID are caused by defects in IL7R, CD3 complex defects were also found in this series and should be considered when evaluating patients with T-B+NK+ SCID. Additional genes, mutations in which account for T-B+NK+ SCID, remain to be found. Better approaches to early diagnosis and HCT treatment are needed for patients lacking an HLA-matched related donor.
Collapse
Affiliation(s)
- Grace P Yu
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital at Stanford
| | - Kari C Nadeau
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital at Stanford
| | - David R Berk
- Departments of Medicine and Pediatrics, Divisions of Dermatology, Washington University School of Medicine
| | - Geneviève de Saint Basile
- Inserm, U768, Paris, F-75015 France,Université Paris Descartes, IRNEM (IFR95), Paris, F-75015 France,AP-HP, Hôpital Necker Enfants-Malades, Unité d'Immunologie-Hématologie Pédiatrique, Paris, F-75015 France
| | - Nathalie Lambert
- AP-HP, Hôpital Necker Enfants-Malades, Unité d'Immunologie-Hématologie Pédiatrique, Paris, F-75015 France
| | | | - Joseph Roberts
- Department of Pediatrics and Immunology, Duke University Medical Center
| | - Kristina Kavanau
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco Children's Hospital
| | - Elizabeth Dunn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco Children's Hospital
| | - E. Richard Stiehm
- Divison of Immunology, Allergy and Rheumatology, Department of Pediatrics, Mattel Children's Hospital at the University of California Los Angeles
| | - David B Lewis
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital at Stanford
| | - Dale T Umetsu
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Boston
| | - Jennifer M Puck
- Department of Pediatrics, Institute for Human Genetics, University of California San Francisco Children's Hospital
| | - Morton J Cowan
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco Children's Hospital
| |
Collapse
|
37
|
Zhang ZY, Zhao XD, Jiang LP, Liu EM, Cui YX, Wang M, Wei H, Yu J, An YF, Yang XQ. Clinical characteristics and molecular analysis of three Chinese children with Omenn syndrome. Pediatr Allergy Immunol 2011; 22:482-7. [PMID: 21771083 DOI: 10.1111/j.1399-3038.2010.01126.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Omenn syndrome (OS) is a rare autosomal recessive genetic disorder and presents symptoms of severe combined immunodeficiency characterized by erythrodermia, eosinophilia, hepatosplenomegaly, lymphadenopathy, and elevated serum IgE levels. OS has been found to be caused by mutations in RAG1 or RAG2 gene that result in partial V(D)J recombination activity. No study on OS has been reported in Chinese children so far. In this study, the genotype and phenotypes of three infants with OS from three unrelated Chinese families were investigated. All the three children had most of the characteristics of OS except normal serum IgE level. Compound heterozygosity mutations in RAG1 gene (1983 G>A; 2444 C>T and 2219 C>T; 3127 C>G) were identified in two cases, and a homozygous deletion mutation with a premature stop codon was found at residue 2302 of RAG1 gene (2302delT, I729X) in the remaining case, including three novel mutations (2302delT, I729X; 2219 C>T, R699W; and 3127 C>G, Y1001X). Spectratyping analysis of T-cell receptor β-chain variable region (TCRVβ) gene rearrangement was performed in case 1 and case 2. All the 25 TCRVβ subfamilies presented monoclonal or oligoclonal peaks in case 1 and 11 TCRVβ subfamilies were very weak or even absent in case 2. This was the first report about OS in Chinese children. Molecular genetic testing represents an important tool for early confirmed diagnosis and may allow accurate carrier detection and prenatal diagnosis.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Division of Immunology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakada S. Abnormalities in DNA double-strand break response beyond primary immunodeficiency. Int J Hematol 2011; 93:425-433. [PMID: 21479981 DOI: 10.1007/s12185-011-0836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
V(D)J recombination and class switch recombination are achieved by the cooperative processes of recombination activation gene- or activation-induced cytidine deaminase-dependent DNA cleaving, DNA double-strand break (DSB) response signaling, and DNA repair. Primary immunodeficiency due to dysfunctional DNA recombination can be categorized as severe combined immunodeficiency or other conditions, based on the presence or absence of T cells. We can also classify these diseases as radiosensitive or non-radiosensitive immunodeficiencies. While diseases unable to trigger DNA cleavage do not exhibit radiosensitivity, dysfunction in DSB response signaling or repair does lead to radiosensitive immunodeficiency. Recent studies have begun to clarify the mechanisms underlying the molecular pathogenesis of such DNA DSB-related primary immunodeficiency.
Collapse
Affiliation(s)
- Shinichiro Nakada
- Center of Integrated Medical Research, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
39
|
Artemis splice defects cause atypical SCID and can be restored in vitro by an antisense oligonucleotide. Genes Immun 2011; 12:434-44. [PMID: 21390052 DOI: 10.1038/gene.2011.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Artemis deficiency is known to result in classical T-B- severe combined immunodeficiency (SCID) in case of Artemis null mutations, or Omenn's syndrome in case of hypomorphic mutations in the Artemis gene. We describe two unrelated patients with a relatively mild clinical T-B- SCID phenotype, caused by different homozygous Artemis splice-site mutations. The splice-site mutations concern either dysfunction of a 5' splice-site or an intronic point mutation creating a novel 3' splice-site, resulting in mutated Artemis protein with residual activity or low levels of wild type (WT) Artemis transcripts. During the first 10 years of life, the patients suffered from recurrent infections necessitating antibiotic prophylaxis and intravenous immunoglobulins. Both mutations resulted in increased ionizing radiation sensitivity and insufficient variable, diversity and joining (V(D)J) recombination, causing B-lymphopenia and exhaustion of the naive T-cell compartment. The patient with the novel 3' splice-site had progressive granulomatous skin lesions, which disappeared after stem cell transplantation (SCT). We showed that an alternative approach to SCT can, in principle, be used in this case; an antisense oligonucleotide (AON) covering the intronic mutation restored WT Artemis transcript levels and non-homologous end-joining pathway activity in the patient fibroblasts.
Collapse
|
40
|
van der Burg M, Gennery AR. Educational paper. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr 2011; 170:561-71. [PMID: 21479529 PMCID: PMC3078321 DOI: 10.1007/s00431-011-1452-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/10/2011] [Indexed: 12/20/2022]
Abstract
Severe combined immunodeficiency (SCID) is one of the most severe forms of primary immunodeficiency characterized by absence of functional T lymphocytes. It is a paediatric emergency, which is life-threatening when recognized too late. The clinical presentation varies from the classical form of SCID through atypical SCID to Omenn syndrome. In addition, there is a considerable immunological variation, which can hamper the diagnosis. In this educational review, we describe the immunopathological background, clinical presentations and diagnostic process of SCID, as well as the therapeutic possibilities.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands.
| | - Andy R. Gennery
- Department of Pediatric Immunology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, UK ,Institute of Cellular Medicine, Child Health, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Abstract
Intestinal biopsies constitute an ever-increasing portion of the pathologist's workload, accounting for nearly two-thirds of specimens accessioned yearly by the pathology department at The Children's Hospital of Philadelphia. The widespread use of endoscopy and gastrointestinal biopsies in current clinical practice presents the pathologist with a diversity of intestinal mucosal appearances corresponding to disease states of variable clinical severity, requiring close collaboration between clinician and pathologist for optimal interpretation. Many of the entities resulting in severe diarrhea of infancy have been recognized only in the last several decades, and although rare, the study of these disorders, especially when combined with the powerful methods of present-day genetics and molecular biology, has afforded important insights into enterocyte development and function, and intestinal immunity and tolerance. Other conditions once considered infrequent, such as celiac disease, have now been recognized to be much more common and can present with a wide range of pathologic features.
Collapse
Affiliation(s)
- Pierre Russo
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Neonatal erythroderma is a potentially life-threatening condition in neonates less than 1 month old. During the first month of life, erythroderma is generally a presentation of genodermatosis, primary immune deficiency, or, more exceptionally, severe psoriasis, metabolic disease or infection. Atopic erythroderma is observed later in life, usually after the age of 1 month. Rapid determination of the underlying cause is crucial for better management. However, the diagnosis is often a challenge for the clinician and is frequently delayed due to the nonspecific nature of the clinical signs. We summarize the different causes of neonatal erythrodermas and list their clinical, biological, histological, and sometimes genetic characteristics. RECENT FINDINGS Severe erythroderma, typified by early onset, skin induration, severe alopecia and failure to thrive, is immediately suggestive of immunodeficiency or Netherton syndrome. In such cases, an early skin biopsy may be particularly of use in allowing accurate differentiation between these two disorders. SUMMARY This review outlines the clinical and histological features of these disorders and suggests an approach to their differential diagnosis and management.
Collapse
Affiliation(s)
- Sylvie Fraitag
- Department of Pathology, Hôpital Necker-Enfants Malades, and Université René-Descartes, Paris, France.
| | | |
Collapse
|
43
|
Niehues T, Perez-Becker R, Schuetz C. More than just SCID--the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol 2010; 135:183-92. [PMID: 20172764 DOI: 10.1016/j.clim.2010.01.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/23/2010] [Accepted: 01/25/2010] [Indexed: 01/08/2023]
Abstract
Combined immunodeficiencies with impaired numbers and function of T- and B-cells can be attributed to defects in the recombinase activating genes (RAG). The products of these genes, the RAG1 and 2 proteins, are key players in the V(D)J recombination process leading to the assembly of antigen receptor genes. Complete RAG deficiency (RAGD) with no V(D)J (<1% recombination activity of wild type) is associated with classical SCID and absence of T- and B-cells. In RAGD with residual V(D)J activity (>1% recombination activity of wild type), several clinical and immunological subtypes have been described: RAGD with skin inflammation and alphabeta T-cell expansion (classical Omenn syndrome), RAGD with skin inflammation and without T-cell expansion (incomplete Omenn syndrome), RAGD with gammadelta T-cell expansion and RAGD with granulomas. Engraftment of maternal T-cells can add to variation in phenotype. The potential role of epigenetic factors that influence the emergence of these phenotypes is discussed. Thorough assessment and interpretation of clinical and immunological findings will guide treatment modalities as intense as hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Tim Niehues
- HELIOS Klinikum Krefeld, Center for Child and Adolescent Health, Krefeld, Germany.
| | | | | |
Collapse
|
44
|
McCusker C, Hotte S, Le Deist F, Hirschfeld AF, Mitchell D, Nguyen VH, Gagnon R, Mazer B, Turvey SE, Jabado N. Relative CD4 lymphopenia and a skewed memory phenotype are the main immunologic abnormalities in a child with Omenn syndrome due to homozygous RAG1-C2633T hypomorphic mutation. Clin Immunol 2009; 131:447-55. [DOI: 10.1016/j.clim.2009.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/14/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
45
|
Abstract
V(D)J recombination not only comprises the molecular mechanism that insures diversity of the immune system but also constitutes a critical checkpoint in the developmental program of B- and T-lymphocytes. The analysis of human patients with Severe Combined Immune Deficiency (SCID) has contributed to the understanding of the biochemistry of the V(D)J recombination reaction. The molecular study V(D)J recombination settings in humans, mice and in cellular mutants has allowed to unravel the process of Non Homologous End Joining (NHEJ), one of the key pathway that insure proper repair of DNA double strand breaks (dsb), whether they occur during V(D)J recombination or secondary to other DNA injuries. Two NHEJ factors, Artemis and Cernunnos, were indeed discovered through the study of human V(D)J recombination defective human SCID patients.
Collapse
|
46
|
Wong SY, Lu CP, Roth DB. A RAG1 mutation found in Omenn syndrome causes coding flank hypersensitivity: a novel mechanism for antigen receptor repertoire restriction. THE JOURNAL OF IMMUNOLOGY 2008; 181:4124-30. [PMID: 18768869 DOI: 10.4049/jimmunol.181.6.4124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypomorphic RAG mutants with severely reduced V(D)J recombination activity cause Omenn Syndrome (OS), an immunodeficiency with features of immune dysregulation and a restricted TCR repertoire. Precisely how RAG mutants produce autoimmune and allergic symptoms has been unclear. Current models posit that the severe recombination defect restricts the number of lymphocyte clones, a few of which are selected upon Ag exposure. We show that murine RAG1 R972Q, corresponding to an OS mutation, renders the recombinase hypersensitive to selected coding sequences at the hairpin formation step. Other RAG1 OS mutants tested do not manifest this sequence sensitivity. These new data support a novel mechanism for OS: by selectively impairing recombination at certain coding flanks, a RAG mutant can cause primary repertoire restriction, as opposed to a more random, limited repertoire that develops secondary to severely diminished recombination activity.
Collapse
Affiliation(s)
- Serre-Yu Wong
- Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
47
|
Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol 2008; 122:1082-6. [PMID: 18992930 DOI: 10.1016/j.jaci.2008.09.037] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/10/2008] [Indexed: 02/06/2023]
Abstract
Omenn syndrome (OS) was reported until recently as a distinct form (phenotype and genotype) of severe combined immunodeficiency (SCID). Similar to other patients with SCID, patients with OS present early in infancy with viral or fungal pneumonitis, chronic diarrhea, and failure to thrive. Unlike typical SCID, patients with OS have enlarged lymphoid tissue, severe erythroderma, increased IgE levels, and eosinophilia. The inflammation observed in these patients is believed to be triggered by clonally expanded T cells, which are predominantly of the T(H)2 type. These abnormal T cells, in the absence of proper regulation by other components of the immune system, secrete a host of cytokines that promote autoimmune as well as allergic inflammation. The emergence of these T-cell clones occurs in patients with hypomorphic mutations in recombination activating gene 1 or 2, but not in patients with deleterious mutations in these enzymes which render them inactive. Recently, OS was also identified in a growing list of other leaky SCIDs with mutations in RNA component of mitochondrial RNA processing endoribonuclease, adenosine deaminase, IL-2 receptor gamma, IL-7 receptor alpha, ARTEMIS, and DNA ligase 4. This new information revealed OS is a distinct inflammatory process that can be associated with genetically diverse leaky SCIDS.
Collapse
Affiliation(s)
- Anna Villa
- Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | |
Collapse
|
48
|
|
49
|
Liston A, Enders A, Siggs OM. Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nat Rev Immunol 2008; 8:545-58. [PMID: 18551129 DOI: 10.1038/nri2336] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Partial T-cell immunodeficiencies constitute a heterogeneous cluster of disorders characterized by an incomplete reduction in T-cell number or activity. The immune deficiency component of these diseases is less severe than that of the severe T-cell immunodeficiencies and therefore some ability to respond to infectious organisms is retained. Unlike severe T-cell immunodeficiencies, however, partial immunodeficiencies are commonly associated with hyper-immune dysregulation, including autoimmunity, inflammatory diseases and elevated IgE production. This causative association is counter-intuitive--immune deficiencies are caused by loss-of-function changes to the T-cell component, whereas the coincident autoimmune symptoms are the consequence of gain-of-function changes. This Review details the genetic basis of partial T -cell immunodeficiencies and draws on recent advances in mouse models to propose mechanisms by which a reduction in T-cell numbers or function may disturb the population-dependent balance between activation and tolerance.
Collapse
Affiliation(s)
- Adrian Liston
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
50
|
Of Omenn and mice. Trends Immunol 2008; 29:133-40. [PMID: 18255337 DOI: 10.1016/j.it.2007.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 11/22/2022]
Abstract
Omenn syndrome (OS) is a peculiar immunodeficiency in which profound T and B cell defects are associated with severe autoimmune manifestations. Although the molecular and biochemical bases of OS have been elucidated, the mechanisms leading to T cell infiltration of peripheral tissues such as skin and gut still remain unsolved. Two murine models with hypomorphic mutations in rag genes reproducing OS features and a murine model of lymphopenia-derived autoimmunity with similar immunopathology were recently described. The aim of this review is to integrate clues regarding the roles of impaired thymic development and lymphopenia into the pathogenesis of autoimmunity.
Collapse
|