1
|
Tagawa M, Terasaki M, Mii A, Toda E, Kajimoto Y, Kunugi S, Terasaki Y, Shimizu A. The reduced number of nephrons with shortening renal tubules in mouse postnatal adverse environment. Pediatr Res 2022:10.1038/s41390-022-02332-0. [PMID: 36302857 DOI: 10.1038/s41390-022-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/10/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The intrauterine adverse environment during nephrogenesis reduces the nephron number, probably associates with impaired ureteric bud (UB) branching. METHODS The kidneys in C57/BL6 mice were irradiated with a single dose of 10 gray (10 Gy) as adverse environment on postnatal day 3 (irradiated PND3 kidneys) after UB branching ceased. The renal functions and pathological findings of irradiated PND3 kidneys were compared with those of non-irradiated control and 10 Gy irradiation on PND14 (irradiated PND14 kidney) from 1 to 18 months. RESULTS The number and density of glomeruli in irradiated PND3 kidneys were reduced by 1 month with renal dysfunction at 6 months. The morphologically incomplete glomeruli with insufficient capillaries were involuted by 1 month in the superficial cortex. Reduced tubular numbers and developmental disability with shortening renal tubules occurred in irradiated PND3 kidneys with impaired urine concentration at 6 months. Hypertrophy of glomeruli developed, and occasional sclerotic glomeruli appeared in the juxtamedullary cortex with hypertension and albuminuria at 12 to 18 months. CONCLUSIONS The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of UB branching, and glomerular hypertrophy with occasional glomerulosclerosis developed accompanied with hypertension and albuminuria in the adulthood. IMPACT The reduced number of nephrons with shortening renal tubules occurred with impaired renal functions in a postnatal adverse environment after cessation of ureteric bud branching. The reduced number of glomeruli were associated with not only the impaired formation of glomeruli but also involution of morphologically small incomplete glomeruli after an adverse environment. The insufficiently developed nephrons were characterized by the shortening renal tubules with impaired urine concentration. In addition, glomerular hypertrophy and occasional glomerulosclerosis developed with hypertension and albuminuria in adulthood. The present study can help to understand the risk of alternations of premature nephrons in preterm neonates.
Collapse
Affiliation(s)
- Masako Tagawa
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akiko Mii
- Department of Nephrology, Nippon Medical School, Tokyo, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.,Division of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
2
|
Gonzalez-Vicente A, Garvin JL. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron. Antioxidants (Basel) 2017; 6:antiox6020023. [PMID: 28333068 PMCID: PMC5488003 DOI: 10.3390/antiox6020023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂-), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂-) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂-, ONO₂-, and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂- in the macula densa on tubuloglomerular feedback.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol 2015; 308:F1047-55. [PMID: 25651559 DOI: 10.1152/ajprenal.00164.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/22/2015] [Indexed: 01/06/2023] Open
Abstract
The balance between vasoconstrictor/sodium-retaining and vasodilator/natriuretic systems is essential for maintaining body fluid and electrolyte homeostasis. Natriuretic peptides, such as atrial natriuretic peptide (ANP), belong to the vasodilator/natriuretic system. ANP is produced by the conversion of pro-ANP into ANP, which is achieved by a proteolytical cleavage executed by corin. In the kidney, ANP binds to the natriuretic peptide receptor-A (NPR-A) and enhances its guanylyl cyclase activity, thereby increasing intracellular cyclic guanosine monophosphate production to promote natriuretic and renoprotective responses. In the glomerulus, ANP increases glomerular permeability and filtration rate and antagonizes the deleterious effects of the renin-angiotensin-aldosterone system activation. Along the nephron, natriuretic and diuretic actions of ANP are mediated by inhibiting the basolaterally expressed Na(+)-K(+)-ATPase, reducing apical sodium, potassium, and protein organic cation transporter in the proximal tubule, and decreasing Na(+)-K(+)-2Cl(-) cotransporter activity and renal concentration efficiency in the thick ascending limb. In the medullary collecting duct, ANP reduces sodium reabsorption by inhibiting the cyclic nucleotide-gated cation channels, the epithelial sodium channel, and the heteromeric channel transient receptor potential-vanilloid 4 and -polycystin 2 and diminishes vasopressin-induced water reabsorption. Long-term ANP treatment may lead to NPR-A desensitization and ANP resistance, resulting in augmented sodium and water reabsorption. In mice, corin deficiency impairs sodium excretion and causes salt-sensitive hypertension. Characteristics of ANP resistance and corin deficiency are also encountered in patients with edema-associated diseases, highlighting the importance of ANP signaling in salt-water balance and renal pathophysiology.
Collapse
Affiliation(s)
- Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland; and
| | - Qingyu Wu
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Ohio
| |
Collapse
|
4
|
Itoh K, Izumi Y, Inoue T, Inoue H, Nakayama Y, Uematsu T, Fukuyama T, Yamazaki T, Yasuoka Y, Makino T, Nagaba Y, Tomita K, Kobayashi N, Kawahara K, Mukoyama M, Nonoguchi H. Expression of three isoforms of Na-K-2Cl cotransporter (NKCC2) in the kidney and regulation by dehydration. Biochem Biophys Res Commun 2014; 453:356-61. [PMID: 25265491 DOI: 10.1016/j.bbrc.2014.09.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b.
Collapse
Affiliation(s)
- Kazuko Itoh
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Takeaki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Takayuki Uematsu
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Takashi Fukuyama
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Taiga Yamazaki
- Research Center for Medical Environment, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Makino
- Department of Nephrology, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Yasushi Nagaba
- Department of Nephrology, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Kimio Tomita
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Noritada Kobayashi
- Biomedical Laboratory, Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Faculty of Life Sciences, 1.1.1. Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Hiroshi Nonoguchi
- Department of Internal Medicine and Education & Research Center, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama 364-8501, Japan.
| |
Collapse
|
5
|
Nonoguchi H, Izumi Y, Nakayama Y, Matsuzaki T, Yasuoka Y, Inoue T, Inoue H, Mouri T, Kawahara K, Saito H, Tomita K. Effects of atrial natriuretic peptide on bicarbonate transport in long- and short-looped medullary thick ascending limbs of rats. PLoS One 2013; 8:e83146. [PMID: 24376658 PMCID: PMC3871552 DOI: 10.1371/journal.pone.0083146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is known to influence NaCl transport in the medullary thick ascending limbs (MAL), where the largest NaCl reabsorption occurs among distal nephron segments in response to arginine vasopressin (AVP). In the present study, we investigated the effect of ANP on bicarbonate (HCO3−) transport in the MAL using an isolated tubule perfusion technique. The HCO3− concentration was measured using free-flow ultramicro-fluorometer. We first observed basal HCO3− reabsorption in both long- and short-looped MALs (lMALs, and sMALs, respectively). AVP inhibited HCO3− reabsorption in both lMALs and sMALs, whereas ANP did not change HCO3− transport. However, in the presence of AVP, ANP restored the HCO3− reabsorption inhibited by AVP both in lMAL and sMAL. The effects of ANP on HCO3− transport was mimicked by cyclic GMP. The mRNA expression level of the vasopressin V2 receptor in lMALs was significantly higher than in sMALs, whereas expression of the V1a receptor was unchanged. In summary, AVP inhibits HCO3− transport, and ANP counteracts the action of AVP on HCO3− transport both in lMALs and sMALs.
Collapse
Affiliation(s)
- Hiroshi Nonoguchi
- Department of Internal Medicine and Education & Research Center, Kitasato University Medical Center, Kitamoto, Saitama, Japan
- * E-mail:
| | - Yuichiro Izumi
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yushi Nakayama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Takanobu Matsuzaki
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeaki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Hideki Inoue
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Tomohiko Mouri
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideyuki Saito
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Kimio Tomita
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| |
Collapse
|
6
|
Tomita K. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Invited lecture: 2. Strategy for the treatment of hypertension in chronic kidney disease, focusing on Na regulation]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2169-2181. [PMID: 24228398 DOI: 10.2169/naika.102.2169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Kimio Tomita
- Department of Nephrology, Graduate School of Faculty of Life Science, Kumamoto University, Japan
| |
Collapse
|
7
|
Prospective monitoring N-terminal pro-brain natriuretic peptide during natural progression of atherosclerotic renal artery stenosis in elderly. Arch Gerontol Geriatr 2013; 56:395-9. [DOI: 10.1016/j.archger.2012.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/22/2012] [Indexed: 11/30/2022]
|
8
|
Sakuma Y, Nonoguchi H, Takayama M, Yang T, Terada Y, Inoue T, Nakayama Y, Kohda Y, Sasaki S, Tomita K. Differential effects of hyperosmolality on Na-K-ATPase and vasopressin-dependent cAMP generation in the medullary thick ascending limb and outer medullary collecting duct. Hypertens Res 2006; 28:671-9. [PMID: 16392772 DOI: 10.1291/hypres.28.671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hyperosmolality in the renal medullary interstitium is generated by the renal countercurrent multiplication system, in which the medullary thick ascending limb (MAL) and the outer medullary collecting duct (OMCD) primarily participate. Since arginine vasopressin (AVP) regulates Na-K-ATPase activity directly via protein kinase A and indirectly via hyperosmolality, we investigated the acute and chronic effects of hyperosmolality on Na-K-ATPase and AVP-dependent cAMP generation in the MAL and OMCD. Microdissected MAL and OMCD from control and dehydrated rats were used for the measurement of Na-K-ATPase activity, mRNA expression of alpha-1, beta-1, and beta-2 subunits of Na-K-ATPase, and AVP-dependent cAMP generation. Na-K-ATPase activity in the MAL from dehydrated rats, as measured in isotonic medium, was higher than that of control rats. Moreover, incubation of samples in hypertonic medium (490 mOsm/kg H2O) further increased Na-K-ATPase activity. Dehydration increased alpha-1, beta-1, and beta-2 mRNA expression in the MAL without changing that in the OMCD. Western blot analysis revealed that in the outer medulla, the expression of beta-1, but not that of alpha-1 or beta-2, was stimulated by dehydration. Incubation of MAL or OMCD in hypertonic medium increased AVP-dependent cAMP generation. Higher levels of AVP-dependent cAMP were generated in the MAL from dehydrated rats than that of controls, although incubation in hypertonic medium did not lead to additional increases in AVP-dependent cAMP accumulation. In contrast, AVP-dependent cAMP generation in the OMCD was stimulated by dehydration, and was further stimulated by incubation in hypertonic medium. These findings demonstrate that Na-K-ATPase is upregulated short- and long-term hyperosmolality in the MAL, but not in OMCD.
Collapse
Affiliation(s)
- Yoriko Sakuma
- Department of Nephrology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ichii O, Yabuki A, Ojima T, Matsumoto M, Suzuki S. Species Specific Differences in the Ratio of Short to Long Loop Nephrons in the Kidneys of Laboratory Rodents. Exp Anim 2006; 55:473-6. [PMID: 17090964 DOI: 10.1538/expanim.55.473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ratio of short to long loop nephrons (SLNs and LLNs, respectively) in laboratory rodents (mice, rats, hamsters, gerbils, and guinea pigs) was investigated using the air cast method. In mice and rats, the percentage of SLNs was significantly higher than that of LLNs, while in hamsters and gerbils, the reverse was true (% of LLNs >% of SLNs). In guinea pigs, no significant difference in the percentages of LLNs and SLNs was noted.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
10
|
Féraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 2001; 81:345-418. [PMID: 11152761 DOI: 10.1152/physrev.2001.81.1.345] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.
Collapse
Affiliation(s)
- E Féraille
- Division of Nephrology, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
11
|
Bailly C. Effect of luminal atrial natriuretic peptide on chloride reabsorption in mouse cortical thick ascending limb: inhibition by endothelin. J Am Soc Nephrol 2000; 11:1791-1797. [PMID: 11004208 DOI: 10.1681/asn.v11101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Insofar as neutral endopeptidase inhibition has afforded evidence for a tubular luminal action of atrial natriuretic peptide (ANP), the present study was undertaken to investigate a possible effect of the peptide on chloride reabsorption (JCl) in thick ascending limb (TAL). Luminal addition of ANP to in vitro microperfused cortical TAL (CTAL) significantly decreased JCl with a threshold and a maximum concentration of 10(-12) M and 10(-9) M, respectively. A similar effect of 10(-9) M ANP was observed in medullary TAL (MTAL). The effect of luminal ANP was significantly reduced by HS-142-1, a specific inhibitor of guanylyl cyclase receptor, and by H-8, a protein kinase G inhibitor, but was not affected by the protein kinase C inhibitor bisindolylmaleimide I. Unexpectedly, the effect of ANP was not additive with that of endothelin (ET), a peptide that was previously shown to decrease JCl in TAL through a calcium-independent, protein kinase C-mediated pathway. Indeed, ET-1 (10(-8) M in the lumen) significantly decreased JCl and prevented a further effect of ANP on the same tubule. Similarly, the decrease of JCl induced by simultaneous addition of ET and ANP was not higher than that obtained with each agent alone. Conversely, the inhibitory effect of ANP was enhanced in the presence of cyclic guanosine monophosphate (cGMP; 10(-6) M in the lumen). ET-1 significantly attenuated the ANP-stimulated generation of cGMP in microdissected CTAL and failed to prevent a further decrease of JCl promoted by a permeant cGMP analogue. It is concluded that luminal ANP decreased Cl reabsorption in mouse CTAL and MTAL. This effect was abrogated by ET-1 as a result of the inhibition of ANP-stimulated cGMP generation.
Collapse
Affiliation(s)
- Claire Bailly
- Department of Cellular Biology, CEA-Saclay, Gif sur Yvette, France
| |
Collapse
|
12
|
Abstract
Natriuretic peptides (NP) act as ligands on the guanylyl cyclase family of receptors. The NP binding site on these receptors is extracellular and the guanylyl cyclase and protein kinase domains are intracellular. The guanylyl cyclase receptor catalyzes the synthesis of the second messenger molecule, cGMP, which activates protein kinase. This in turn is involved in the phosphorylation of various ion transport proteins. Ion transport proteins, which are modulated by NP and are thought to underlie the natriuretic and diuretic actions of NP, include: (a) calcium-activated K+ channels; (b) ATP-sensitive K+ channels; (c) inwardly-rectifying K+ channels; (d) outwardly-rectifying K+ channels; (e) L-type Ca2+ channels; (f) Cl- channels including cystic fibrosis transmembrane conductance regulator Cl- channels; (g) Na+- K+ 2Cl- co-transporter; (h) Na+- K+ ATPase; (i) Na+ channels; (j) stretch-activated channels; and (k) water channels. It appears that NP modulate the kinetics, rather than the conductance, of ion channels. Some of these channels, like the Ca2+, ATP-sensitive K+ and stretch-activated channels, are also involved in NP secretion. In addition, the structural properties of the NP, e.g., ovCNP-22 and ovCNP-39, appear to confer on them the ability to form ion channels. These CNP-formed ion channels can modify the trans-membrane signal transduction and second messenger systems underlying NP-induced pathological effects.
Collapse
Affiliation(s)
- J I Kourie
- Department of Chemistry, The Faculties, The Australian National University, Canberra City, ACT.
| | | |
Collapse
|
13
|
De Jesus Ferreira MC, Bailly C. Extracellular Ca2+ decreases chloride reabsorption in rat CTAL by inhibiting cAMP pathway. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F198-203. [PMID: 9691008 DOI: 10.1152/ajprenal.1998.275.2.f198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of activation of the Ca2+-sensing receptor on net Cl flux (JCl) has been investigated on microperfused cortical (C) thick ascending limb (TAL) from rat kidney. Increasing bath Ca2+ from 0.5 to 3 mM or adding 200 microM of the specific Ca2+-sensing receptor agonist neomycin reduced basal as well as antidiuretic hormone (ADH)-stimulated JCl by 27.7 +/- 5.0% and 25.9 +/- 4.1%, respectively. JCl remained unchanged in time control tubules. The effect of neomycin/Ca2+ on JCl was blocked by two protein kinase A inhibitors, H-9 or H-89, but not by a protein kinase C inhibitor, GF-109203X, regardless of whether ADH was present or not. Moreover, H-89 decreased basal JCl and prevented a further effect of 3 mM Ca2+. When JCl was increased by 8-bromo-cAMP plus IBMX, no effect of 3 mM Ca2+ was observed. Inhibitors of phospholipase A2 and cytochrome P-450 monooxygenase failed to modify the effect of 3 mM Ca2+, although these agents dampened significantly the inhibitory effect of bradykinin on medullary TAL. We conclude that extracellular Ca2+ decreases basal and ADH-stimulated Cl reabsorption in CTAL by inhibiting the cAMP pathway, independently of protein kinase C or phospholipase A2 stimulation.
Collapse
Affiliation(s)
- M C De Jesus Ferreira
- Unité de Recherche Associée Centre National de la Recherche Scientifique 1859, Département de Biologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique-Saclay, 91191 Gif-sur-Yvette, France
| | | |
Collapse
|
14
|
Aiura K, Ueda M, Endo M, Kitajima M. Circulating concentrations and physiologic role of atrial natriuretic peptide during endotoxic shock in the rat. Crit Care Med 1995; 23:1898-906. [PMID: 7587267 DOI: 10.1097/00003246-199511000-00017] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To determine if there are changes in circulating concentrations of endogenous atrial natriuretic peptide and the physiologic role of this peptide in endotoxic shock. DESIGN A prospective, randomized, controlled animal trial. SETTING University research laboratory. SUBJECTS Anesthetized male Wistar rats, weighing 250 to 350 g. INTERVENTIONS Six rats received 1.5 mg/kg body weight of lipopolysaccharide alone. Five rats received 1.5 mg/kg of lipopolysaccharide and 200 microL/100 g body weight of rabbit anti-atrial natriuretic peptide serum. Another five rats received 1.5 mg/kg of lipopolysaccharide and normal rabbit serum in the same volume as the antiserum. MEASUREMENTS AND MAIN RESULTS Plasma concentrations of atrial natriuretic peptide, arginine vasopressin, and aldosterone were measured, and changes in hemodynamic parameters and renal function were monitored in rats with endotoxic shock after catheterization of the right jugular vein. Urine volume, urine sodium excretion, urinary potassium excretion, and urine 3', 5'-cyclic guanosine monophosphate (cGMP) excretion were measured at 12-hr intervals. The plasma atrial natriuretic peptide concentration was slightly but significantly lower 30 mins after the lipopolysaccharide injection (114.8 +/- 9.0 pg/mL at 0 hr, 75.6 +/- 6.2 pg/mL at 30 mins, p < .01) and then began to increase, peaking at 6 hrs (752.8 +/- 104.5 pg/mL, p < .01 vs. 0 time) and remaining at higher concentrations than before the preinjection value, up to 24 hrs. In contrast, acute spike-like increases of arginine vasopressin and aldosterone concentrations were observed 30 mins after the lipopolysaccharide injection, preceding the increase of the plasma atrial natriuretic peptide concentration. Measurements of urine volume and urine sodium excretion showed oliguria during the initial 12 hrs after the lipopolysaccharide injection, followed by diuresis and natriuresis during the subsequent 12 hrs. In addition, injection with anti-atrial natriuretic peptide serum in the diuretic phase 12 hrs after the lipopolysaccharide injection significantly inhibited the diuresis, natriuresis, and urine cGMP excretion in this model. Furthermore, the plasma aldosterone concentration 24 hrs after the lipopolysaccharide injection was significantly increased by the administration of the antisera. CONCLUSIONS These findings suggest that endogenous atrial natriuretic peptide increases in the acute phase of endotoxic shock and plays an important role in water and electrolyte balance by regulating diuresis.
Collapse
Affiliation(s)
- K Aiura
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Nonoguchi H, Owada A, Kobayashi N, Takayama M, Terada Y, Koike J, Ujiie K, Marumo F, Sakai T, Tomita K. Immunohistochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts. J Clin Invest 1995; 96:1768-78. [PMID: 7560068 PMCID: PMC185813 DOI: 10.1172/jci118222] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated immunohistochemical localization of V2 vasopressin receptor along the nephron using a specific polyclonal antibody. Staining was observed in some of thick ascending limbs and all of principal and inner medullary collecting duct (IMCD) cells. Not only basolateral but also luminal membrane was stained in collecting ducts, especially in terminal IMCD (tIMCD). To learn the functional role of luminal V2 receptor in tIMCD, we studied the luminal effects of arginine vasopressin (AVP) on osmotic water permeability (Pf), urea permeability (Pu), and cAMP accumulation using isolated perfused rat tIMCD. In the absence of bath AVP, luminal AVP caused a small increase in cAMP accumulation, Pf and Pu, confirming the presence of V2 receptor in the lumen of tIMCD. In contrast, luminal AVP inhibited Pf and Pu by 30-65% in the presence of bath AVP by decreasing cAMP accumulation via V1a or oxytocin receptors and by an unknown mechanism via V2 receptors in the luminal membrane of tIMCD. These data show that V2 receptors are localized not only in the basolateral membrane but also in the luminal membrane of the distal nephron. Luminal AVP acts as a negative feedback system upon the basolateral action of AVP in tIMCD.
Collapse
Affiliation(s)
- H Nonoguchi
- Third Department of Internal Medicine, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
cGMP reduced the short-circuit current (ISC) when applied to the aqueous surface of isolated rabbit and cat ciliary epithelia. cGMP either stimulated (in the rabbit) or had no effect (in the cat) on ISC when applied to the stromal surface. Addition of the cGMP-mediated hormone atrial natriuretic peptide (ANP) to the stromal (but not the aqueous) surface, or the nitrovasodilator sodium nitroprusside to the stromal surface, inhibited ISC across rabbit ciliary epithelium. The response to stromal cGMP was partly mediated by K+ channels at the stromal surface of the rabbit pigmented epithelial (PE) cells, since the effect was inhibited by stromal Ba2+, and was unaffected by Cl- replacement, by bumetanide, or by DIDS. In contrast, the response to aqueous cGMP was not likely mediated by changing either K+ or Cl- channels, based on transepithelial measurements of rabbit ciliary epithelium and complementary whole-cell patch clamping of cultured human nonpigmented ciliary epithelial (NPE) cells. The possibility of interacting effects between cGMP and cAMP in targeting the Na+, K(+)-exchange pump was also considered. Strophanthidin blocked the responses to either aqueous or stromal cGAMP. Applying 10 microns forskolin to generate endogenous cAMP enhanced the subsequent response to aqueous cGMP by approximately equal to 80%. We conclude that cGMP has at least two actions on the ciliary epithelium. The major effect may be to reverse cAMP-mediated inhibition of the NPE Na+ pumps at the aqueous surface of both rabbit and cat ciliary epithelia. The second effect is likely mediated by increasing K(+)-channel and pump activity of the rabbit PE cells at the stromal surface.
Collapse
Affiliation(s)
- D A Carré
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia 19104-6085, USA
| | | |
Collapse
|
17
|
Nakamura T, Sakamaki T, Kurashina T, Sato K, Ono Z, Murata K. Effect of renal perfusion pressure on renal interstitial hydrostatic pressure and sodium excretion. Role of vasopressin V1 and V2 receptors. Hypertension 1995; 25:866-71. [PMID: 7721445 DOI: 10.1161/01.hyp.25.4.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Renal interstitial hydrostatic pressure (RIHP) has recently been cited as an important mediator of pressure natriuresis. Our objective was to determine the roles of vasopressin V1 and V2 receptors in mediating the effects of renal perfusion pressure (RPP) on RIHP and sodium excretion (UNaV). The effects of RPP on renal hemodynamics, RIHP, and UNaV were assessed in control Wistar rats (n = 10) and in rats pretreated with intravenous infusion of the specific nonpeptide vasopressin V1 antagonist OPC-21268 (100 micrograms.kg-1.min-1; n = 8) and the V2 antagonist OPC-31260 (40 micrograms.kg-1.min-1; n = 10). Increasing RPP from 95 to 118 mm Hg in control rats increased RIHP (6.4 +/- 1.0 to 9.9 +/- 1.3 mm Hg), UNaV (0.29 +/- 0.03 to 0.52 +/- 0.05 muEq.min-1.g-1), urine flow rate (UFR) (5.2 +/- 0.3 to 7.6 +/- 0.6 microL.min-1.g-1), and the fractional excretion of sodium (FENa). In rats pretreated with V1 antagonist, similar results were obtained for urine osmolality and the responses of RIHP, UNaV, UFR, and FENa to RPP. V2 antagonist reduced urine osmolality (392 +/- 47 compared with 979 +/- 88 mOsm.kg-1 in control rats) and enhanced the responses of UNaV (0.43 +/- 0.08 to 1.32 +/- 0.32 microEq.min-1), UFR (17.8 +/- 3.2 to 29.2 +/- 3.8 microL.min-1.g-1), and FENa to RPP, but the RIHP response resembled that observed in the control and V1 antagonist groups. Renal blood flow and glomerular filtration rate did not differ among the three groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Nakamura
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Luk JK, Wong EF, Sun A, Wong NL. Cyclic guanosine monophosphate responses to atrial natriuretic factor, brain natriuretic peptide, but not C-type natriuretic peptide, and the characterization of their receptors in rat medullary thick ascending limb. Metabolism 1994; 43:1531-5. [PMID: 7990707 DOI: 10.1016/0026-0495(94)90012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of atrial natriuretic factor (ANF), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) on renal medullary thick ascending limb (mTAL) have not been fully understood. The aim of this study is to examine the second-messenger responses of rat mTAL to ANF, BNP, and CNP. Characterizations of the ANF, BNP, and CNP receptors in mTAL were also performed by radioligand studies. Results showed that ANF and BNP were both capable of eliciting cyclic guanosine monophosphate (cGMP) responses in mTAL. Conversely, no cGMP response was observed upon stimulation by CNP in mTAL. The presence of ANF receptors was demonstrated by radioligand studies. One receptor site was found, and the Kd and maximum binding capacity were 4.0 +/- 0.45 nmol/L and 277.8 +/- 47.7 fmol/mg protein, respectively. BNP receptors were also found in mTAL, and ANF and BNP were sharing the same receptor. On the contrary, no CNP receptor could be shown by radioligand studies. These results suggest that guanylyl cyclase-coupled receptors (atrial natriuretic peptide receptor-A [ANPR-A]) specific for ANF and BNP are present in rat mTAL, while those for CNP (ANPR-B) are absent. ANF and BNP but not CNP act on mTAL to control water excretion.
Collapse
Affiliation(s)
- J K Luk
- Department of Medicine, University of British Columbia, University Hospital, Vancouver, Canada
| | | | | | | |
Collapse
|
19
|
Néant F, Imbert-Teboul M, Bailly C. Cyclic guanosine monophosphate is the mediator of platelet-activating factor inhibition on transport by the mouse kidney thick ascending limb. J Clin Invest 1994; 94:1156-62. [PMID: 7521885 PMCID: PMC295187 DOI: 10.1172/jci117431] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Since we have previously shown a direct inhibitory effect of platelet-activating factor (PAF) on Cl reabsorption in the medullary thick ascending limb of Henle's loop (TAL), the aim of this study was to extend this effect to the whole TAL and to further investigate the signaling pathway involved. In microperfused cortical TALs, PAF significantly decreased Cl reabsorption by 50.3 +/- 6.5%. On the one hand, this effect was not modified in the presence of staurosporine and was not mimicked by phorbol ester; chelating cytosolic Ca by BAPTA/AM failed to suppress the inhibitory effect of PAF on Cl reabsorption; moreover, no significant increase in intracellular Ca concentration could be observed in the presence of PAF on isolated tubules. On the other hand, 8-bromo cyclic GMP mimicked the PAF effect on Cl reabsorption and prevented a further effect of this agent; the PAF effect was significantly reduced by H-8, a cyclic GMP-dependent protein kinase inhibitor; in medullary TALs, PAF significantly increased by twofold cyclic GMP content, an effect inhibited by the PAF antagonist BN 50730, whereas PAF did not significantly modify cAMP content in basal or stimulated conditions. Finally, inhibition of nitric oxide production by NAME or NMMA failed to prevent the effect of PAF on Cl reabsorption. It is concluded that the PAF-induced inhibition of Cl reabsorption in the TAL was mediated by cyclic GMP, likely independent of a nitric oxide synthesis.
Collapse
Affiliation(s)
- F Néant
- Laboratoire de Physiologie Rénale, Faculté Xavier Bichat, Université Paris 7, INSERM U 251, France
| | | | | |
Collapse
|
20
|
Terada Y, Tomita K, Nonoguchi H, Yang T, Marumo F. Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J Clin Invest 1993; 92:2339-45. [PMID: 8227349 PMCID: PMC288415 DOI: 10.1172/jci116838] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent studies have revealed that arginine vasopressin (AVP) has at least two types of receptors in the kidney: V1a receptor and V2 receptor. In this study, microlocalization of mRNA coding for V1a and V2 receptors was carried out in the rat kidney using a reverse transcription and polymerase chain reaction. Large signals for V1a receptor PCR product were detected in the glomerulus, initial cortical collecting duct, cortical collecting duct, outer medullary collecting duct, inner medullary collecting duct, and arcuate artery. Small but detectable signals were found in proximal convoluted and straight tubules, inner medullary thin limbs, and medullary thick ascending limbs. Large signals for V2 receptor mRNA were detected in the cortical collecting duct, outer medullary collecting duct, and inner medullary collecting duct. Small signals for V2 receptor were found in the inner medullary thick limbs, medullary thick ascending limbs, and initial cortical collecting duct. Next, we investigated V1a and V2 receptor mRNA regulation in the dehydrated state. During a 72-h water restriction state, the plasma AVP level increased and V2 receptor mRNA decreased in collecting ducts. In contrast, V1a receptor mRNA did not change significantly. Thus, the two AVP receptor subtypes are distributed differently along the nephron, and these mRNAs are regulated differently in the dehydrated state.
Collapse
Affiliation(s)
- Y Terada
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
21
|
Neant F, Bailly C. Luminal and intracellular cGMP inhibit the mTAL reabsorptive capacity through different pathways. Kidney Int 1993; 44:741-6. [PMID: 8258951 DOI: 10.1038/ki.1993.308] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since, in the presence of ANF, urinary cGMP was shown to be of glomerular origin, a possible paracrine effect of luminal cGMP on the medullary thick ascending limb (mTAL) function was investigated. Net chloride reabsorption (JCl) was determined on isolated microperfused tubules from mouse kidney. Addition of 10(-6) M cGMP to the lumen significantly decreased JCl by 46.5 +/- 4.6%. A concentration-dependent decrease of the transepithelial voltage was observed, with a 10(-8) M threshold. Added to the bath, ANF (10(-7) M) as well as urodilatin (6 x 10(-8) M) decreased JCl by 29.8 +/- 3.9% and 36.9 +/- 5.1%, respectively, an effect reproduced by 8-bromo cGMP and associated with a significant increase in tubular cGMP content. The inhibitory effect of ANF was similar whether or not cGMP was present in the lumen. Furthermore, increasing intracellular cGMP content by 8-bromo cGMP did not prevent a further effect of luminal cGMP. Finally, H-8, which blocked the effect of ANF, urodilatin, and 8-bromo cGMP, failed to abolish the luminal cGMP-induced decrease of JCl, suggesting that this effect did not require a cGMP-dependent protein kinase activation. It is concluded that luminal cGMP inhibits the reabsorptive function of the mTAL through a pathway different from the intracellular cGMP production.
Collapse
Affiliation(s)
- F Neant
- Laboratoire de Physiologie Rénale, Faculté Xavier Bichat, Université Paris 7, INSERM U 251, France
| | | |
Collapse
|
22
|
Mandon B, Siga E, Roinel N, de Rouffignac C. Ca2+, Mg2+ and K+ transport in the cortical and medullary thick ascending limb of the rat nephron: influence of transepithelial voltage. Pflugers Arch 1993; 424:558-60. [PMID: 8255743 DOI: 10.1007/bf00374924] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isolated segments of rat cortical (cTAL) and medullary (mTAL) thick ascending limbs were microperfused and the transepithelial net fluxes (JX) were determined by measuring the composition of the collected fluid with an electron microprobe. When perfused with symmetrical solutions both segments showed similar JNa and JCl and lumen-positive transepithelial voltage (Vte = 7-8 mV). JMg, JCa and JK were not significantly different from zero. When perfused with asymmetrical solutions (lumen 50 mM, bath 150 mM NaCl), the mean Vte were 23 mV and 17 mV in the cTAL and mTAL respectively; this rise was accompanied by significant increases in JMg and JCa in the cTAL, but not in the mTAL, and a marked increase in JK in both segments. It is concluded that, in the rat, divalent cations can be reabsorbed in the cTAL, and K+ can be reabsorbed in the cTAL and mTAL. The transport is voltage-dependent. The mTAL can reabsorb neither Mg2+ nor Ca2+, whatever Vte.
Collapse
Affiliation(s)
- B Mandon
- Département de Biologie Cellulaire et Moléculaire, CEA-Saclay, Gif-Sur-Yvette, France
| | | | | | | |
Collapse
|
23
|
Levy M, Cernacek P. Renal response to ANP in normal dogs during extreme inhibition of distal Na+ transport. Kidney Int 1993; 43:1236-42. [PMID: 8315937 DOI: 10.1038/ki.1993.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atrial natriuretic peptide (ANP) is thought to exert its major effect within the cortical and inner medullary collecting ducts (CCD and IMCD) by inhibiting Na+ transport along conductive channels and electroneutral pathways. These transport routes are also thought to be inhibited by a combination of amiloride, thiazide and bradykinin. We tested the ability of normal dogs to respond to ANP when various combinations of these Na+ transport inhibitors were present. In 24 dogs ANP raised UNaV from 31 +/- 6 to 223 +/- 41 mu Eq/min (P < 0.05), a delta of 192 mu Eq/min. Bradykinin alone did not depress delta UNaV in response to an ANP infusion. In the presence of extreme natriuresis caused by amiloride and thiazide, the response to ANP was magnified, presumably due to augmented Na+ delivery to the CCD and IMCD. When distal delivery of Na+ to one kidney was controlled by aortic clamping in the presence of amiloride, thiazide and bradykinin. delta UNaV in response to ANP was depressed (48 vs. 168 mu Eq/min). We conclude that in the presence of extreme inhibition of Na+ transport within the collecting ducts, ANP can still cause a further natriuresis, probably in the absence of augmented distal Na+ delivery.
Collapse
Affiliation(s)
- M Levy
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|