1
|
Zhang X, Wang T, Chen P, Chen Y, Wang Z, Xu T, Yu P, Liu P. Spinal myeloid sarcoma presenting as initial symptom in acute promyelocytic leukemia with a rare cryptic PLZF::RARα fusion gene: a case report and literature review. Front Oncol 2024; 14:1375737. [PMID: 38835381 PMCID: PMC11148225 DOI: 10.3389/fonc.2024.1375737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Background Acute promyelocytic leukemia (APL) is rarely caused by the PLZF::RARα fusion gene. While APL patients with PLZF::RARα fusion commonly exhibit diverse hematologic symptoms, the presentation of myeloid sarcoma (MS) as an initial manifestation is infrequent. Case presentation A 61-year-old patient was referred to our hospital with 6-month history of low back pain and difficulty walking. Before this admission, spine magnetic resonance imaging (MRI) conducted at another hospital revealed multiple abnormal signals in the left iliac bone and vertebral bodies spanning the thoracic (T11-T12), lumbar (L1-L4), and sacral (S1/S3) regions. This led to a provisional diagnosis of bone tumors with an unknown cause. On admission, complete blood count (CBC) test and peripheral blood smear revealed a slightly increased counts of monocytes. Immunohistochemical staining of both spinal and bone marrow (BM) biopsy revealed positive expression for CD117, myeloperoxidase (MPO), and lysozyme. BM aspirate showed a significant elevation in the percentage of promyelocytes (21%), which were morphologically characterized by round nuclei and hypergranular cytoplasm. Multiparameter flow cytometry of BM aspirate revealed that blasts were positive for CD13, CD33, CD117, and MPO. Through the integrated application of chromosome analysis, fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), and Sanger sequencing, it was determined that the patient possessed a normal karyotype and a rare cryptic PLZF::RARα fusion gene, confirming the diagnosis of APL. Conclusion In the present study, we report the clinical features and outcome of a rare APL patient characterized by a cryptic PLZF::RARα fusion and spinal myeloid sarcoma (MS) as the initial presenting symptom. Our study not only offers valuable insights into the heterogeneity of APL clinical manifestations but also emphasizes the crucial need to promptly consider the potential link between APL and MS for ensuring a timely diagnosis and personalized treatments.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| | - Tao Wang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang, China
| | - Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Chen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang, China
| | - Zhimei Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianhong Xu
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| | - Pengfei Yu
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| |
Collapse
|
2
|
Ghiaur A, Ghiaur G. Charting a course through the acute promyelocytic leukemia (APL)-like nebula: the enigmatic cousins of APL. Haematologica 2023; 108:2886-2888. [PMID: 37288506 PMCID: PMC10620559 DOI: 10.3324/haematol.2023.283232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
|
3
|
|
4
|
Korsos V, Miller WH. How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy. J Mol Endocrinol 2022; 69:T69-T83. [PMID: 36112505 DOI: 10.1530/jme-22-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Acute promyelocytic leukemia (APL) is associated with severe coagulopathy leading to rapid morbidity and mortality if left untreated. The definitive diagnosis of APL is made by identifying a balanced reciprocal translocation between chromosomes 15 and 17. This t(15;17) results in a fusion transcript of promyelocytic leukemia (PML) and retinoic acid receptor alpha (RARA) genes and the expression of a functional PML/RARA protein. Detection of a fused PML/RARA genomic DNA sequence using fluorescence in situ hybridization (FISH) or by detection of the PML/RARA fusion transcript via reverse transcriptase polymerase chain reaction (RT-PCR) has revolutionized the diagnosis and monitoring of APL. Once confirmed, APL is cured in over 90% of cases, making it the most curable subtype of acute leukemia today. Patients with low-risk APL are successfully treated using a chemotherapy-free combination of all-trans retinoic acid and arsenic trioxide (ATO). In this review, we explore the work that has gone into the modern-day diagnosis and highly successful treatment of this once devastating leukemia.
Collapse
Affiliation(s)
- Victoria Korsos
- Division of Hematology, Jewish General Hospital, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Wilson H Miller
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, Canada
- Lady Davis Institute for Medical Research, Montreal, Canada
| |
Collapse
|
5
|
A novel fusion protein TBLR1-RARα acts as an oncogene to induce murine promyelocytic leukemia: identification and treatment strategies. Cell Death Dis 2021; 12:607. [PMID: 34117212 PMCID: PMC8196070 DOI: 10.1038/s41419-021-03889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and its fusion partners. For decades, the advent of all-trans retinoic acid (ATRA) synergized with arsenic trioxide (As2O3) has turned most APL from highly fatal to highly curable. TBLR1-RARα (TR) is the tenth fusion gene of APL identified in our previous study, with its oncogenic role in the pathogenesis of APL not wholly unraveled. In this study, we found the expression of TR in mouse hematopoietic progenitors induces blockade of differentiation with enhanced proliferative capacity in vitro. A novel murine transplantable leukemia model was then established by expressing TR fusion gene in lineage-negative bone marrow mononuclear cells. Characteristics of primary TR mice revealed a rapid onset of aggressive leukemia with bleeding diathesis, which recapitulates human APL more accurately than other models. Despite the in vitro sensitivity to ATRA-induced cell differentiation, neither ATRA monotherapy nor combination with As2O3 confers survival benefit to TR mice, consistent with poor clinical outcome of APL patients with TR fusion gene. Based on histone deacetylation phenotypes implied by bioinformatic analysis, HDAC inhibitors demonstrated significant survival superiority in the survival of TR mice, yielding insights into clinical efficacy against rare types of APL.
Collapse
|
6
|
Fabiani E, Cicconi L, Nardozza AM, Cristiano A, Rossi M, Ottone T, Falconi G, Divona M, Testi AM, Annibali O, Castelli R, Lazarevic V, Rego E, Montesinos P, Esteve J, Venditti A, Della Porta M, Arcese W, Lo-Coco F, Voso MT. Mutational profile of ZBTB16-RARA-positive acute myeloid leukemia. Cancer Med 2021; 10:3839-3847. [PMID: 34042280 PMCID: PMC8209618 DOI: 10.1002/cam4.3904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background The ZBTB16‐RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor‐α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all‐trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis. Aims The mutational profile of ZBTB16‐RARA rearranged AML has not been described so far. Materials and methods We performed targeted next‐generation sequencing of 24 myeloid genes in BM diagnostic samples from seven ZBTB16‐RARA+AML, 103 non‐RARA rearranged AML, and 46 APL. The seven ZBTB16‐RARA‐positive patients were then screened for additional mutations using whole exome sequencing (n = 3) or an extended cancer panel including 409 genes (n = 4). Results ZBTB16‐RARA+AML showed an intermediate number of mutations per patient and involvement of different genes, as compared to APL and other AMLs. In particular, we found a high incidence of ARID1A mutations in ZBTB16‐RARA+AML (five of seven cases, 71%). Mutations in ARID2 and SMARCA4, other tumor suppressor genes also belonging to SWI/SNF chromatin remodeling complexes, were also identified in one case (14%). Discussion and conclusion Our data suggest the association of mutations of the ARID1A gene and of the other members of the SWI/SNF chromatin remodeling complexes with ZBTB16‐RARA+AMLs, where they may support the peculiar disease phenotype.
Collapse
Affiliation(s)
- Emiliano Fabiani
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Laura Cicconi
- Unit of Hematology, Santo Spirito Hospital, Rome, Italy
| | - Anna Maria Nardozza
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Marianna Rossi
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Anna Maria Testi
- Department of Translational and Precision Medicine and Hematology, Sapienza University, Rome, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplantation Unit, University Campus Biomedico, Rome, Italy
| | - Roberto Castelli
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Milan, Italy
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Eduardo Rego
- Department of Internal Medicine, Medical School of Ribeirao Preto, Sau Paulo, Brazil
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnico la Fe, Valencia, Spain
| | - Jordi Esteve
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Matteo Della Porta
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| |
Collapse
|
7
|
Mannan A, Muhsen IN, Barragán E, Sanz MA, Mohty M, Hashmi SK, Aljurf M. Genotypic and Phenotypic Characteristics of Acute Promyelocytic Leukemia Translocation Variants. Hematol Oncol Stem Cell Ther 2020; 13:189-201. [PMID: 32473106 DOI: 10.1016/j.hemonc.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a special disease entity of acute myeloid leukemia (AML). The clinical use of all-trans retinoic acid (ATRA) has transformed APL into the most curable form of AML. The majority of APL cases are characterized by the fusion gene PML-RARA. Although the PML-RARA fusion gene can be detected in almost all APL cases, translocation variants of APL have been reported. To date, this is the most comprehensive review of these translocations, discussing 15 different variants. Reviewed genes involved in APL variants include: ZBTB16, NPM, NuMA, STAT5b, PRKAR1A, FIP1L1, BCOR, NABP1, TBLR1, GTF2I, IRF2BP2, FNDC3B, ADAMDTS17, STAT3, and TFG. The genotypic and phenotypic features of APL translocations are summarized. All reported studies were either case reports or case series indicating the rarity of these entities and limiting the ability to drive conclusions regarding their characteristics. However, reported variants have shown variable clinical and morphological features, with diverse responsiveness to ATRA.
Collapse
Affiliation(s)
- Abdul Mannan
- Betsi Cadwaladr University Health Board, Bangor, UK
| | - Ibrahim N Muhsen
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA.
| | - Eva Barragán
- Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | - Miguel A Sanz
- Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | | | - Shahrukh K Hashmi
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Sobas M, Talarn-Forcadell MC, Martínez-Cuadrón D, Escoda L, García-Pérez MJ, Mariz J, Mela-Osorio MJ, Fernández I, Alonso-Domínguez JM, Cornago-Navascués J, Rodríguez-Macias G, Amutio ME, Rodríguez-Medina C, Esteve J, Sokół A, Murciano-Carrillo T, Calasanz MJ, Barrios M, Barragán E, Sanz MA, Montesinos P. PLZF-RAR α, NPM1-RAR α, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review. Cancers (Basel) 2020; 12:cancers12051313. [PMID: 32455804 PMCID: PMC7281281 DOI: 10.3390/cancers12051313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.
Collapse
Affiliation(s)
- Marta Sobas
- Blood Neoplasms and Bone Marrow Transplantation, Department of Hematology, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | | | - David Martínez-Cuadrón
- Department of Hematology, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain; (D.M.-C.); (M.A.S.)
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
| | - Lourdes Escoda
- Hospital of Tarragona “Joan XXIII”, Hematology-ICO, 43-005 Tarragona, Spain; (M.C.T.-F.); (L.E.)
| | | | - Jose Mariz
- Department of Hematology, Istituto Portugues de Oncologi IPO, 4200-072 Porto, Portugal;
| | - María J. Mela-Osorio
- Fundaleu, Department of Hematology, Buenos Aires 1114, Argentina; (M.J.M.-O.); (I.F.)
| | - Isolda Fernández
- Fundaleu, Department of Hematology, Buenos Aires 1114, Argentina; (M.J.M.-O.); (I.F.)
| | - Juan M. Alonso-Domínguez
- Department of Hematology, University Hospital Universitario Fundacion Jimenez Diaz IIS-FJD, 28-040 Madrid, Spain; (J.M.A.-D.); (J.C.-N.)
| | - Javier Cornago-Navascués
- Department of Hematology, University Hospital Universitario Fundacion Jimenez Diaz IIS-FJD, 28-040 Madrid, Spain; (J.M.A.-D.); (J.C.-N.)
| | | | - María E. Amutio
- Department of Hematology, Hospital de Cruces, 48-903 Barakaldo, Spain;
| | - Carlos Rodríguez-Medina
- Department of Hematology, Hospital Universitario Dr. Negrin, 35-010 Las Palmas de Gran Canaria, Spain;
| | - Jordi Esteve
- Department of Hematology, Hospital Clinic, 08-036 Barcelona, Spain;
| | - Agnieszka Sokół
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | | | - María J. Calasanz
- Department of Hematology, Clinica Universitaria de Navarra, 31-008 Pamplona, Spain;
| | - Manuel Barrios
- Department of Hematology, Hospital Carlos Haya, 29-014 Málaga, Spain;
| | - Eva Barragán
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
- Department of Molecular Biology Laboratory, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain
| | - Miguel A. Sanz
- Department of Hematology, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain; (D.M.-C.); (M.A.S.)
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
| | - Pau Montesinos
- Department of Hematology, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain; (D.M.-C.); (M.A.S.)
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
- Correspondence:
| |
Collapse
|
9
|
Thomas X. Acute Promyelocytic Leukemia: A History over 60 Years-From the Most Malignant to the most Curable Form of Acute Leukemia. Oncol Ther 2019; 7:33-65. [PMID: 32700196 PMCID: PMC7360001 DOI: 10.1007/s40487-018-0091-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) that is cytogenetically characterized by a balanced reciprocal translocation between chromosomes 15 and 17, which results in the fusion of the promyelocytic leukemia (PML) and retinoic acid receptor alpha (RARα) genes. Because patients with APL present a tendency for severe bleeding, often resulting in an early fatal course, APL was historically considered to be one of the most fatal forms of acute leukemia. However, therapeutic advances, including anthracycline- and cytarabine-based chemotherapy, have significantly improved the outcomes of APL patients. Due to the further introduction of all-trans retinoic acid (ATRA) and-more recently-the development of arsenic trioxide (ATO)-containing regimens, APL is currently the most curable form of AML in adults. Treatment with these new agents has introduced the concept of cure through targeted therapy. With the advent of revolutionary ATRA-ATO combination therapies, chemotherapy can now be safely omitted from the treatment of low-risk APL patients. In this article, we review the six-decade history of APL, from its initial characterization to the era of chemotherapy-free ATRA-ATO, a model of cancer-targeted therapy.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital, Pierre Bénite, France.
| |
Collapse
|
10
|
Pallavi R, Mazzarella L, Pelicci PG. Advances in precision epigenetic treatment for acute promyelocytic leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1612238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rani Pallavi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Division of Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
11
|
The forty years of medical genetics in China. J Genet Genomics 2018; 45:569-582. [PMID: 30459119 DOI: 10.1016/j.jgg.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Medical genetics is the newest cutting-edge discipline that focuses on solving medical problems using genetics knowledge and methods. In China, medical genetics research activities initiated from a poor inner basis but a prosperous outer environment. During the 40 years of reform and opening-up policy, Chinese scientists contributed significantly in the field of medical genetics, garnering considerable attention worldwide. In this review, we highlight the significant findings and/or results discovered by Chinese scientists in monogenic diseases, complex diseases, cancer, genetic diagnosis, as well as gene manipulation and gene therapy. Due to these achievements, China is widely recognized to be at the forefront of medical genetics research and development. However, the significant progress and development that has been achieved could not have been accomplished without sufficient funding and a well-constructed logistics network. The successful implementation of translational and precise medicine sourced from medical genetics will depend on an open ethics policy and intellectual property protection, along with strong support at the national industry level.
Collapse
|
12
|
Mackeh R, Marr AK, Fadda A, Kino T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801071. [PMID: 30718982 PMCID: PMC6348741 DOI: 10.1177/1550762918801071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent
transcription factors. They are essential for human life, mediating the actions
of lipophilic molecules, such as steroid hormones and metabolites of fatty acid,
cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins
(ZNFs) form the largest family of the transcription factors in humans and are
characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type
ZNFs are conserved throughout evolution, suggesting their involvement in
preserved biological activities, such as general transcriptional regulation and
development/differentiation of organs/tissues observed in the early embryonic
phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated
box (KRAB) domain, appeared relatively late in evolution and have significantly
increased family members in mammals including humans, possibly modulating their
complicated transcriptional network and/or supporting the morphological
development/functions specific to them. Such evolutional characteristics of the
C2H2-type ZNFs indicate that these molecules influence the NR functions
conserved through evolution, whereas some also adjust them to meet with specific
needs of higher organisms. We review the interaction between NRs and C2H2-type
ZNFs by focusing on some of the latter molecules.
Collapse
|
13
|
Baba S, Pandith A, Shah Z, Baba R. Pathogenetic implication of fusion genes in acute promyelocytic leukemia and their diagnostic utility. Clin Genet 2018; 95:41-52. [DOI: 10.1111/cge.13372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/16/2023]
Affiliation(s)
- S.M. Baba
- Department of Immunology and Molecular MedicineSher‐I‐Kashmir Institute of Medical Sciences Srinagar India
| | - A.A. Pandith
- Advanced Centre for Human GeneticsSher‐I‐Kashmir Institute of Medical Sciences Srinagar India
| | - Z.A. Shah
- Department of Immunology and Molecular MedicineSher‐I‐Kashmir Institute of Medical Sciences Srinagar India
| | - R.A. Baba
- Department of Immunology and Molecular MedicineSher‐I‐Kashmir Institute of Medical Sciences Srinagar India
| |
Collapse
|
14
|
Ren HY, Liu F, Huang GL, Liu Y, Shen JX, Zhou P, Liu WM, Shen DY. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget 2018; 8:6718-6729. [PMID: 28035062 PMCID: PMC5351665 DOI: 10.18632/oncotarget.14267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Abnormal expression and function of retinoic acid receptor α (RARα) have been reported to be associated with various cancers including acute promyelocytic leukemia and hepatocellular carcinoma. However, the role and the mechanism of RARα in gastric carcinoma (GC) were unknown. Here, the expression of RARα was frequently elevated in human GC tissues and cell lines, and its overexpression was closely correlated with tumor size, lymph node metastasis and clinical stages in GC patients. Moreover, RARα overexpression was related with pathological differentiation. Functionally, RARα knockdown inhibited the proliferation and metastasis of GC cells, as well as enhanced drug susceptibility both in vitro and in vivo. Additionally, RARα knockdown suppressed GC progression through regulating the expression of cell proliferation, cell cycle, invasion and drug resistance associated proteins, such as PCNA, CyclinB1, CyclinD2, CyclinE, p21, MMP9 and MDR1. Mechanistically, the above oncogenic properties of RARα in GC were closely associated with Akt signaling activation. Moreover, overexpression of RARα was induced by IL-1β/Akt signaling activation, which suggested a positive feedback loop of IL-1β/Akt/RARα/Akt signaling in GC. Taken together, we demonstrated that RARα was frequently elevated in GC and exerted oncogenic properties. It might be a potential molecular target for GC treatment.
Collapse
Affiliation(s)
- Hong-Yue Ren
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, China
| | - Fan Liu
- Department of Medical College, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Gui-Li Huang
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Department of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Yu Liu
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| | - Jin-Xing Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| | - Pan Zhou
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Department of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Wen-Ming Liu
- Department of Gastroenterology, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen 361003, Fujian Province, China
| | - Dong-Yan Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| |
Collapse
|
15
|
Kinnersley B, Houlston RS, Bondy ML. Genome-Wide Association Studies in Glioma. Cancer Epidemiol Biomarkers Prev 2018; 27:418-428. [PMID: 29382702 DOI: 10.1158/1055-9965.epi-17-1080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/23/2023] Open
Abstract
Since the first reports in 2009, genome-wide association studies (GWAS) have been successful in identifying germline variants associated with glioma susceptibility. In this review, we describe a chronological history of glioma GWAS, culminating in the most recent study comprising 12,496 cases and 18,190 controls. We additionally summarize associations at the 27 glioma-risk SNPs that have been reported so far. Future efforts are likely to be principally focused on assessing association of germline-risk SNPs with particular molecular subgroups of glioma, as well as investigating the functional basis of the risk loci in tumor formation. These ongoing studies will be important to maximize the impact of research into glioma susceptibility, both in terms of insight into tumor etiology as well as opportunities for clinical translation. Cancer Epidemiol Biomarkers Prev; 27(4); 418-28. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Melissa L Bondy
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
16
|
Eya2, a Target Activated by Plzf, Is Critical for PLZF-RARA-Induced Leukemogenesis. Mol Cell Biol 2017; 37:MCB.00585-16. [PMID: 28416638 DOI: 10.1128/mcb.00585-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
PLZF is a transcription factor that confers aberrant self-renewal in leukemogenesis, and the PLZF-RARA fusion gene causes acute promyelocytic leukemia (APL) through differentiation block. However, the molecular mechanisms of aberrant self-renewal underlying PLZF-mediated leukemogenesis are poorly understood. To investigate these mechanisms, comprehensive expression profiling of mouse hematopoietic stem/progenitor cells transduced with Plzf was performed, which revealed the involvement of a key transcriptional coactivator, Eya2, a target molecule shared by Plzf and PLZF-RARA, in the aberrant self-renewal. Indeed, PLZF-RARA as well as Plzf rendered those cells immortalized through upregulation of Eya2. Eya2 also led to immortalization without differentiation block, while depletion of Eya2 suppressed clonogenicity in cells immortalized by PLZF-RARA without influence on differentiation and apoptosis. Interestingly, cancer outlier profile analysis of human samples of acute myeloid leukemia (AML) in The Cancer Genome Atlas (TCGA) revealed a subtype of AML that strongly expressed EYA2 In addition, gene set enrichment analysis of human AML samples, including TCGA data, showed that this subtype of AML was more closely associated with the properties of leukemic stem cells in its gene expression signature than other AMLs. Therefore, EYA2 may be a target for molecular therapy in this subtype of AML, including PLZF-RARA APL.
Collapse
|
17
|
Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. Case Rep Hematol 2017; 2017:7657393. [PMID: 28529810 PMCID: PMC5424191 DOI: 10.1155/2017/7657393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/09/2017] [Indexed: 11/17/2022] Open
Abstract
Several variant RARA translocations have been reported in acute promyelocytic leukemia (APL) of which the t(11;17)(q23;q21), which results in a ZBTB16-RARA fusion, is the most widely identified and is largely resistant to therapy with all-trans retinoic acid (ATRA). The clinical course together with the cytogenetic and molecular characterization of a case of ATRA-unresponsive ZBTB16-RARA APL is described. Additional mutations potentially cooperating with the translocation fusion product in leukemogenesis have been hitherto unreported in ZBTB16-RARA APL and were sought by application of a next-generation sequencing approach to detect those recurrently found in myeloid malignancies. This technique identified a solitary, low level mutation in the CEBPA gene. Molecular profiling of additional mutations may provide a platform to individualise therapeutic management in patients with this rare form of APL.
Collapse
|
18
|
Battistella M, Burry LD, Seki JT. Retinoic acid syndrome after one dose of all-transretinoic acid. J Oncol Pharm Pract 2016. [DOI: 10.1191/1078155204jp128oa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
All-trans-retinoic acid (ATRA) is typically used as a first line agent in the treatment of acute promyelocytic leukaemia (APL), achieving complete remission (CR) rates (incombination with chemotherapy) of about 90%. One of the drawbacks of the use of ATRA is that up to 30% of patients can present with retinoic acid syndrome (RAS), which can be fatal in some patients. We describe a case of RAS after only one dose of ATRA, which to our knowledge has not previously been identified in the literature. The pathophysiology and treatment of APL is presented. A clinical description of RAS is outlined, and an evaluation of risk factors for developing RAS is reviewed.
Collapse
Affiliation(s)
- Marisa Battistella
- Pharmacy Department, University Health Network, Toronto, Ontario, Canada
| | - Lisa D Burry
- Pharmacy Department, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jack T Seki
- Pharmacy Department, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Zuo W, Wang SA, DiNardo C, Yabe M, Li S, Medeiros LJ, Tang G. Acute leukaemia and myelodysplastic syndromes with chromosomal rearrangement involving 11q23 locus, but not MLL gene. J Clin Pathol 2016; 70:244-249. [PMID: 27496968 DOI: 10.1136/jclinpath-2016-203831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022]
Abstract
AIMS Chromosome 11q23 translocations, resulting in MLL (KMT2A) rearrangement, have been well characterised in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). However, little is known of haematopoietic neoplasms associated with 11q23 translocation but without MLL rearrangement (11q23+/MLL-). The aim of this study is to characterise such cases with 11q23+/MLL-. METHODS AND RESULTS We retrospectively searched our database for cases with haematopoietic malignancies with 11q23+/MLL-. We identified nine patients, two with AML, two with B-lymphoblastic leukaemia (B-ALL); two with T-lymphoblastic leukaemia (T-ALL), two with myelodysplastic syndrome (MDS) and one with chronic myelomonocytic leukaemia (CMML). The translocations included t(X;11)(p11.2;q23), t(2;11)(p21;q23), t(6;11)(q27;q23), t(8;9;11)(q13;q13;q23), t(11;11)(p15;q23), t(11;14)(q23;q24) and t(11;15)(q23;q14). Five of six patients with acute leukaemia had received chemotherapy and detection of 11q23 translocation occurred at time of disease relapse. Both patients with MDS and the patient with CMML had 11q23 translocation detected at time of initial diagnosis, all three patients progressed to AML after >1 year on hypomethylating agent therapy. All patients received risk-adapted therapies, including stem cell transplant in five patients. At the last follow-up, eight patients died with a median overall survival of 14 months. CONCLUSIONS 11q23+/MLL- occurs rarely, involving different partner chromosomes and showing clinical and pathological features and disease subtypes different from those cases with MLL rearrangement. 11q23+/MLL- appears to be associated with clonal evolution/disease progression in acute leukaemia, a high risk for AML progression in MDS/CMML and a high incidence of disease relapse.
Collapse
Affiliation(s)
- Wenli Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Hematology, Zhengzhou University Affiliated Cancer Hospital/Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mariko Yabe
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Baba SM, Azad NA, Shah ZA, Afroze D, Pandith AA, Jan A, Aziz SA, Dar FA. PHA-Induced Peripheral Blood Cytogenetics and Molecular Analysis: a Valid Diagnostic and Follow-up Modality for Acute Promyelocytic Leukemia Patients Treated with ATRA and/or Arsenic Tri-oxide. Asian Pac J Cancer Prev 2016; 17:1999-2006. [PMID: 27221887 DOI: 10.7314/apjcp.2016.17.4.1999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APML) is characterized by the reciprocal translocation t(15;17) (q22;q12) resulting in the PML-RARα fusion gene. A dual diagnostic and follow up approach was applied including cytogenetic demonstration of the t(15;17) translocation and detection of PML-RARα chimeric transcripts by molecular means. PURPOSE Conventional cytogenetics involving bone marrow is beset with high probability of poor metaphase index and was substituted with phytohemagglutinin (PHA)-induced peripheral blood culture based cytogenetic analysis as a diagnostic and follow up modality in APML patients of Kashmir (North India). Both qualitative (RT-PCR) and quantitative (Q-PCR) tests were simultaneously carried out to authenticate the modified cytogenetics. MATERIALS AND METHODS Patient samples were subjected to the said techniques to establish their baseline as well as follow-up status. RESULTS Initial cytogenetics revealed 30 patients (81%) positive for t(15;17) whereas 7 (19%) had either cryptic translocation or were negative for t(15;17). Two cases had chromosome 16q deletion and no hallmark translocation t(15;17). Q-PCR status for PML-RARα was found to be positive for all patients. All the APML patients were reassessed at the end of consolidation phase and during maintenance phase of chemotherapy where 6 patients had molecular relapse, wherein 4 also demonstrated cytogenetic relapse. CONCLUSIONS It was found that PHA-induced peripheral blood cytogenetics along with molecular analysis could prove a reliable modality in the diagnosis and assessment of follow up response of APML patients.
Collapse
Affiliation(s)
- Shahid M Baba
- Department of Immunology and Molecular Medicine, Srinagar, J and K, India E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bansal N, David G, Farias E, Waxman S. Emerging Roles of Epigenetic Regulator Sin3 in Cancer. Adv Cancer Res 2016; 130:113-35. [PMID: 27037752 DOI: 10.1016/bs.acr.2016.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Revolutionizing treatment strategies is an urgent clinical need in the fight against cancer. Recently the scientific community has recognized chromatin-associated proteins as promising therapeutic candidates. However, there is a need to develop more targeted epigenetic inhibitors with less toxicity. Sin3 family is one such target which consists of evolutionary conserved proteins with two paralogues Sin3A and Sin3B. Sin3A/B are global transcription regulators that provide a versatile platform for diverse chromatin-modifying activities. Sin3 proteins regulate key cellular functions that include cell cycle, proliferation, and differentiation, and have recently been implicated in cancer pathogenesis. In this chapter, we summarize the key concepts of Sin3 biology and elaborate the recent advancements in the role of Sin3 proteins in cancer with specific examples in multiple endocrine neoplasia type 2, pancreatic ductal adenocarcinoma, and triple negative breast cancer. Finally, a program to create an integrative approach for screening antitumor agents that target chromatin-associated factors like Sin3 is presented.
Collapse
Affiliation(s)
- N Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - G David
- New York University School of Medicine, New York, NY, United States
| | - E Farias
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - S Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
22
|
Mi JQ, Chen SJ, Zhou GB, Yan XJ, Chen Z. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer. J Intern Med 2015; 278:627-42. [PMID: 26058416 DOI: 10.1111/joim.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. It has been found that all-trans-retinoic acid (ATRA) or arsenic trioxide (ATO) alone exerts therapeutic effect on APL patients with the PML-RARα fusion gene, and the combination of both drugs can act synergistically to further enhance the cure rate of the patients. Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.
Collapse
Affiliation(s)
- J-Q Mi
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-J Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G-B Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-J Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, China
| | - Z Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Kinnersley B, Labussière M, Holroyd A, Di Stefano AL, Broderick P, Vijayakrishnan J, Mokhtari K, Delattre JY, Gousias K, Schramm J, Schoemaker MJ, Fleming SJ, Herms S, Heilmann S, Schreiber S, Wichmann HE, Nöthen MM, Swerdlow A, Lathrop M, Simon M, Bondy M, Sanson M, Houlston RS. Genome-wide association study identifies multiple susceptibility loci for glioma. Nat Commun 2015; 6:8559. [PMID: 26424050 PMCID: PMC4600760 DOI: 10.1038/ncomms9559] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Previous genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of glioma. To identify new glioma susceptibility loci, we conducted a meta-analysis of four GWAS (totalling 4,147 cases and 7,435 controls), with imputation using 1000 Genomes and UK10K Project data as reference. After genotyping an additional 1,490 cases and 1,723 controls we identify new risk loci for glioblastoma (GBM) at 12q23.33 (rs3851634, near POLR3B, P=3.02 × 10(-9)) and non-GBM at 10q25.2 (rs11196067, near VTI1A, P=4.32 × 10(-8)), 11q23.2 (rs648044, near ZBTB16, P=6.26 × 10(-11)), 12q21.2 (rs12230172, P=7.53 × 10(-11)) and 15q24.2 (rs1801591, near ETFA, P=5.71 × 10(-9)). Our findings provide further insights into the genetic basis of the different glioma subtypes.
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Marianne Labussière
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
| | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Anna-Luisa Di Stefano
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie 2, F-75013 Paris, France
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jayaram Vijayakrishnan
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Karima Mokhtari
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Laboratoire de neuropathologie R Escourolle, F-75013 Paris, France
| | - Jean-Yves Delattre
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie 2, F-75013 Paris, France
| | - Konstantinos Gousias
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Johannes Schramm
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Sarah J. Fleming
- Centre for Epidemiology and Biostatistics, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Herms
- Department of Biomedicine, Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Stefanie Heilmann
- Department of Biomedicine, Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Stefan Schreiber
- 1st Medical Department, University Clinic Schleswig-Holstein, Campus Kiel, House 6, Arnold-Heller-Straße 3, Kiel 24105, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Arnold-Heller-Straße 3, Kiel 24105, Germany
| | - Heinz-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Markus M. Nöthen
- Department of Biomedicine, Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Mark Lathrop
- AP-HP, GH Pitié-Salpêtrière, Laboratoire de neuropathologie R Escourolle, F-75013 Paris, France
- Foundation Jean Dausset-CEPH, 27 Rue Juliette Dodu, 75010 Paris, France
- Génome Québec, Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 0G1
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Melissa Bondy
- Division of Hematology-Oncology, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie 2, F-75013 Paris, France
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
24
|
Regulation of growth hormone secretion by (pro)renin receptor. Sci Rep 2015; 5:10878. [PMID: 26039928 PMCID: PMC4454151 DOI: 10.1038/srep10878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022] Open
Abstract
(Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H+-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resected, growth hormone-producing adenomas (GHomas) than in nonfunctional pituitary adenomas. GHomas strongly expressing PRR showed excess GH secretion, as evidenced by distinctly high plasma GH and insulin-like growth factor-1 levels, as well as an elevated nadir GH in response to the oral glucose tolerance test. Suppression of PRR expression in rat GHoma-derived GH3 cells using PRR siRNA resulted in reduced GH secretion and significantly enhanced intracellular GH accumulation. GH3 treatment with bafilomycin A1, a V-ATPase inhibitor, also blocked GH release, indicating mediation via impaired cellular acidification of V-ATPase. PRR knockdown decreased Atp6l, a subunit of the Vo domain that destabilizes V-ATPase assembly, increased intracellular GH, and decreased GH release. To our knowledge, this is the first report demonstrating a pivotal role for PRR in a pituitary hormone release mechanism.
Collapse
|
25
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
26
|
Ablain J, de Thé H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int J Cancer 2014; 135:2262-72. [PMID: 25130873 DOI: 10.1002/ijc.29081] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 12/22/2022]
Abstract
Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies.
Collapse
Affiliation(s)
- Julien Ablain
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris Cedex 10, France; INSERM U 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris Cedex 10, France; CNRS UMR 7212, Hôpital St. Louis, Paris Cedex 10, France
| | | |
Collapse
|
27
|
Expression of H1.5 and PLZF in granulosa cell tumors and normal ovarian tissues: a short report. Cell Oncol (Dordr) 2014; 37:229-34. [DOI: 10.1007/s13402-014-0174-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2014] [Indexed: 11/26/2022] Open
|
28
|
Matsuzawa K, Izawa S, Ohkura T, Ohkura H, Ishiguro K, Yoshida A, Takiyama Y, Haneda M, Shigemasa C, Yamamoto K, Taniguchi SI. Implication of intracellular localization of transcriptional repressor PLZF in thyroid neoplasms. BMC Endocr Disord 2014; 14:52. [PMID: 24990570 PMCID: PMC4087200 DOI: 10.1186/1472-6823-14-52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Promyelocytic leukaemia zinc finger (PLZF) is a transcriptional repressor that was originally isolated from a patient with promyelocytic leukaemia. PLZF also affects key elements for cell cycle progression, such as cyclin A, and can affect the tumourigenicity of various cancers. Thus far, the behaviour of PLZF in thyroid carcinoma remains unclear. METHODS We analysed the expression profile of PLZF in different types of benign and malignant thyroid lesions as well as in normal thyroid tissue. Specifically, we examined PLZF expression in normal thyroid (N; n = 4), adenomatous lesion (AL; n = 5), follicular adenoma (FA; n = 2), papillary thyroid carcinoma (PTC; n = 20), and anaplastic thyroid carcinoma (ATC; n = 3) samples. PLZF expression was estimated by western blotting and immunohistochemical (IHC) staining. RESULTS PLZF was expressed in all samples of thyroid lesions examined. In N, AL, and FA, PLZF was mainly localized in the nucleus. In contrast, in PTC and ATC, PLZF was mainly expressed in the cytosol with high intensity. In more detail, the cytoplasmic IHC scores in PTC with capsular invasion (CI) and lymph node (LN) metastasis were higher than those in PTC without CI and LN metastasis. CONCLUSIONS PLZF shows different subcellular localizations among PTC, ATC, and other thyroid lesions. Furthermore, high cytoplasmic expression of PLZF may be correlated with CI and LN metastasis in thyroid carcinoma. The present report is the first to describe the implications of intracellular PLZF expression in thyroid carcinomas.
Collapse
Affiliation(s)
- Kazuhiko Matsuzawa
- Department of Regional Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Shoichiro Izawa
- Department of Molecular Medicine and Therapeutics, Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Tsuyoshi Ohkura
- Department of Molecular Medicine and Therapeutics, Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hiroko Ohkura
- Department of Regional Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Kiyosuke Ishiguro
- Department of Surgery, Division of Organ Regeneration Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Akio Yoshida
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yumi Takiyama
- Department of Medicine, Division of Metabolism and Biosystemic Science, Asahikawa Medical University, 1-1-1 Midorigaokahigashinijyo, Asahikawa 078-8510, Japan
| | - Masakazu Haneda
- Department of Medicine, Division of Metabolism and Biosystemic Science, Asahikawa Medical University, 1-1-1 Midorigaokahigashinijyo, Asahikawa 078-8510, Japan
| | | | - Kazuhiro Yamamoto
- Department of Molecular Medicine and Therapeutics, Division of Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Shin-ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
29
|
Faulk K, Gore L, Cooper T. Overview of therapy and strategies for optimizing outcomes in de novo pediatric acute myeloid leukemia. Paediatr Drugs 2014; 16:213-27. [PMID: 24639021 DOI: 10.1007/s40272-014-0067-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although acute myelogenous leukemia (AML) accounts for <20 % of leukemia in children, it is responsible for over half of all pediatric leukemia deaths. Improvement in event-free survival rates, now over 50 %, are due largely to intensification of chemotherapy, aggressive supportive care, development of risk stratification based on cytogenetic and molecular markers, and improved salvage regimens. Despite this improvement over the past few decades, the survival rates have recently plateaued, and further improvement will need to take into account advances in molecular characterization of AML, development of novel agents, and better understanding of host factors influencing toxicity and response to chemotherapy. This article reviews the epidemiology and biology trends in diagnosis and treatment of pediatric acute myelogenous leukemia.
Collapse
Affiliation(s)
- Kelly Faulk
- Department of Pediatrics, University of Colorado School of Medicine/Anschutz Medical Campus, Aurora, CO, USA
| | | | | |
Collapse
|
30
|
Momeni M, Kalir T, Farag S, Kinoshita Y, Roman TY, Chuang L, Fishman DA, Burstein DE. Immunohistochemical detection of promyelocytic leukemia zinc finger and histone 1.5 in uterine leiomyosarcoma and leiomyoma. Reprod Sci 2014; 21:1171-6. [PMID: 24784718 DOI: 10.1177/1933719114532845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The accurate distinction of leiomyoma from leiomyosarcoma is essential for patient management. However, the distinction can be difficult to make, particularly in tissue biopsy samples. Immunohistochemistry has been established as a useful technique to aid in the diagnosis of malignancies. The advantages of immunohistochemical studies are their ease of use and interpretation. This study is the first to evaluate the utility of the promyelocytic leukemia zinc finger (PLZF) protein and the histone 1.5 (H1.5) protein as potential diagnostic immunohistochemical markers for distinguishing leiomyosarcoma from leiomyoma. METHODS Tissue samples from 21 leiomyosarcomas and 26 leiomyomas were studied. The student t-test and the Fisher exact test were used to calculate the differences in staining between the 2 groups. RESULTS Statistically significant differences were found in the staining indices of anti-PLZF and anti-H1.5 when comparing benign and malignant tumors (P < .0001 and P < .0001, respectively). The mean H1.5 staining score in leiomyosarcomas was 158.3, compared to 28.3 in leiomyomas. The mean PLZF score in leiomyosarcomas was 1.5 in contrast to 71.5 in leiomyomas. For H1.5 at a score ≥60, the sensitivity and specificity were 90.5% and 84.6%, respectively. For PLZF, a score ≤15 had a test sensitivity and specificity of 100% and 80.8%, respectively. This suggests that staining for H1.5 or PLZF can serve as a good screening test. Additionally, combining the 2 immunostains results in a sensitivity and specificity of 90.5% and 97.5%, respectively, in differentiating between leiomyoma and leiomyosarcoma. CONCLUSIONS We describe immunostaining for PLZF and H1.5 in benign and malignant uterine smooth muscle tumors. Statistically significant differences in staining patterns were found, suggesting utility in distinguishing leiomyosarcomas from leiomyomas.
Collapse
Affiliation(s)
- Mazdak Momeni
- Department of Obstetrics, Division of Gynecologic Oncology, Gynecology and Reproductive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamara Kalir
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Farag
- Department of Obstetrics, Division of Gynecologic Oncology, Gynecology and Reproductive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taisha Y Roman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linus Chuang
- Department of Obstetrics, Division of Gynecologic Oncology, Gynecology and Reproductive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Fishman
- Department of Obstetrics, Division of Gynecologic Oncology, Gynecology and Reproductive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David E Burstein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol 2014; 7:347-57. [PMID: 24720386 DOI: 10.1586/17474086.2014.903794] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The t(15;17)(q24;q21), generating a PML-RARA fusion gene, is the hallmark of acute promyelocytic leukemia (APL). At present, eight other genes fusing with RARA have been identified. The resulting fusion proteins retain domains of the RARA protein allowing binding to retinoic acid response elements (RARE) and dimerization with the retinoid X receptor protein (RXRA). They participate in protein-protein interactions, associating with RXRA to form hetero-oligomeric complexes that can bind to RARE. They have a dominant-negative effect on wild-type RARA/RXRA transcriptional activity. Moreover, RARA fusion proteins can homodimerize, conferring the ability to regulate an expanded repertoire of genes normally not affected by RARA. RARA fusion proteins behave as potent transcriptional repressors of retinoic acid signalling, inducing a differentiation blockage at the promyelocyte stage which can be overcome with therapeutic doses of ATRA or arsenic trioxide. However, resistance to these two drugs is a major problem, which necessitates development of new therapies.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | | | | |
Collapse
|
32
|
|
33
|
De Bellis F, Carafa V, Conte M, Rotili D, Petraglia F, Matarese F, Françoijs KJ, Ablain J, Valente S, Castellano R, Goubard A, Collette Y, Mandoli A, Martens JHA, de Thé H, Nebbioso A, Mai A, Stunnenberg HG, Altucci L. Context-selective death of acute myeloid leukemia cells triggered by the novel hybrid retinoid-HDAC inhibitor MC2392. Cancer Res 2014; 74:2328-39. [PMID: 24566867 DOI: 10.1158/0008-5472.can-13-2568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HDAC inhibitors (HDACi) are widely used in the clinic to sensitize tumorigenic cells for treatment with other anticancer compounds. The major drawback of HDACi is the broad inhibition of the plethora of HDAC-containing complexes. In acute promyelocytic leukemia (APL), repression by the PML-RARα oncofusion protein is mediated by an HDAC-containing complex that can be dissociated by pharmacologic doses of all trans retinoic acid (ATRA) inducing differentiation and cell death at the expense of side effects and recurrence. We hypothesized that the context-specific close physical proximity of a retinoid and HDACi-binding protein in the repressive PML-RARα-HDAC complex may permit selective targeting by a hybrid molecule of ATRA with a 2-aminoanilide tail of the HDAC inhibitor MS-275, yielding MC2392. We show that MC2392 elicits weak ATRA and essentially no HDACi activity in vitro or in vivo. Genome-wide epigenetic analyses revealed that in NB4 cells expressing PML-RARα, MC2392 induces changes in H3 acetylation at a small subset of PML-RARα-binding sites. RNA-seq reveals that MC2392 alters expression of a number of stress-responsive and apoptotic genes. Concordantly, MC2392 induced rapid and massive, caspase-8-dependent cell death accompanied by RIP1 induction and ROS production. Solid and leukemic tumors are not affected by MC2392, but expression of PML-RARα conveys efficient MC2392-induced cell death. Our data suggest a model in which MC2392 binds to the RARα moiety and selectively inhibits the HDACs resident in the repressive complex responsible for the transcriptional impairment in APLs. Our findings provide proof-of-principle of the concept of a context-dependent targeted therapy.
Collapse
Affiliation(s)
- Floriana De Bellis
- Authors' Affiliations: Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli; Istituto di Genetica e Biofisica, IGB, Adriano Buzzati Traverso, Naples; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy; NCMLS, Radboud University, Nijmegen, the Netherlands; Inserm, CRCM, U1068, TrGET & ISCB, University of Marseille; and Laboratoire U944 and UMR 7212, University Paris-Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Song W, Zhu H, Li M, Li N, Wu J, Mu H, Yao X, Han W, Liu W, Hua J. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis. Cell Prolif 2014; 46:457-68. [PMID: 23869766 DOI: 10.1111/cpr.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. MATERIALS AND METHODS Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. RESULTS Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. CONCLUSIONS Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock.
Collapse
Affiliation(s)
- W Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gaber ZB, Butler SJ, Novitch BG. PLZF regulates fibroblast growth factor responsiveness and maintenance of neural progenitors. PLoS Biol 2013; 11:e1001676. [PMID: 24115909 PMCID: PMC3792860 DOI: 10.1371/journal.pbio.1001676] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022] Open
Abstract
A transcription factor called Promyelocytic Leukemia Zinc Finger (PLZF) calibrates the balance between spinal cord progenitor maintenance and differentiation by enhancing their sensitivity to mitogens that are present in developing embryos. Distinct classes of neurons and glial cells in the developing spinal cord arise at specific times and in specific quantities from spatially discrete neural progenitor domains. Thus, adjacent domains can exhibit marked differences in their proliferative potential and timing of differentiation. However, remarkably little is known about the mechanisms that account for this regional control. Here, we show that the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) plays a critical role shaping patterns of neuronal differentiation by gating the expression of Fibroblast Growth Factor (FGF) Receptor 3 and responsiveness of progenitors to FGFs. PLZF elevation increases FGFR3 expression and STAT3 pathway activity, suppresses neurogenesis, and biases progenitors towards glial cell production. In contrast, PLZF loss reduces FGFR3 levels, leading to premature neuronal differentiation. Together, these findings reveal a novel transcriptional strategy for spatially tuning the responsiveness of distinct neural progenitor groups to broadly distributed mitogenic signals in the embryonic environment. The embryonic spinal cord is organized into an array of discrete neural progenitor domains along the dorsoventral axis. Most of these domains undergo two periods of differentiation, first producing specific classes of neurons and then generating distinct populations of glial cells at later times. In addition, each of these progenitors pools exhibit marked differences in their proliferative capacities and propensity to differentiate to produce the appropriate numbers and diversity of neurons and glia needed to form functional neural circuits. The mechanisms behind this regional control of neural progenitor behavior, however, remain unclear. In this study, we identify the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF) as a critical regulator of this process in the chick spinal cord. We show that PLZF is initially expressed by all spinal cord progenitors and then becomes restricted to a central domain, where it helps to limit the rate of neuronal differentiation and to preserve the progenitor pool for subsequent glial production. We also demonstrate that PLZF acts by promoting the expression of Fibroblast Growth Factor (FGF) Receptor 3, thereby enhancing the proliferative response of neural progenitors to FGFs present in developing embryos. Together, these findings reveal a novel developmental strategy for spatially controlling neural progenitor behavior by tuning their responsiveness to broadly distributed growth-promoting signals in the embryonic environment.
Collapse
Affiliation(s)
- Zachary B. Gaber
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Samantha J. Butler
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Bennett G. Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhou GB, Chen SJ, Chen Z. Acute promyelocytic leukemia: A model of molecular target based therapy. Hematology 2013; 10 Suppl 1:270-80. [PMID: 16188687 DOI: 10.1080/10245330512331390519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Leukemia, a group of hematological malignancies characterized by clonal expansion of hematopoietic cells with uncontrolled proliferation, decreased apoptosis and blocked differentiation, is one of the most notorious enemies of mankind which accounts for some 300,000 new cases and 222,000 deaths each year worldwide. Leukemia can be divided into acute or chronic, lymphoid or myeloid types, based on the disease progression and hematopoietic lineages involved 5. The responses of leukemia to therapies differ from one type or subtype to another. Hence, to improve the clinical outcome, the therapeutic strategies should be disease pathogenesis-based and individualized. The close collaboration between bench and bedside may not only shed new lights on leukemogenesis, gain insights into therapeutic mechanisms, but also provide opportunities for designing more rational therapies. The development of curative approaches for acute promyelocytic leukemia (APL) may serve as a paradigm.
Collapse
Affiliation(s)
- Guang-Biao Zhou
- Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Second Medical University 197, Rui Jin Road II, Shanghai, 200025, China
| | | | | |
Collapse
|
37
|
Wang X, Wang L, Guo S, Bao Y, Ma Y, Yan F, Xu K, Xu Z, Jin L, Lu D, Xu J, Wang J. Hypermethylation reduces expression of tumor‐suppressor PLZF and regulates proliferation and apoptosis in non‐small‐cell lung cancers. FASEB J 2013; 27:4194-203. [DOI: 10.1096/fj.13-229070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| | - Lei Wang
- Department of Cardiothoracic Surgery455th Hospital of the People's Liberation ArmyShanghaiChina
| | - Shicheng Guo
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| | - Yang Bao
- Yangzhou No.1 People's HospitalYangzhouChina
| | - Yanyun Ma
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| | - Fengyang Yan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| | - Kuan Xu
- Fudan University Shanghai Cancer CenterShanghaiChina
| | - Zhiyun Xu
- Department of Cardiothoracic SurgeryChanghai Hospital of ShanghaiSecond Military Medical UniversityShanghaiChina
| | - Li Jin
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| | - Daru Lu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| | - Jibin Xu
- Department of Cardiothoracic SurgeryChanghai Hospital of ShanghaiSecond Military Medical UniversityShanghaiChina
| | - Jiu‐Cun Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologySchool of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
38
|
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. Cys2His2 zinc finger protein family: classification, functions, and major members. BIOCHEMISTRY (MOSCOW) 2013; 77:217-26. [PMID: 22803940 DOI: 10.1134/s0006297912030017] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cys2His2 (C2H2)-type zinc fingers are widespread DNA binding motifs in eukaryotic transcription factors. Zinc fingers are short protein motifs composed of two or three β-layers and one α-helix. Two cysteine and two histidine residues located in certain positions bind zinc to stabilize the structure. Four other amino acid residues localized in specific positions in the N-terminal region of the α-helix participate in DNA binding by interacting with hydrogen donors and acceptors exposed in the DNA major groove. The number of zinc fingers in a single protein can vary over a wide range, thus enabling variability of target DNA sequences. Besides DNA binding, zinc fingers can also provide protein-protein and RNA-protein interactions. For the most part, proteins containing the C2H2-type zinc fingers are trans regulators of gene expression that play an important role in cellular processes such as development, differentiation, and suppression of malignant cell transformation (oncosuppression).
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
39
|
Jeon YK, Go H, Nam SJ, Keam B, Kim TM, Jung KC, Kang HJ, Lee DS, Huh JR, Park SH. Expression of the promyelocytic leukemia zinc-finger in T-lymphoblastic lymphoma and leukemia has strong implications for their cellular origin and greater association with initial bone marrow involvement. Mod Pathol 2012; 25:1236-45. [PMID: 22555178 DOI: 10.1038/modpathol.2012.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The promyelocytic leukemia zinc-finger (PLZF) is essential for the development of innate T cells (as represented by natural killer T cells) for acquisition of their unique innate immune properties. We evaluated the PLZF protein expression in a variety of immature and mature lymphoid malignancies. PLZF was preferentially expressed in T-lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) in 50% of the 54 cases. Among 51 cases of peripheral T-cell lymphoma not otherwise specified, only one (2%) expressed PLZF. One mycosis fungoides case expressed PLZF in lymph node involved by tumor. Otherwise, PLZF was not detected in any other type of lymphoma. In T-LBL/ALL, PLZF expression was more common in CD4/CD8 double-negative (67%) or CD8 single-positive subtypes (73%) than in CD4/CD8 double-positive (13%) and CD4 single-positive subtypes (0%) (P=0.001). Importantly, PLZF and CD1a expression were mutually exclusive in T-LBL/ALL (P=0.001). This was also the case for T-cell receptor βF1 expression (P=0.000). Most (96%) of the PLZF-positive T-LBL/ALL cases showed initial bone marrow involvement compared with 39% of PLZF-negative cases (P=0.000). Based on these findings, we suggest that T-LBL/ALLs that express PLZF arise from early immature double-negative thymocytes when the T-cell receptor β chain has not yet expressed or innate T-cell precursors, and strongly imply bone marrow involvement.
Collapse
Affiliation(s)
- Yoon K Jeon
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen SJ, Zhou GB. Targeted therapy: The new lease on life for acute promyelocytic leukemia, and beyond. IUBMB Life 2012; 64:671-5. [PMID: 22714999 DOI: 10.1002/iub.1055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/30/2012] [Indexed: 01/12/2023]
Abstract
Leukemia, a group of hematological malignancies characterized by abnormal proliferation, decreased apoptosis, and blocked differentiation of hematopoietic stem/progenitor cells, is a disease involving dynamic change in the genome. Chromosomal translocation and point mutation are the major mechanisms in leukemia, which lead to production of oncogenes with dominant gain of function and tumor suppressor genes with recessive loss of function. Targeted therapy refers to treatment strategies perturbing the molecules critical for leukemia pathogenesis. The t(15;17) which generates PML-RARα, t(8;21) that produces AML1-ETO, and t(9;22) which generates BCR-ABL are the three most frequently seen chromosomal translocations in myeloid leukemia. The past two to three decades have witnessed tremendous success in development of targeted therapies for acute and chronic myeloid leukemia caused by the three fusion proteins. Here, we review the therapeutic efficacies and the mechanisms of action of targeted therapies for myeloid leukemia and show how this strategy significantly improve the clinical outcome of patients and even turn acute promyelocytic leukemia from highly fatal to highly curable.
Collapse
Affiliation(s)
- Sai-Juan Chen
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | |
Collapse
|
41
|
Thomas M, Sukhai MA, Kamel-Reid S. An emerging role for retinoid X receptor α in malignant hematopoiesis. Leuk Res 2012; 36:1075-81. [PMID: 22710246 DOI: 10.1016/j.leukres.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 04/13/2012] [Accepted: 05/21/2012] [Indexed: 12/29/2022]
Abstract
The retinoid X receptor alpha is the obligatory heterodimerization partner for a range of nuclear hormone receptors, and is required for signaling through the pathways mediated by those receptors. While RXR alpha has critical roles in embryonic development, it appears to be dispensable in adult hematopoiesis. Strikingly, recent evidence has indicated that proper functioning of RXR alpha is necessary for the pathogenesis of acute promyelocytic leukemia (APL), suggesting a novel avenue that can be exploited in the management and treatment of this disease. In this review we highlight recent studies that clarify the role of RXR alpha in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Mariam Thomas
- Princess Margaret Hospital/the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
42
|
Retinoid differentiation therapy for common types of acute myeloid leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:939021. [PMID: 23213553 PMCID: PMC3504222 DOI: 10.1155/2012/939021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
Abstract
Many cancers arise in a tissue stem cell, and cell differentiation is impaired resulting in an accumulation of immature cells. The introduction of all-trans retinoic acid (ATRA) in 1987 to treat acute promyelocytic leukemia (APL), a rare subtype of acute myeloid leukemia (AML), pioneered a new approach to obtain remission in malignancies by restoring the terminal maturation of leukemia cells resulting in these cells having a limited lifespan. Differentiation therapy also offers the prospect of a less aggressive treatment by virtue of attenuated growth of leukemia cells coupled to limited damage to normal cells. The success of ATRA in differentiation therapy of APL is well known. However, ATRA does not work in non-APL AML. Here we examine some of the molecular pathways towards new retinoid-based differentiation therapy of non-APL AML. Prospects include modulation of the epigenetic status of ATRA-insensitive AML cells, agents that influence intracellular signalling events that are provoked by ATRA, and the use of novel synthetic retinoids.
Collapse
|
43
|
Chen H, Pan J, Yao L, Wu L, Zhu J, Wang W, Liu C, Han Q, Du G, Cen J, Xue Y, Wu D, Sun M, Chen S. Acute promyelocytic leukemia with a STAT5b-RARα fusion transcript defined by array-CGH, FISH, and RT-PCR. Cancer Genet 2012; 205:327-31. [DOI: 10.1016/j.cancergen.2012.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 11/25/2022]
|
44
|
Abstract
Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML). The prognosis of APL is changing, from the worst among AML as it used to be, to currently the best. The application of all-trans-retinoic acid (ATRA) to the induction therapy of APL decreases the mortality of newly diagnosed patients, thereby significantly improving the response rate. Therefore, ATRA combined with anthracycline-based chemotherapy has been widely accepted and used as a classic treatment. It has been demonstrated that high doses of cytarabine have a good effect on the prevention of relapse for high-risk patients. However, as the indications of arsenic trioxide (ATO) for APL are being extended from the original relapse treatment to the first-line treatment of de novo APL, we find that the regimen of ATRA, combined with ATO, seems to be a new treatment option because of their targeting mechanisms, milder toxicities and improvements of long-term outcomes; this combination may become a potentially curable treatment modality for APL. We discuss the therapeutic strategies for APL, particularly the novel approaches to newly diagnosed patients and the handling of side effects of treatment and relapse treatment, so as to ensure each newly diagnosed patient of APL the most timely and best treatment.
Collapse
|
45
|
Mi J. Current treatment strategy of acute promyelocytic leukemia. Front Med 2011; 5:341-7. [PMID: 22198746 DOI: 10.1007/s11684-011-0169-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/31/2011] [Indexed: 11/26/2022]
Abstract
Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML). The prognosis of APL has changed from the worst among the AMLs to currently the best. The application of all-trans retinoic acid (ATRA) in the induction therapy of APL decreases the high mortality of newly diagnosed patients, thereby significantly improving the response rate. ATRA combined with anthracycline-based chemotherapy is the current standard treatment, and for high-risk patients, high doses cytarabine have a beneficial effect on relapse prevention. In recent years, the indications of arsenic trioxide (ATO) therapy for APL have been extended from the salvage therapy for relapse patients to the first-line treatment of de novo APL. The introduction of both ATRA and ATO represents great achievements in translational medicine. In this review article, we discuss the therapeutic strategies for this disease, including the initial approaches to newly diagnosed patients, prevention, and treatment of side effects and relapse to ensure the best and timely treatment for each newly diagnosed APL patient.
Collapse
Affiliation(s)
- Jianqing Mi
- Department of Hematology, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
46
|
Breen KA, Grimwade D, Hunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. Br J Haematol 2011; 156:24-36. [DOI: 10.1111/j.1365-2141.2011.08922.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
A new four-way variant t(5;17;15;20)(q33;q12;q22;q11.2) in acute promyelocytic leukemia. Int J Hematol 2011; 94:395-398. [PMID: 21927800 DOI: 10.1007/s12185-011-0929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by t(15;17)(q22;q21), which results in the fusion of the promyelocytic leukemia (PML) gene at 15q22 with the retinoic acid alpha-receptor (RARA) at 17q21. We report a patient with APL carrying a new complex variant translocation (5;17;15;20). Spectral karyotyping analysis of bone marrow cells revealed t(5;17;15;20)(q33;q12;q22;q11.2). Fluorescence in situ hybridization with a PML/RARA dual-color DNA probe showed a single fusion signal, and RT-PCR analysis showed PML/RARA fusion transcripts. Complete remission was attained with a course of conventional chemotherapy with all-trans retinoic acid (ATRA). To our knowledge, this is the first report of a four-way translocation of 5q33 and 20q11 involvement in APL.
Collapse
|
48
|
Abstract
Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). This review provides insights into the mode of action and the pharmacological properties of ATO, and summarizes the most relevant results of more than 20 treatment studies in relapsed or newly diagnosed APL published between 1997 and 2011. ATO acts by targeting multiple pathways in APL leading to apoptosis and myeloid differentiation. It induces complete remission without myelosuppression and causes only few adverse effects. In relapsed APL, ATO-based salvage therapy has been able to induce long-lasting remissions and possible cure in 50-81% of patients. In newly diagnosed APL, two main strategies are currently pursued. ATO is either included into induction therapy with the aim to minimize or eliminate chemotherapy, or it is incorporated as an additive into established first-line concepts with all-trans-retinoic acid and chemotherapy to reinforce their anti-leukemic efficacy. Recent results suggest a high efficacy of ATO in both concepts. In conclusion, experimental research and clinical studies have made contributions toward a better understanding of the molecular mechanisms induced by ATO in APL cells and have established this historic substance as an important candidate for the further improvement of APL therapy.
Collapse
|
49
|
Shima Y, Kitabayashi I. Deregulated transcription factors in leukemia. Int J Hematol 2011; 94:134-141. [PMID: 21823042 DOI: 10.1007/s12185-011-0905-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 12/16/2022]
Abstract
Specific chromosomal translocations and other mutations associated with acute myeloblastic leukemia (AML) often involve transcription factors and transcriptional coactivators. Such target genes include AML1, C/EBPα, RARα, MOZ, p300/CBP, and MLL, all of which are important in the regulation of hematopoiesis. The resultant fusion or mutant proteins deregulate the transcription of the affected genes and disrupt their essential role in hematopoiesis, causing differentiation block and abnormal proliferation and/or survival. This review focuses on such transcription factors and coactivators, and describes their roles in leukemogenesis and hematopoiesis.
Collapse
Affiliation(s)
- Yutaka Shima
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
50
|
Vaklavas C, Steciuk MR, Ren Y, Baird MF, Mikhail FM, Foran JM. A case of acute promyelocytic leukemia without RARα rearrangement and apparently normal cytogenetics. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2011; 11:521-4. [PMID: 21729689 DOI: 10.1016/j.clml.2011.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/26/2011] [Accepted: 03/01/2011] [Indexed: 11/27/2022]
Affiliation(s)
- Christos Vaklavas
- Division of Hematology and Oncology, University of Alabama at Birmingham, USA.
| | | | | | | | | | | |
Collapse
|