1
|
Li J, Huang N, Zhang X, Wang H, Chen J, Wei Q. Functional analysis of yak alveolar type II epithelial cells at high and low altitudes based on single-cell sequencing. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119889. [PMID: 39681250 DOI: 10.1016/j.bbamcr.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The adaptation of lung cells to high-altitude environments represents a notable gap in our understanding of how animals cope with hypoxic conditions. Alveolar epithelial cells type II (AEC II) are crucial for lung development and repair. However, their, specific role in the adaptation of yaks to high-altitude environments remains unclear. In this study, we aimed to address this gap by investigating the differential responses of AEC II in yaks at high and low altitudes (4000 m and 2600 m, respectively). We used the 10 × scRNA-seq technology to construct a comprehensive cell atlas of yak lung tissue, and identified 15 distinct cell classes. AEC II in high-altitude yaks revealed increased immunomodulatory, adhesive, and metabolic activities, which are crucial for maintaining lung tissue stability and energy supply under hypoxic conditions. Furthermore, alveolar epithelial progenitor cells within AEC II can differentiate into both Alveolar epithelial cell type I (AEC I) and AEC II. SHIP1 and other factors are promoters of AEC I transdifferentiation, whereas SFTPC and others promote AEC II transdifferentiation. This study provides new insights into the evolutionary adaptation of lung cells in plateau animals by elucidating the molecular mechanisms underlying AEC II adaptation to high-altitude environments.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Huizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
2
|
Wang Y, Wang L, Ma S, Cheng L, Yu G. Repair and regeneration of the alveolar epithelium in lung injury. FASEB J 2024; 38:e23612. [PMID: 38648494 DOI: 10.1096/fj.202400088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.
Collapse
Affiliation(s)
- Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, China
| |
Collapse
|
3
|
Martin TR, Zemans RL, Ware LB, Schmidt EP, Riches DWH, Bastarache L, Calfee CS, Desai TJ, Herold S, Hough CL, Looney MR, Matthay MA, Meyer N, Parikh SM, Stevens T, Thompson BT. New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. Am J Respir Cell Mol Biol 2022; 67:284-308. [PMID: 35679511 PMCID: PMC9447141 DOI: 10.1165/rcmb.2022-0089ws] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.
Collapse
Affiliation(s)
- Thomas R. Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Program in Cellular and Molecular Biology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine and
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - David W. H. Riches
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Anesthesia
| | - Tushar J. Desai
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Stem Cell Institute, Stanford University School of Medicine, Stanford, California
| | - Susanne Herold
- Department of Internal Medicine VI and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Catherine L. Hough
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | - Michael A. Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Nuala Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samir M. Parikh
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology, University of Texas Southwestern, Dallas, Texas
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Lin CR, Bahmed K, Kosmider B. Impaired Alveolar Re-Epithelialization in Pulmonary Emphysema. Cells 2022; 11:2055. [PMID: 35805139 PMCID: PMC9265977 DOI: 10.3390/cells11132055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/24/2023] Open
Abstract
Alveolar type II (ATII) cells are progenitors in alveoli and can repair the alveolar epithelium after injury. They are intertwined with the microenvironment for alveolar epithelial cell homeostasis and re-epithelialization. A variety of ATII cell niches, transcription factors, mediators, and signaling pathways constitute a specific environment to regulate ATII cell function. Particularly, WNT/β-catenin, YAP/TAZ, NOTCH, TGF-β, and P53 signaling pathways are dynamically involved in ATII cell proliferation and differentiation, although there are still plenty of unknowns regarding the mechanism. However, an imbalance of alveolar cell death and proliferation was observed in patients with pulmonary emphysema, contributing to alveolar wall destruction and impaired gas exchange. Cigarette smoking causes oxidative stress and is the primary cause of this disease development. Aberrant inflammatory and oxidative stress responses result in loss of cell homeostasis and ATII cell dysfunction in emphysema. Here, we discuss the current understanding of alveolar re-epithelialization and altered reparative responses in the pathophysiology of this disease. Current therapeutics and emerging treatments, including cell therapies in clinical trials, are addressed as well.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Microbiology, Immunology and Inflammation, Temple University, Philadelphia, PA 19140, USA;
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA;
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA;
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology and Inflammation, Temple University, Philadelphia, PA 19140, USA;
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA;
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Eldredge LC. Preventable ATII Proliferation After Hyperoxia: The "Tempo" of Folate Metabolism in the Neonatal Lung. Am J Respir Cell Mol Biol 2022; 66:353-355. [PMID: 35143373 PMCID: PMC8990117 DOI: 10.1165/rcmb.2022-0012ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Laurie C Eldredge
- University of Washington School of Medicine, 12353, Pediatrics Pulmonology, Seattle, Washington, United States.,Seattle Children's Hospital, 7274, Pulmonary and Sleep Medicine, Seattle, Washington, United States;
| |
Collapse
|
6
|
Clements D, Miller S, Babaei-Jadidi R, Adam M, Potter SS, Johnson SR. Cross talk between LAM cells and fibroblasts may influence alveolar epithelial cell behavior in lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L283-L293. [PMID: 34936509 DOI: 10.1152/ajplung.00351.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.
Collapse
Affiliation(s)
- Debbie Clements
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suzanne Miller
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Roya Babaei-Jadidi
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Simon R Johnson
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
7
|
Abstract
The lungs are constantly exposed to the external environment and are therefore vulnerable to insults that can cause infection and injury. Maintaining the integrity and barrier function of the lung epithelium requires complex interactions of multiple cell lineages. Elucidating the cellular players and their regulation mechanisms provides fundamental information to deepen understanding about the responses and contributions of lung stem cells. This Review focuses on advances in our understanding of mammalian alveolar epithelial stem cell subpopulations and discusses insights about the regeneration-specific cell status of alveolar epithelial stem cells. We also consider how these advances can inform our understanding of post-injury lung repair processes and lung diseases.
Collapse
Affiliation(s)
- Huijuan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Wang J, Sun H, Liu Y. The proliferative and anti-apoptosis functions of KGF/KGFR contributes to bronchial epithelial repair in asthma. Pulm Pharmacol Ther 2020; 63:101931. [PMID: 32818548 DOI: 10.1016/j.pupt.2020.101931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to investigate the effect of keratinocyte growth factor (KGF) on the apoptosis, proliferation, damage repair, intercellular adhesion, and inflammatory cytokine release of cultured 16HBE 14o-bronchial ECs in vitro. Bronchial epithelial cells (ECs) from all subjects were obtained by bronchoscopic brushing. The expression levels of KGF and its receptor KGFR in collected cells were determined using RT-qPCR and Western blotting. The apoptosis and adhesion molecules expression by KGF administration were determined using flow cytometry and Western blotting. This occurred when 16HBE 14o-cell lines cultured and were exposed to interferon-γ (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in vitro. The role of KGF on proliferation and damage repair were analyzed using CCK-8, EdU and wound closure assays after 16HBE 14o-cells were scraped. The effect of KGF on the release of inflammation related cytokines by damaged ECs was measured using ELISA kits. Compared with healthy controls, the KGF and KGFR expression and apoptosis significantly increased in collected cells from asthma patients. In vitro, treatment of KGF may limit IFN-γ and TNF-α induced apoptosis by inhibiting apoptosis-associated markers in the TNF signaling pathway. Besides, KGF could limit the release of TSLP, IL-25 and IL-33 by damaged 16HBE 14o-cells. On the contrary, KGF could promote the intercellular adhesion and wound closure of cultured 16HBE 14o-cells via the increased expression level of intercellular junction proteins ICAM-1, β-catenin, E-cad, and Dsc3. In conclusion, KGF and KGFR may help bronchial ECs repair in asthma via the inhibition apoptosis of ECs while the promotion of proliferation and migration of ECs.
Collapse
Affiliation(s)
- Jiongbo Wang
- The Clinic of Retired Cadres, Qingdao Municipal Hospital (East Campus), Qingdao, 266071, China
| | - Hongju Sun
- Department of General Medicine, Qingdao Central Hospital, Qingdao, 266042, China
| | - Yunshun Liu
- The Clinic of Retired Cadres, Qingdao Municipal Hospital (East Campus), Qingdao, 266071, China.
| |
Collapse
|
9
|
Aspal M, Zemans RL. Mechanisms of ATII-to-ATI Cell Differentiation during Lung Regeneration. Int J Mol Sci 2020; 21:E3188. [PMID: 32366033 PMCID: PMC7246911 DOI: 10.3390/ijms21093188] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The alveolar epithelium consists of (ATI) and type II (ATII) cells. ATI cells cover the majority of the alveolar surface due to their thin, elongated shape and are largely responsible for barrier function and gas exchange. During lung injury, ATI cells are susceptible to injury, including cell death. Under some circumstances, ATII cells also die. To regenerate lost epithelial cells, ATII cells serve as progenitor cells. They proliferate to create new ATII cells and then differentiate into ATI cells [1,2,3]. Regeneration of ATI cells is critical to restore normal barrier and gas exchange function. Although the signaling pathways by which ATII cells proliferate have been explored [4,5,6,7,8,9,10,11,12], the mechanisms of ATII-to-ATI cell differentiation have not been well studied until recently. New studies have uncovered signaling pathways that mediate ATII-to-ATI differentiation. Bone morphogenetic protein (BMP) signaling inhibits ATII proliferation and promotes differentiation. Wnt/β-catenin and ETS variant transcription factor 5 (Etv5) signaling promote proliferation and inhibit differentiation. Delta-like 1 homolog (Dlk1) leads to a precisely timed inhibition of Notch signaling in later stages of alveolar repair, activating differentiation. Yes-associated protein/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) signaling appears to promote both proliferation and differentiation. We recently identified a novel transitional cell state through which ATII cells pass as they differentiate into ATI cells, and this has been validated by others in various models of lung injury. This intermediate cell state is characterized by the activation of Transforming growth factor beta (TGFβ) and other pathways, and some evidence suggests that TGFβ signaling induces and maintains this state. While the abovementioned signaling pathways have all been shown to be involved in ATII-to-ATI cell differentiation during lung regeneration, there is much that remains to be understood. The up- and down-stream signaling events by which these pathways are activated and by which they induce ATI cell differentiation are unknown. In addition, it is still unknown how the various mechanistic steps from each pathway interact with one another to control differentiation. Based on these recent studies that identified major signaling pathways driving ATII-to-ATI differentiation during alveolar regeneration, additional studies can be devised to understand the interaction between these pathways as they work in a coordinated manner to regulate differentiation. Moreover, the knowledge from these studies may eventually be used to develop new clinical treatments that accelerate epithelial cell regeneration in individuals with excessive lung damage, such as patients with the Acute Respiratory Distress Syndrome (ARDS), pulmonary fibrosis, and emphysema.
Collapse
Affiliation(s)
- Mohit Aspal
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Correll KA, Edeen KE, Zemans RL, Redente EF, Serban KA, Curran-Everett D, Edelman BL, Mikels-Vigdal A, Mason RJ. Transitional human alveolar type II epithelial cells suppress extracellular matrix and growth factor gene expression in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2019; 317:L283-L294. [PMID: 31166130 DOI: 10.1152/ajplung.00337.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts. They also reduced fibroblast expression of hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7, KGF), and FGF10. When type II cells were cultured at an air-liquid interface to maintain high levels of surfactant protein expression, this inhibitory activity was lost. When type II cells were cultured on collagen-coated tissue culture wells to reduce surfactant protein expression further and increase the expression of some type I cell markers, the epithelial cells suppressed transforming growth factor-β (TGF-β)-stimulated ACTA2 and connective tissue growth factor (CTGF) expression in lung fibroblasts. Our results suggest that transitional alveolar type II cells and likely type I cells but not fully differentiated type II cells inhibit matrix and growth factor expression in fibroblasts. These cells express markers of both type II cells and type I cells. This is probably a normal homeostatic mechanism to inhibit the fibrotic response in the resolution phase of wound healing. Defining how transitional type II cells convert activated fibroblasts into a quiescent state and inhibit the effects of TGF-β may provide another approach to limiting the development of fibrosis after alveolar injury.
Collapse
Affiliation(s)
| | | | - Rachel L Zemans
- National Jewish Health, Denver, Colorado.,Division of Pulmonary and Critical Care Medicine/Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
11
|
Ng-Blichfeldt JP, de Jong T, Kortekaas RK, Wu X, Lindner M, Guryev V, Hiemstra PS, Stolk J, Königshoff M, Gosens R. TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L14-L28. [PMID: 30969812 DOI: 10.1152/ajplung.00400.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-induced fibroblast-to-myofibroblast differentiation contributes to remodeling in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, but whether this impacts the ability of fibroblasts to support lung epithelial repair remains little explored. We pretreated human lung fibroblasts [primary (phFB) or MRC5 cells] with recombinant human TGF-β to induce myofibroblast differentiation, then cocultured them with adult mouse lung epithelial cell adhesion molecule-positive cells (EpCAM+) to investigate their capacity to support epithelial organoid formation in vitro. While control phFB and MRC5 lung fibroblasts supported organoid formation of mouse EpCAM+ cells, TGF-β pretreatment of both phFB and MRC5 impaired organoid-supporting ability. We performed RNA sequencing of TGF-β-treated phFB, which revealed altered expression of key Wnt signaling pathway components and Wnt/β-catenin target genes, and modulated expression of secreted factors involved in mesenchymal-epithelial signaling. TGF-β profoundly skewed the transcriptional program induced by the Wnt/β-catenin activator CHIR99021. Supplementing organoid culture media recombinant hepatocyte growth factor or fibroblast growth factor 7 promoted organoid formation when using TGF-β pretreated fibroblasts. In conclusion, TGF-β-induced myofibroblast differentiation results in Wnt/β-catenin pathway skewing and impairs fibroblast ability to support epithelial repair likely through multiple mechanisms, including modulation of secreted growth factors.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands.,Lung Repair and Regeneration Unit, Helmholtz-Zentrum München, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research , Munich , Germany
| | - Tristan de Jong
- European Research Institute for Biology of Ageing, University Medical Centre Groningen, University of Groningen , Groningen , The Netherlands
| | - Rosa K Kortekaas
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands
| | - Xinhui Wu
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands
| | - Michael Lindner
- Translational Lung Research and CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center , Munich , Germany
| | - Victor Guryev
- European Research Institute for Biology of Ageing, University Medical Centre Groningen, University of Groningen , Groningen , The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center , Leiden , The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center , Leiden , The Netherlands
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum München, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research , Munich , Germany.,Translational Lung Research and CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center , Munich , Germany.,Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado , Aurora, Colorado
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
12
|
Correll KA, Edeen KE, Redente EF, Zemans RL, Edelman BL, Danhorn T, Curran‐Everett D, Mikels‐Vigdal A, Mason RJ. TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts. Physiol Rep 2018; 6:e13794. [PMID: 30155985 PMCID: PMC6113132 DOI: 10.14814/phy2.13794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
TGF beta is a multifunctional cytokine that is important in the pathogenesis of pulmonary fibrosis. The ability of TGF beta to stimulate smooth muscle actin and extracellular matrix gene expression in fibroblasts is well established. In this report, we evaluated the effect of TGF beta on the expression of HGF, FGF7 (KGF), and FGF10, important growth and survival factors for the alveolar epithelium. These growth factors are important for maintaining type II cells and for restoration of the epithelium after lung injury. Under conditions of normal serum supplementation or serum withdrawal TGF beta inhibited fibroblast expression of HGF, FGF7, and FGF10. We confirmed these observations with genome wide RNA sequencing of the response of control and IPF fibroblasts to TGF beta. In general, gene expression in IPF fibroblasts was similar to control fibroblasts. Reduced expression of HGF, FGF7, and FGF10 is another means whereby TGF beta impairs epithelial healing and promotes fibrosis after lung injury.
Collapse
Affiliation(s)
| | | | | | - Rachel L. Zemans
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUniversity of MichiganAnn ArborMichigan
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Blood vessels are essential for blood circulation but also control organ growth, homeostasis, and regeneration, which has been attributed to the release of paracrine signals by endothelial cells. Endothelial tubules are associated with specialised mesenchymal cells, termed pericytes, which help to maintain vessel wall integrity. Here we identify pericytes as regulators of epithelial and endothelial morphogenesis in postnatal lung. Mice lacking expression of the Hippo pathway components YAP and TAZ in pericytes show defective alveologenesis. Mutant pericytes are present in normal numbers but display strongly reduced expression of hepatocyte growth factor leading to impaired activation of the c-Met receptor, which is expressed by alveolar epithelial cells. YAP and TAZ are also required for expression of angiopoietin-1 by pulmonary pericytes, which also controls hepatocyte growth factor expression and thereby alveologenesis in an autocrine fashion. These findings establish that pericytes have important, organ-specific signalling properties and coordinate the behavior of epithelial and vascular cells during lung morphogenesis. Pericytes surround endothelial tubules and help maintain the integrity of blood vessels. Here the authors show that pericytes regulate lung morphogenesis via paracrine signalling controlled by components of the Hippo pathway.
Collapse
|
14
|
Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, Zhou S, Cantu E, Morrisey EE. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 2018; 555:251-255. [PMID: 29489752 PMCID: PMC6020060 DOI: 10.1038/nature25786] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Functional tissue regeneration is required for the restoration of normal organ homeostasis after severe injury. Some organs, such as the intestine, harbour active stem cells throughout homeostasis and regeneration; more quiescent organs, such as the lung, often contain facultative progenitor cells that are recruited after injury to participate in regeneration. Here we show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the alveolar type 2 cell population acts as a major facultative progenitor cell in the distal lung. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a large proportion of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome and functional phenotype and respond specifically to Wnt and Fgf signalling. In contrast to other proposed lung progenitor cells, human AEPs can be directly isolated by expression of the conserved cell surface marker TM4SF1, and act as functional human alveolar epithelial progenitor cells in 3D organoids. Our results identify the AEP lineage as an evolutionarily conserved alveolar progenitor that represents a new target for human lung regeneration strategies.
Collapse
Affiliation(s)
- William J Zacharias
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David B Frank
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jarod A Zepp
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Farrah A Alkhaleel
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jun Kong
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Bernard O, Jeny F, Uzunhan Y, Dondi E, Terfous R, Label R, Sutton A, Larghero J, Vanneaux V, Nunes H, Boncoeur E, Planès C, Dard N. Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling. Am J Physiol Lung Cell Mol Physiol 2017; 314:L360-L371. [PMID: 29167125 DOI: 10.1152/ajplung.00153.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Distal lung diseases, such as pulmonary fibrosis or acute lung injury, are commonly associated with local alveolar hypoxia that may be deleterious through the stimulation of alveolar epithelial cell (AEC) apoptosis. In various murine models of alveolar injury, administration of allogenic human mesenchymal stem cells (hMSCs) exerts an overall protective paracrine effect, limiting lung inflammation and fibrosis. However, the precise mechanisms on lung cells themselves remain poorly understood. Here, we investigated whether hMSC-conditioned medium (hMSC-CM) would protect AECs from hypoxia-induced apoptosis and explored the mechanisms involved in this cytoprotective effect. Exposure of rat primary AECs to hypoxia (1.5% O2 for 24 h) resulted in hypoxia-inducible factor (HIF)-1α protein stabilization, partly dependent on reactive oxygen species (ROS) accumulation, and in a twofold increase in AEC apoptosis that was prevented by the HIF inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole and the antioxidant drug N-acetyl cysteine. Incubation of AECs with hMSC-CM significantly reduced hypoxia-induced apoptosis. hMSC-CM decreased HIF-1α protein expression, as well as ROS accumulation through an increase in antioxidant enzyme activities. Expression of Bnip3 and CHOP, two proapoptotic targets of HIF-1α and ROS pathways, respectively, was suppressed by hMSC-CM, while Bcl-2 expression was restored. The paracrine protective effect of hMSC was partly dependent on keratinocyte growth factor and hepatocyte growth factor secretion, preventing ROS and HIF-1α accumulation.
Collapse
Affiliation(s)
- Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Florence Jeny
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Elisabetta Dondi
- Institut National de la Santé et de la Recherche Médicale, UMR 978, Bobigny, France
| | - Rahma Terfous
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Angela Sutton
- Institut National de la Santé et de la Recherche Médicale, UMR 1148, Laboratory for Vascular Translational Science, UFR Santé Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, Groupe Biothérapies et Glycoconjugués, Bobigny, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Valérie Vanneaux
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Hilario Nunes
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| |
Collapse
|
16
|
Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell 2017; 170:1134-1148.e10. [PMID: 28886382 DOI: 10.1016/j.cell.2017.07.034] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
The lung is an architecturally complex organ comprising a heterogeneous mixture of various epithelial and mesenchymal lineages. We use single-cell RNA sequencing and signaling lineage reporters to generate a spatial and transcriptional map of the lung mesenchyme. We find that each mesenchymal lineage has a distinct spatial address and transcriptional profile leading to unique niche regulatory functions. The mesenchymal alveolar niche cell is Wnt responsive, expresses Pdgfrα, and is critical for alveolar epithelial cell growth and self-renewal. In contrast, the Axin2+ myofibrogenic progenitor cell preferentially generates pathologically deleterious myofibroblasts after injury. Analysis of the secretome and receptome of the alveolar niche reveals functional pathways that mediate growth and self-renewal of alveolar type 2 progenitor cells, including IL-6/Stat3, Bmp, and Fgf signaling. These studies define the cellular and molecular framework of lung mesenchymal niches and reveal the functional importance of developmental pathways in promoting self-renewal versus a pathological response to tissue injury.
Collapse
|
17
|
McClendon J, Jansing NL, Redente EF, Gandjeva A, Ito Y, Colgan SP, Ahmad A, Riches DWH, Chapman HA, Mason RJ, Tuder RM, Zemans RL. Hypoxia-Inducible Factor 1α Signaling Promotes Repair of the Alveolar Epithelium after Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1772-1786. [PMID: 28618253 PMCID: PMC5530913 DOI: 10.1016/j.ajpath.2017.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/20/2017] [Indexed: 01/09/2023]
Abstract
During the acute respiratory distress syndrome, epithelial cells, primarily alveolar type (AT) I cells, die and slough off, resulting in enhanced permeability. ATII cells proliferate and spread onto the denuded basement membrane to reseal the barrier. Repair of the alveolar epithelium is critical for clinical recovery; however, mechanisms underlying ATII cell proliferation and spreading are not well understood. We hypothesized that hypoxia-inducible factor (HIF)1α promotes proliferation and spreading of ATII cells during repair after lung injury. Mice were treated with lipopolysaccharide or hydrochloric acid. HIF activation in ATII cells after injury was demonstrated by increased luciferase activity in oxygen degradation domain-Luc (HIF reporter) mice and expression of the HIF1α target gene GLUT1. ATII cell proliferation during repair was attenuated in ATII cell-specific HIF1α knockout (SftpcCreERT2+/-;HIF1αf/f) mice. The HIF target vascular endothelial growth factor promoted ATII cell proliferation in vitro and after lung injury in vivo. In the scratch wound assay of cell spreading, HIF stabilization accelerated, whereas HIF1α shRNA delayed wound closure. SDF1 and its receptor, CXCR4, were found to be HIF1α-regulated genes in ATII cells and were up-regulated during lung injury. Stromal cell-derived factor 1/CXCR4 inhibition impaired cell spreading and delayed the resolution of permeability after lung injury. We conclude that HIF1α is activated in ATII cells after lung injury and promotes proliferation and spreading during repair.
Collapse
Affiliation(s)
- Jazalle McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Nicole L Jansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Department of Research, Denver Veterans Affairs Medical Center, Denver, Colorado
| | - Aneta Gandjeva
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yoko Ito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Integrated Department of Immunology, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David W H Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California
| | - Robert J Mason
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado; Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
18
|
Kotnala S, Tyagi A, Muyal JP. rHuKGF ameliorates protease/anti-protease imbalance in emphysematous mice. Pulm Pharmacol Ther 2017; 45:124-135. [DOI: 10.1016/j.pupt.2017.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
19
|
In silico enhancement of the stability and activity of keratinocyte growth factor. J Theor Biol 2017; 418:111-121. [DOI: 10.1016/j.jtbi.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/19/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
|
20
|
King G, Smith ME, Cake MH, Nielsen HC. What is the identity of fibroblast-pneumocyte factor? Pediatr Res 2016; 80:768-776. [PMID: 27500537 PMCID: PMC5112109 DOI: 10.1038/pr.2016.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoid induction of pulmonary surfactant involves a mesenchyme-derived protein first characterized in 1978 by Smith and termed fibroblast-pneumocyte factor (FPF). Despite a number of agents having been postulated as being FPF, its identity has remained obscure. In the past decade, three strong candidates for FPF have arisen. This review examines the evidence that keratinocyte growth factor (KGF), leptin or neuregulin-1β (NRG-1β) act as FPF or components of it. As with FPF production, glucocorticoids enhance the concentration of each of these agents in fibroblast-conditioned media. Moreover, each stimulates the synthesis of surfactant-associated phospholipids and proteins in type II pneumocytes. Further, some have unique activities, for example, KGF also minimizes lung injury through enhanced epithelial cell proliferation and NRG-1β enhances surfactant phospholipid secretion and β-adrenergic receptor activity in type II cells. However, even though these agents have attributes in common with FPF, it is inappropriate to specify any one of these agents as FPF. Rather, it appears that each contributes to separate mesenchymal-epithelial signaling mechanisms involved in different aspects of lung development. Given that the production of pulmonary surfactant is essential for postnatal survival, it is reasonable to suggest that several mechanisms independently regulate surfactant synthesis.
Collapse
Affiliation(s)
- George King
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Megan E. Smith
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | - Max H. Cake
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Heber C. Nielsen
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| |
Collapse
|
21
|
Seedorf G, Metoxen AJ, Rock R, Markham N, Ryan S, Vu T, Abman SH. Hepatocyte growth factor as a downstream mediator of vascular endothelial growth factor-dependent preservation of growth in the developing lung. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1098-110. [PMID: 27036872 PMCID: PMC4935471 DOI: 10.1152/ajplung.00423.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/29/2016] [Indexed: 01/18/2023] Open
Abstract
Impaired vascular endothelial growth factor (VEGF) signaling contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). We hypothesized that the effects of VEGF on lung structure during development may be mediated through its downstream effects on both endothelial nitric oxide synthase (eNOS) and hepatocyte growth factor (HGF) activity, and that, in the absence of eNOS, trophic effects of VEGF would be mediated through HGF signaling. To test this hypothesis, we performed an integrative series of in vitro (fetal rat lung explants and isolated fetal alveolar and endothelial cells) and in vivo studies with normal rat pups and eNOS(-/-) mice. Compared with controls, fetal lung explants from eNOS(-/-) mice had decreased terminal lung bud formation, which was restored with recombinant human VEGF (rhVEGF) treatment. Neonatal eNOS(-/-) mice were more susceptible to hyperoxia-induced inhibition of lung growth than controls, which was prevented with rhVEGF treatment. Fetal alveolar type II (AT2) cell proliferation was increased with rhVEGF treatment only with mesenchymal cell (MC) coculture, and these effects were attenuated with anti-HGF antibody treatment. Unlike VEGF, HGF directly stimulated isolated AT2 cells even without MC coculture. HGF directly stimulates fetal pulmonary artery endothelial cell growth and tube formation, which is attenuated by treatment with JNJ-38877605, a c-Met inhibitor. rHGF treatment preserves alveolar and vascular growth after postnatal exposure to SU-5416, a VEGF receptor inhibitor. We conclude that the effects of VEGF on AT2 and endothelial cells during lung development are partly mediated through HGF-c-Met signaling and speculate that reciprocal VEGF-HGF signaling between epithelia and endothelia is disrupted in infants who develop BPD.
Collapse
Affiliation(s)
- Gregory Seedorf
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Alexander J Metoxen
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Robert Rock
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Neil Markham
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Sharon Ryan
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Thiennu Vu
- Department of Medicine, University of California, San Francisco, California
| | - Steven H Abman
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
22
|
Uzunhan Y, Bernard O, Marchant D, Dard N, Vanneaux V, Larghero J, Gille T, Clerici C, Valeyre D, Nunes H, Boncoeur E, Planès C. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2016; 310:L439-51. [DOI: 10.1152/ajplung.00117.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023] Open
Abstract
Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF.
Collapse
Affiliation(s)
- Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Valérie Vanneaux
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Christine Clerici
- Université Paris Diderot, Sorbonne Paris Cité, Inserm U1152, Paris, France; and
- AP-HP, Hôpital Bichat, Paris, France
| | - Dominique Valeyre
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Hilario Nunes
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, Bobigny, France
- AP-HP, Hôpital Avicenne, Bobigny, France
| |
Collapse
|
23
|
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches. Int J Mol Sci 2016; 17:ijms17010128. [PMID: 26797607 PMCID: PMC4730369 DOI: 10.3390/ijms17010128] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.
Collapse
|
24
|
|
25
|
Im D, Shi W, Driscoll B. Pediatric Acute Respiratory Distress Syndrome: Fibrosis versus Repair. Front Pediatr 2016; 4:28. [PMID: 27066462 PMCID: PMC4811965 DOI: 10.3389/fped.2016.00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 01/11/2023] Open
Abstract
Clinical and basic experimental approaches to pediatric acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), have historically focused on acute care and management of the patient. Additional efforts have focused on the etiology of pediatric ALI and ARDS, clinically defined as diffuse, bilateral diseases of the lung that compromise function leading to severe hypoxemia within 7 days of defined insult. Insults can include ancillary events related to prematurity, can follow trauma and/or transfusion, or can present as sequelae of pulmonary infections and cardiovascular disease and/or injury. Pediatric ALI/ARDS remains one of the leading causes of infant and childhood morbidity and mortality, particularly in the developing world. Though incidence is relatively low, ranging from 2.9 to 9.5 cases/100,000 patients/year, mortality remains high, approaching 35% in some studies. However, this is a significant decrease from the historical mortality rate of over 50%. Several decades of advances in acute management and treatment, as well as better understanding of approaches to ventilation, oxygenation, and surfactant regulation have contributed to improvements in patient recovery. As such, there is a burgeoning interest in the long-term impact of pediatric ALI/ARDS. Chronic pulmonary deficiencies in survivors appear to be caused by inappropriate injury repair, with fibrosis and predisposition to emphysema arising as irreversible secondary events that can severely compromise pulmonary development and function, as well as the overall health of the patient. In this chapter, the long-term effectiveness of current treatments will be examined, as will the potential efficacy of novel, acute, and long-term therapies that support repair and delay or even impede the onset of secondary events, including fibrosis.
Collapse
Affiliation(s)
- Daniel Im
- Pediatric Critical Care Medicine, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Barbara Driscoll
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
26
|
Abstract
Lung injury and repair is a broad topic that includes many cell types and is relevant to the pathogenesis of most lung diseases. Here, we focus on injury and repair of the alveolus, the principal function of which is to achieve gas exchange. The many cell types and structures present in the alveolus are discussed, with emphasis on their interactions in both health and disease. We define injury as damage resulting in impaired gas exchange; physiologic repair, then, requires restoration of normal alveolar architecture and function. The role of inflammation in both injury and repair of structural alveolar cells, particularly epithelial cells, as well as mechanisms of resolution of inflammation will be addressed. Finally, emphasis is placed on the importance of addressing quantitatively the dynamic and complex multidirectional interactions between the many alveolar cell types and structures in three dimensions over time and in relating such mechanistic studies to physiologic outcomes and human disease.
Collapse
|
27
|
Hou Y, Liu M, Husted C, Chen C, Thiagarajan K, Johns JL, Rao SP, Alvira CM. Activation of the nuclear factor-κB pathway during postnatal lung inflammation preserves alveolarization by suppressing macrophage inflammatory protein-2. Am J Physiol Lung Cell Mol Physiol 2015; 309:L593-604. [PMID: 26163511 DOI: 10.1152/ajplung.00029.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
A significant portion of lung development is completed postnatally during alveolarization, rendering the immature lung vulnerable to inflammatory stimuli that can disrupt lung structure and function. Although the NF-κB pathway has well-recognized pro-inflammatory functions, novel anti-inflammatory and developmental roles for NF-κB have recently been described. Thus, to determine how NF-κB modulates alveolarization during inflammation, we exposed postnatal day 6 mice to vehicle (PBS), systemic lipopolysaccharide (LPS), or the combination of LPS and the global NF-κB pathway inhibitor BAY 11-7082 (LPS + BAY). LPS impaired alveolarization, decreased lung cell proliferation, and reduced epithelial growth factor expression. BAY exaggerated these detrimental effects of LPS, further suppressing proliferation and disrupting pulmonary angiogenesis, an essential component of alveolarization. The more severe pathology induced by LPS + BAY was associated with marked increases in lung and plasma levels of macrophage inflammatory protein-2 (MIP-2). Experiments using primary neonatal pulmonary endothelial cells (PEC) demonstrated that MIP-2 directly impaired neonatal PEC migration in vitro; and neutralization of MIP-2 in vivo preserved lung cell proliferation and pulmonary angiogenesis and prevented the more severe alveolar disruption induced by the combined treatment of LPS + BAY. Taken together, these studies demonstrate a key anti-inflammatory function of the NF-κB pathway in the early alveolar lung that functions to mitigate the detrimental effects of inflammation on pulmonary angiogenesis and alveolarization. Furthermore, these data suggest that neutralization of MIP-2 may represent a novel therapeutic target that could be beneficial in preserving lung growth in premature infants exposed to inflammatory stress.
Collapse
Affiliation(s)
- Yanli Hou
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Cristiana Husted
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Department of Biochemistry, Faculty of Medicine, University of Nevada/Reno, Reno, Nevada; and
| | - Chihhsin Chen
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Kavitha Thiagarajan
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jennifer L Johns
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Shailaja P Rao
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
28
|
Tobinaga S, Matsumoto K, Nagayasu T, Furukawa K, Abo T, Yamasaki N, Tsuchiya T, Miyazaki T, Koji T. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice. Acta Histochem Cytochem 2015; 48:83-94. [PMID: 26160987 PMCID: PMC4491498 DOI: 10.1267/ahc.15004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema.
Collapse
Affiliation(s)
- Shuichi Tobinaga
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Katsuro Furukawa
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Takafumi Abo
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Naoya Yamasaki
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Takuro Miyazaki
- Division of Surgical Oncology, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
29
|
Shiomi T, Sklepkiewicz P, Bodine PVN, D'Armiento JM. Maintenance of the bronchial alveolar stem cells in an undifferentiated state by secreted frizzled-related protein 1. FASEB J 2014; 28:5242-9. [PMID: 25212222 DOI: 10.1096/fj.13-242735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bronchoalveolar stem cells (BASCs) are mobilized during injury and identified as lung progenitor cells, but the molecular regulation of this population of cells has not been elucidated. Secreted frizzled-related protein 1 (SFRP1) is a critical molecule involved in alveolar duct formation in the lung and here we demonstrate its importance in controlling cell differentiation during lung injury. Mice lacking SFRP1 exhibited a rapid repair response leading to aberrant proliferation of differentiated cells. Furthermore, SFRP1 treatment of BASCs maintained these cells in a quiescent state. In vivo overexpression of SFRP1 after injury suppressed differentiation and resulted in the accumulation of BASCs correlating with in vitro studies. These findings suggest that SFRP1 expression in the adult maintains progenitor cells within their undifferentiated state and suggests that manipulation of this pathway is a potential target to augment the lung repair process during disease.
Collapse
Affiliation(s)
- Takayuki Shiomi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | - Piotr Sklepkiewicz
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | | | - Jeanine M D'Armiento
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| |
Collapse
|
30
|
Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg 2014; 49:859-64; discussion 864-5. [PMID: 24888823 DOI: 10.1016/j.jpedsurg.2014.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023]
Abstract
PURPOSE Recent experimental work suggests the therapeutic role of mesenchymal stromal cells (MSCs) during lung morphogenesis. The purpose of this study was to investigate the potential paracrine effects of amniotic fluid-derived MSCs (AF-MSCs) on fetal lung growth in a nitrofen explant model. METHODS Pregnant Sprague-Dawley dams were gavage fed nitrofen on gestational day 9.5 (E9.5). E14.5 lung explants were subsequently harvested and cultured ex vivo for three days on filter membranes in conditioned media from rat AF-MSCs isolated from control (AF-Ctr) or nitrofen-exposed (AF-Nitro) dams. The lungs were analyzed morphometrically and by quantitative gene expression. RESULTS Although there were no significant differences in total lung surface area among hypoplastic lungs, there were significant increases in terminal budding among E14.5+3 nitrofen explants exposed to AF-Ctr compared to explants exposed to medium alone (58.8±8.4 vs. 39.0±10.0 terminal buds, respectively; p<0.05). In contrast, lungs cultured in AF-Nitro medium failed to augment terminal budding. Nitrofen explants exposed to AF-Ctr showed significant upregulation of surfactant protein C to levels observed in normal fetal lungs. CONCLUSIONS AF-MSCs can augment branching morphogenesis and lung epithelial maturation in a fetal explant model of pulmonary hypoplasia. Cell therapy using donor-derived AF-MSCs may represent a novel strategy for the treatment of fetal congenital diaphragmatic hernia.
Collapse
Affiliation(s)
- Julie Di Bernardo
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael M Maiden
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Ito Y, Correll K, Schiel JA, Finigan JH, Prekeris R, Mason RJ. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L94-105. [PMID: 24748602 DOI: 10.1152/ajplung.00233.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, Colorado;
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - John A Schiel
- Department of Cell and Developmental Biology, University of Colorado, Aurora, Colorado
| | - Jay H Finigan
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, Colorado
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
32
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 441] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
33
|
Boyle AJ, McNamee JJ, McAuley DF. Biological therapies in the acute respiratory distress syndrome. Expert Opin Biol Ther 2014; 14:969-81. [PMID: 24702248 DOI: 10.1517/14712598.2014.905536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The acute respiratory distress syndrome (ARDS) is characterised by life-threatening respiratory failure requiring mechanical ventilation, and multiple organ failure. It has a mortality of up to 30 - 45% and causes a long-term reduction in quality of life for survivors, with only approximately 50% of survivors able to return to work 12 months after hospital discharge. AREAS COVERED In this review we discuss the complex pathophysiology of ARDS, describe the mechanistic pathways implicated in the development of ARDS and how these are currently being targeted with novel biological therapies. These include therapies targeted against inflammatory cytokines, mechanisms mediating increased alveolar permeability and disordered coagulation, as well as the potential of growth factors, gene therapy and mesenchymal stem cells. EXPERT OPINION Although understanding of the pathophysiology of ARDS has improved, to date there are no effective pharmacological interventions that target a specific mechanism, with the only potentially effective therapies to date aiming to limit ventilator-associated lung injury. However, we believe that through this improved mechanistic insight and better clinical trial design, there is cautious optimism for the future of biological therapies in ARDS, and expect current and future biological compounds to provide treatment options to clinicians managing this devastating condition.
Collapse
Affiliation(s)
- Andrew James Boyle
- Queen's University Belfast, Centre for Infection and Immunity , Belfast , UK
| | | | | |
Collapse
|
34
|
Goolaerts A, Pellan-Randrianarison N, Larghero J, Vanneaux V, Uzunhan Y, Gille T, Dard N, Planès C, Matthay MA, Clerici C. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Physiol Lung Cell Mol Physiol 2014; 306:L975-85. [PMID: 24682451 DOI: 10.1152/ajplung.00242.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) or their media (MSC-M) were reported to reverse acute lung injury (ALI)-induced decrease of alveolar fluid clearance. To determine the mechanisms by which MSC-M exert their beneficial effects, an in vitro model of alveolar epithelial injury was created by exposing primary rat alveolar epithelial cells (AECs) to hypoxia (3% O2) plus cytomix, a combination of IL-1β, TNF-α, and IFN-γ. MSC-M were collected from human MSCs exposed for 12 h to either normoxia (MSC-M) or to hypoxia plus cytomix (HCYT-MSC-M). This latter condition was used to model the effect of alveolar inflammation and hypoxia on paracrine secretion of MSCs in the injured lung. Comparison of paracrine soluble factors in MSC media showed that the IL-1 receptor antagonist and prostaglandin E2 were markedly increased while keratinocyte growth factor (KGF) was twofold lower in HCYT-MSC-M compared with MSC-M. In AECs, hypoxia plus cytomix increased protein permeability, reduced amiloride-sensitive short-circuit current (AS-Isc), and also decreased the number of α-epithelial sodium channel (α-ENaC) subunits in the apical membrane. To test the effects of MSC media, MSC-M and HCYT-MSC-M were added for an additional 12 h to AECs exposed to hypoxia plus cytomix. MSC-M and HCYT-MSC-M completely restored epithelial permeability to normal. MSC-M, but not HCYT-MSC-M, significantly prevented the hypoxia plus cytomix-induced decrease of ENaC activity and restored apical α-ENaC channels. Interestingly, KGF-deprived MSC-M were unable to restore amiloride-sensitive sodium transport, indicating a possible role for KGF in the beneficial effect of MSC-M. These results indicate that MSC-M may be a preferable therapeutic option for ALI.
Collapse
Affiliation(s)
- Arnaud Goolaerts
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France
| | - Nadia Pellan-Randrianarison
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France
| | - Jérôme Larghero
- Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France; AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Vanneaux
- Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France; AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France; AP-HP, Hôpital Avicenne, Bobigny, France; and
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France; AP-HP, Hôpital Avicenne, Bobigny, France; and
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France; AP-HP, Hôpital Avicenne, Bobigny, France; and
| | - Michael A Matthay
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France
| | - Christine Clerici
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France; AP-HP, Hôpital Bichat, Paris, France
| |
Collapse
|
35
|
Manicone AM. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol 2014. [DOI: 10.1586/1744666x.5.1.63] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Furukawa K, Matsumoto K, Nagayasu T, Yamamoto-Fukuda T, Tobinaga S, Abo T, Yamasaki N, Tsuchiya T, Miyazaki T, Kamohara R, Nanashima A, Obatake M, Koji T. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat. Acta Histochem Cytochem 2013; 46:179-85. [PMID: 24610965 PMCID: PMC3929616 DOI: 10.1267/ahc.13036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/26/2013] [Indexed: 01/28/2023] Open
Abstract
Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth.
Collapse
Affiliation(s)
- Katsuro Furukawa
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomomi Yamamoto-Fukuda
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Shuichi Tobinaga
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takafumi Abo
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Naoya Yamasaki
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takuro Miyazaki
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Ryotaro Kamohara
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsushi Nanashima
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Masayuki Obatake
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
37
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
38
|
Abstract
Cytokines and growth factors play an integral role in the maintenance of immune homeostasis, the generation of protective immunity, and lung reparative processes. However, the dysregulated expression of cytokines and growth factors in response to infectious or noxious insults can initiate and perpetuate deleterious lung inflammation and fibroproliferation. In this article, we will comprehensively review the contribution of individual cytokines and growth factors and cytokine networks to key pathophysiological events in human and experimental acute lung injury (ALI), including inflammatory cell recruitment and activation, alveolar epithelial injury and repair, angiogenesis, and matrix deposition and remodeling. The application of cytokines/growth factors as prognostic indicators and therapeutic targets in human ALI is explored.
Collapse
Affiliation(s)
- Jane C Deng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
39
|
Uhal BD, Nguyen H. The Witschi Hypothesis revisited after 35 years: genetic proof from SP-C BRICHOS domain mutations. Am J Physiol Lung Cell Mol Physiol 2013; 305:L906-11. [PMID: 24142519 DOI: 10.1152/ajplung.00246.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over 35 years ago, Wanda Haschek and Hanspeter Witschi published a theory for the pathogenesis of lung fibrosis that dared to challenge the longstanding view of lung fibrosis as an "inflammatory disease." On the basis of considerable experimental evidence, they proposed that lung fibrosis was initiated and propagated by microfoci of epithelial damage that, if unrepaired, upset the normal epithelial-fibroblast balance to create profibrotic microenvironments, without any obligatory contribution of "inflammatory" cells. Unfortunately, this theory was largely overlooked for many years. In the meantime, the repeated failure of attempts to treat idiopathic pulmonary fibrosis with anti-inflammatory regimens has led some investigators to revive the theory referred to, in decades past, as "The Witschi Hypothesis." This manuscript briefly reviews more recent evidence in support of the "Severity of Epithelial Injury" Hypothesis proposed by Haschek and Witschi. More important, it offers the updated viewpoint that mutations in the BRICHOS domain of surfactant protein C, which cause interstitial lung disease and induce cell death specifically in lung epithelial cells, in effect provide genetic proof that the Witschi Hypothesis is indeed the correct theory to explain the pathogenesis of fibrosis in the lungs.
Collapse
Affiliation(s)
- Bruce D Uhal
- Dept. of Physiology, Michigan State Univ., 3197 Biomedical and Physical Sciences Bldg., East Lansing, MI 48824.
| | | |
Collapse
|
40
|
Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung. PLoS Genet 2013; 9:e1003228. [PMID: 23459311 PMCID: PMC3573081 DOI: 10.1371/journal.pgen.1003228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 11/23/2012] [Indexed: 12/02/2022] Open
Abstract
The alveolar compartment, the fundamental gas exchange unit in the lung, is critical for tissue oxygenation and viability. We explored hepatocyte growth factor (HGF), a pleiotrophic cytokine that promotes epithelial proliferation, morphogenesis, migration, and resistance to apoptosis, as a candidate mediator of alveolar formation and regeneration. Mice deficient in the expression of the HGF receptor Met in lung epithelial cells demonstrated impaired airspace formation marked by a reduction in alveolar epithelial cell abundance and survival, truncation of the pulmonary vascular bed, and enhanced oxidative stress. Administration of recombinant HGF to tight-skin mice, an established genetic emphysema model, attenuated airspace enlargement and reduced oxidative stress. Repair in the TSK/+ mouse was punctuated by enhanced akt and stat3 activation. HGF treatment of an alveolar epithelial cell line not only induced proliferation and scattering of the cells but also conferred protection against staurosporine-induced apoptosis, properties critical for alveolar septation. HGF promoted cell survival was attenuated by akt inhibition. Primary alveolar epithelial cells treated with HGF showed improved survival and enhanced antioxidant production. In conclusion, using both loss-of-function and gain-of-function maneuvers, we show that HGF signaling is necessary for alveolar homeostasis in the developing lung and that augmentation of HGF signaling can improve airspace morphology in murine emphysema. Our studies converge on prosurvival signaling and antioxidant protection as critical pathways in HGF–mediated airspace maintenance or repair. These findings support the exploration of HGF signaling enhancement for diseases of the airspace. The airspace compartment of the mammalian lung, comprised of spherical sacs termed alveoli, harbors the architecture, cellular composition, and molecular armamentarium to perform the critical function of gas exchange or oxygen uptake. Despite the necessity of this alveolar compartment for organismal viability, the mechanism by which alveoli are formed and maintained is obscure. Furthermore, no treatments are currently available that can regenerate the airspace once damaged. In this manuscript, we sought to determine whether hepatocyte growth factor, a cytokine with a functional armamentarium that subserves the critical events of alveolar formation (epithelial proliferation, migration, resistance from apoptosis and angiogenesis), could be an important mediator of alveolar formation and airspace maintenance. Our simple paradigm was that critical homeostatic pathways for the lung should operate both in lung formation and in lung maintenance/regeneration. Using an informative battery of mouse models and cell lines, we show that hepatocyte growth factor is a determinant of alveolar formation and that the enhancement of hepatocyte growth factor signaling can both protect and repair the airspace from pathologic airspace enlargement or emphysema.
Collapse
|
41
|
Abstract
Idiopathic pulmonary fibrosis is currently believed to be driven by alveolar epithelial cells, with abnormally activated alveolar epithelial cells accumulating in an attempt to repair injured alveolar epithelium (1). Thus, targeting the alveolar epithelium to prevent or inhibit the development of pulmonary fibrosis might be an interesting therapeutic option in this disease. Hepatocyte growth factor (HGF) is a growth factor for epithelial and endothelial cells, which is secreted by different cell types, especially fibroblasts and neutrophils. HGF has mitogenic, motogenic, and morphogenic properties and exerts an antiapoptotic action on epithelial and endothelial cells. HGF has also proangiogenic effect. In vitro, HGF inhibits epithelial-to-mesenchymal cell transition and promotes myofibroblast apoptosis. In vivo, HGF has antifibrotic properties demonstrated in experimental models of lung, kidney, heart, skin, and liver fibrosis. Hence, the modulation of HGF may be an attractive target for the treatment of lung fibrosis.
Collapse
|
42
|
Muyal JP, Muyal V, Kotnala S, Kumar D, Bhardwaj H. Therapeutic potential of growth factors in pulmonary emphysematous condition. Lung 2012; 191:147-63. [PMID: 23161370 DOI: 10.1007/s00408-012-9438-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/04/2012] [Indexed: 02/02/2023]
Abstract
Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.
Collapse
Affiliation(s)
- Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, India.
| | | | | | | | | |
Collapse
|
43
|
Mesenchymal stem cell therapy and lung diseases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:105-29. [PMID: 22772131 DOI: 10.1007/10_2012_140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small- and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions. MSC-mediated acute alveolar injury repair. A cartoon depiction of an injured alveolus with associated inflammation and AEC apoptosis. Proposed routes of MSC delivery into injured alveoli could be by either intratracheal or intravenous routes, for instance. Following delivery a proposed mechanism of MSC action is to inhibit/reduce alveolar inflammation by abrogation of IL-1_-depenedent Tlymphocyte proliferation and suppression of TNF-_ secretion via macrophage activation following on from stimulation by MSC-secreted IL-1 receptor antagonist (IL-1RN). The inflammatory environment also stimulates MSC to secrete prostaglandin-E2 (PGE2) which can stimulate activated macrophages to secrete the anti-inflammatory cytokine IL-10. Inhibition of AEC apoptosis following injury can also be promoted via MSC stimulated up-regulation of the anti-apoptotic Bcl-2 gene. MSC-secreted KGF can stimulate AECII proliferation and migration propagating alveolar epithelial restitution. Alveolar structural engraftment of MSC is a rare event.
Collapse
|
44
|
Bhatia M, Zemans RL, Jeyaseelan S. Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 2012; 46:566-72. [PMID: 22323365 DOI: 10.1165/rcmb.2011-0392tr] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) is due to an uncontrolled systemic inflammatory response resulting from direct injury to the lung or indirect injury in the setting of a systemic process. Such insults lead to the systemic inflammatory response syndrome (SIRS), which includes activation of leukocytes-alveolar macrophages and sequestered neutrophils-in the lung. Although systemic inflammatory response syndrome is a physiologic response to an insult, systemic leukocyte activation, if excessive, can lead to end organ injury, such as ALI. Excessive recruitment of leukocytes is critical to the pathogenesis of ALI, and the magnitude and duration of the inflammatory process may ultimately determine the outcome in patients with ALI. Leukocyte recruitment is a well orchestrated process that depends on the function of chemokines and their receptors. Understanding the mechanisms that contribute to leukocyte recruitment in ALI may ultimately lead to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pathology, University of Otago, 2 Riccarton Avenue, Christchurch, New Zealand.
| | | | | |
Collapse
|
45
|
Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/429890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective differentiation of mesenchymal stem cells (MSCs) is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.
Collapse
|
46
|
Ellison CA, Lissitsyn YV, Gheorghiu I, Gartner JG. Immunomodulatory Effects of Palifermin (Recombinant Human Keratinocyte Growth Factor) in an SLE-Like Model of Chronic Graft-Versus-Host Disease. Scand J Immunol 2011; 75:69-76. [DOI: 10.1111/j.1365-3083.2011.02628.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Herold S, Mayer K, Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2011; 2:65. [PMID: 22566854 PMCID: PMC3342347 DOI: 10.3389/fimmu.2011.00065] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/08/2011] [Indexed: 12/24/2022] Open
Abstract
Lung macrophages are long living cells with broad differentiation potential, which reside in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role of resident and recruited macrophages in initiating and maintaining pulmonary inflammation in lung infection or injury has been convincingly demonstrated. More recent reports suggest that lung macrophages are main orchestrators of termination and resolution of inflammation. They are also initiators of parenchymal repair processes that are essential for return to homeostasis with normal gas exchange. In this review we will discuss cellular cross-talk mechanisms and molecular pathways of macrophage plasticity which define their role in inflammation resolution and in initiation of lung barrier repair following lung injury.
Collapse
Affiliation(s)
- Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center Giessen, Germany.
| | | | | |
Collapse
|
48
|
Panoskaltsis-Mortari A, Griese M, Madtes DK, Belperio JA, Haddad IY, Folz RJ, Cooke KR. An official American Thoracic Society research statement: noninfectious lung injury after hematopoietic stem cell transplantation: idiopathic pneumonia syndrome. Am J Respir Crit Care Med 2011; 183:1262-79. [PMID: 21531955 DOI: 10.1164/rccm.2007-413st] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Acute lung dysfunction of noninfectious etiology, known as idiopathic pneumonia syndrome (IPS), is a severe complication following hematopoietic stem cell transplantation (HSCT). Several mouse models have been recently developed to determine the underlying causes of IPS. A cohesive interpretation of experimental data and their relationship to the findings of clinical research studies in humans is needed to better understand the basis for current and future clinical trials for the prevention/treatment of IPS. OBJECTIVES Our goal was to perform a comprehensive review of the preclinical (i.e., murine models) and clinical research on IPS. METHODS An ATS committee performed PubMed and OVID searches for published, peer-reviewed articles using the keywords "idiopathic pneumonia syndrome" or "lung injury" or "pulmonary complications" AND "bone marrow transplant" or "hematopoietic stem cell transplant." No specific inclusion or exclusion criteria were determined a priori for this review. MEASUREMENTS AND MAIN RESULTS Experimental models that reproduce the various patterns of lung injury observed after HSCT have identified that both soluble and cellular inflammatory mediators contribute to the inflammation engendered during the development of IPS. To date, 10 preclinical murine models of the IPS spectrum have been established using various donor and host strain combinations used to study graft-versus-host disease (GVHD). This, as well as the demonstrated T cell dependency of IPS development in these models, supports the concept that the lung is a target of immune-mediated attack after HSCT. The most developed therapeutic strategy for IPS involves blocking TNF signaling with etanercept, which is currently being evaluated in clinical trials. CONCLUSIONS IPS remains a frequently fatal complication that limits the broader use of allogeneic HSCT as a successful treatment modality. Faced with the clinical syndrome of IPS, one can categorize the disease entity with the appropriate tools, although cases of unclassifiable IPS will remain. Significant research efforts have resulted in a paradigm shift away from identifying noninfectious lung injury after HSCT solely as an idiopathic clinical syndrome and toward understanding IPS as a process involving aspects of both the adaptive and the innate immune response. Importantly, new laboratory insights are currently being translated to the clinic and will likely prove important to the development of future strategies to prevent or treat this serious disorder.
Collapse
|
49
|
Herold S, Tabar TS, Janssen H, Hoegner K, Cabanski M, Lewe-Schlosser P, Albrecht J, Driever F, Vadasz I, Seeger W, Steinmueller M, Lohmeyer J. Exudate macrophages attenuate lung injury by the release of IL-1 receptor antagonist in gram-negative pneumonia. Am J Respir Crit Care Med 2011; 183:1380-90. [PMID: 21278303 DOI: 10.1164/rccm.201009-1431oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exudate macrophages are key players in host defense toward invading pathogens. Their antiinflammatory and epithelial-protective potential in gram-negative pneumonia, however, remains elusive. OBJECTIVES We investigated whether exudate macrophages contributed to preservation of alveolar epithelial barrier integrity and analyzed the molecular pathways involved. METHODS We evaluated the antiinflammatory and epithelial-protective effects of exudate macrophages in a model of LPS- and Klebsiella pneumoniae-induced lung injury comparing wild-type and CC-chemokine receptor 2 (CCR2)-deficient mice with defective lung macrophage recruitment and in in vitro studies using primary alveolar epithelial cells. MEASUREMENTS AND MAIN RESULTS CCR2(-/-) mice exhibited enhanced alveolar epithelial cell apoptosis and lung leakage on intratracheal LPS treatment, which could be attributed to lack of exudate macrophage recruitment from the circulating pool as demonstrated in a model of wild-type/CCR2(-/-) bone-marrow chimeric mice. Among various antiinflammatory and proliferative mediators analyzed, the endogenous counterpart of resident macrophage-expressed IL-1β, IL-1 receptor antagonist (IL-1ra), was highly up-regulated in flow-sorted exudate macrophages in LPS-treated wild-type mice. LPS/IL-1β-induced impairment of alveolar epithelial cell integrity was antagonized by IL-1ra in vitro. Finally, intratracheal substitution of IL-1ra or intravenous adoptive transfer of IL-1ra(+/+) but not IL-1ra(-/-) blood mononuclear cells attenuated alveolar inflammation, epithelial apoptosis, and loss of barrier function in LPS-challenged or K. pneumoniae-infected CCR2(-/-) mice and enhanced survival after K. pneumoniae infection. CONCLUSIONS We conclude that recruited lung macrophages attenuate IL-1β-mediated acute lung injury in gram-negative pneumonia by release of IL-1ra.
Collapse
Affiliation(s)
- Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ellison CA, Lissitsyn YV, Packiasamy JA, Leonard WJ, Gartner JG. Role of thymic stromal lymphopoietin (TSLP) in palifermin-mediated immune modulation and protection from acute murine graft-versus-host disease. J Clin Immunol 2010; 31:406-13. [PMID: 21161346 DOI: 10.1007/s10875-010-9491-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Using the C57BL/6→(C57BL/6 x DBA/2)F(1)-hybrid model of acute graft-versus-host disease (GVHD), we previously showed that treating the donor mice with palifermin provides protection from morbidity and a shift from Th1 to Th2 cytokine production. To determine whether thymic stromal lymphopoietin (TSLP) is involved in palifermin-mediated immune modulation, we used donors from the following groups: (1) untreated wild-type donors, (2) palifermin-treated wild-type donors, (3) untreated TSLPR(-/-) donors, and (4) palifermin-treated TSLPR(-/-) donors. Survival in the recipients was 0%, 100%, 31%, and 0%, for groups 1-4, respectively, indicating that TSLP responsiveness is required for palifermin-mediated protection from GVHD. We also found that the increases in Th2 cytokine levels that are induced by palifermin treatment are obviated in TSLPR(-/-) donors, and that protection from GVHD (group 2) is associated with a higher percentage of CD4(+)CD25(+)Foxp3(+) cells in the graft. Collectively, our findings show that when palifermin and TSLP act in concert, the predominant effect is protection in this model.
Collapse
Affiliation(s)
- Cynthia A Ellison
- Department of Pathology, Faculty of Medicine, University of Manitoba, 401 Brodie Center, 727 McDermot Avenue, Winnipeg, MB, Canada.
| | | | | | | | | |
Collapse
|