1
|
Kamiya Y, Aihara N, Shiga T, Horiuchi N, Kamiie J. Diversity of mutations in the dystrophin gene and details of muscular lesions in porcine dystrophinopathies. Vet Pathol 2024; 61:432-441. [PMID: 38006213 DOI: 10.1177/03009858231214028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
During meat inspections in pigs, dystrophinopathies are among the muscle lesions targeted for disposal. In this study, the authors examined the lesions and the distribution of dystrophin expression in 25 pigs with dystrophinopathy. In addition, complementary deoxyribonucleic acid (cDNA) sequencing and western blotting were performed in 6 of the 25 cases, all of which were characterized by degeneration, necrosis, and fat replacement of muscle fibers. Comparing the results of immunohistochemistry with anti-dystrophin antibodies that recognized at different sites in the protein, the authors noted that the loss of dystrophin expression was most pronounced in the C-terminus-recognizing antibody (19/25 cases). The authors detected 5 missense mutations and 3 types of shortened transcripts generated by the skipping of exons in the cDNA, which were associated with the pathogenesis. One missense mutation had been reported previously, whereas the remaining mutations identified had not been previously documented in pigs. In the cases with shortened transcripts, normal-sized transcripts were detected together with the defective transcripts, suggesting that these mutations were caused by splicing abnormalities. In addition, they were in-frame mutations, all of which have similar pathogeneses of Becker muscular dystrophy in humans. These cases were 6 months of age and exhibited macroscopic discoloration, fatty replacement, and muscle degeneration, suggesting that the effect of these mutations on skeletal muscle was significant.
Collapse
|
2
|
Flanigan KM, Waldrop MA, Martin PT, Alles R, Dunn DM, Alfano LN, Simmons TR, Moore-Clingenpeel M, Burian J, Seok SC, Weiss RB, Vieland VJ. A genome-wide association analysis of loss of ambulation in dystrophinopathy patients suggests multiple candidate modifiers of disease severity. Eur J Hum Genet 2023; 31:663-673. [PMID: 36935420 PMCID: PMC10250491 DOI: 10.1038/s41431-023-01329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023] Open
Abstract
The major determinant of disease severity in Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD) is whether the dystrophin gene (DMD) mutation truncates the mRNA reading frame or allows expression of a partially functional protein. However, even in the complete absence of dystrophin, variability in disease severity is observed, and candidate gene studies have implicated several genes as modifiers. Here we present the largest genome-wide search to date for loci influencing severity in N = 419 DMD patients. Availability of subjects for such studies is quite limited, leading to modest sample sizes, which present a challenge for GWAS design. We have therefore taken special steps to minimize heterogeneity within our dataset at the DMD locus itself, taking a novel approach to mutation classification to effectively exclude the possibility of residual dystrophin expression, and utilized statistical methods that are well adapted to smaller sample sizes, including the use of a novel linear regression-like residual for time to ambulatory loss and the application of evidential statistics for the GWAS approach. Finally, we applied an unbiased in silico pipeline, utilizing functional genomic datasets to explore the potential impact of the best supported SNPs. In all, we obtained eight SNPs (out of 1,385,356 total) with posterior probability of trait-marker association (PPLD) ≥ 0.4, representing six distinct loci. Our analysis prioritized likely non-coding SNP regulatory effects on six genes (ETAA1, PARD6G, GALNTL6, MAN1A1, ADAMTS19, and NCALD), each with plausibility as a DMD modifier. These results support both recurrent and potentially new pathways for intervention in the dystrophinopathies.
Collapse
Affiliation(s)
- Kevin M Flanigan
- The Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- The Departments of Pediatrics, The Ohio State University, Columbus, OH, USA.
- The Departments of Neurology, The Ohio State University, Columbus, OH, USA.
| | - Megan A Waldrop
- The Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Departments of Pediatrics, The Ohio State University, Columbus, OH, USA
- The Departments of Neurology, The Ohio State University, Columbus, OH, USA
| | - Paul T Martin
- The Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Departments of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Roxane Alles
- The Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Diane M Dunn
- The Department of Human Genetics, University of Utah, Salt Lake, UT, USA
| | - Lindsay N Alfano
- The Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Departments of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Tabatha R Simmons
- The Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Melissa Moore-Clingenpeel
- The Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Departments of Statistics, The Ohio State University, Columbus, OH, USA
| | - John Burian
- The Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Sang-Cheol Seok
- The Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Robert B Weiss
- The Department of Human Genetics, University of Utah, Salt Lake, UT, USA
| | - Veronica J Vieland
- The Departments of Pediatrics, The Ohio State University, Columbus, OH, USA
- The Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Departments of Statistics, The Ohio State University, Columbus, OH, USA
- Mathematical Medicine, LLC, Chicago, IL, USA
| |
Collapse
|
3
|
Roshmi RR, Yokota T. Pharmacological Profile of Viltolarsen for the Treatment of Duchenne Muscular Dystrophy: A Japanese Experience. Clin Pharmacol 2021; 13:235-242. [PMID: 34938127 PMCID: PMC8688746 DOI: 10.2147/cpaa.s288842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 01/11/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal, X-linked recessive disorder characterized by progressive muscle loss and cardiorespiratory complications. Mutations in the DMD gene that eliminate the production of dystrophin protein are the underlying causes of DMD. Viltolarsen is a drug of phosphorodiamidate morpholino oligomer (PMO) chemistry, designed to skip exon 53 of the DMD gene. It aims to produce truncated but partially functional dystrophin in DMD patients and restore muscle function. Based on a preclinical study showing the ability of antisense PMOs targeting the DMD gene to improve muscle function in a large animal model, viltolarsen was developed by Nippon Shinyaku and the National Center of Neurology and Psychiatry in Japan. Following clinical trials conducted in Japan, Canada, and the United States showing significant improvements in muscle function, viltolarsen was approved for medical use in Japan in March 2020 and the United States in August 2020, respectively. Viltolarsen is a mutation-specific drug and will work for 8% of the persons with DMD who carry mutations amenable to exon 53 skipping. This review summarizes the pharmacological profile of viltolarsen, important clinical trials, and challenges, focusing on the contribution of Japanese patients and researchers in its development.
Collapse
Affiliation(s)
- Rohini Roy Roshmi
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Verdile V, Guizzo G, Ferrante G, Paronetto MP. RNA Targeting in Inherited Neuromuscular Disorders: Novel Therapeutic Strategies to Counteract Mis-Splicing. Cells 2021; 10:cells10112850. [PMID: 34831073 PMCID: PMC8616048 DOI: 10.3390/cells10112850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023] Open
Abstract
Neuromuscular disorders represent multifaceted abnormal conditions, with little or no cure, leading to patient deaths from complete muscle wasting and atrophy. Despite strong efforts in the past decades, development of effective treatments is still urgently needed. Advent of next-generation sequencing technologies has allowed identification of novel genes and mutations associated with neuromuscular pathologies, highlighting splicing defects as essential players. Deciphering the significance and relative contributions of defective RNA metabolism will be instrumental to address and counteract these malignancies. We review here recent progress on the role played by alternative splicing in ensuring functional neuromuscular junctions (NMJs), and its involvement in the pathogenesis of NMJ-related neuromuscular disorders, with particular emphasis on congenital myasthenic syndromes and muscular dystrophies. We will also discuss novel strategies based on oligonucleotides designed to bind their cognate sequences in the RNA or targeting intermediary of mRNA metabolism. These efforts resulted in several chemical classes of RNA molecules that have recently proven to be clinically effective, more potent and better tolerated than previous strategies.
Collapse
Affiliation(s)
- Veronica Verdile
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Gloria Guizzo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Abrahams L, Savisaar R, Mordstein C, Young B, Kudla G, Hurst LD. Evidence in disease and non-disease contexts that nonsense mutations cause altered splicing via motif disruption. Nucleic Acids Res 2021; 49:9665-9685. [PMID: 34469537 PMCID: PMC8464065 DOI: 10.1093/nar/gkab750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Transcripts containing premature termination codons (PTCs) can be subject to nonsense-associated alternative splicing (NAS). Two models have been evoked to explain this, scanning and splice motif disruption. The latter postulates that exonic cis motifs, such as exonic splice enhancers (ESEs), are disrupted by nonsense mutations. We employ genome-wide transcriptomic and k-mer enrichment methods to scrutinize this model. First, we show that ESEs are prone to disruptive nonsense mutations owing to their purine richness and paucity of TGA, TAA and TAG. The motif model correctly predicts that NAS rates should be low (we estimate 5–30%) and approximately in line with estimates for the rate at which random point mutations disrupt splicing (8–20%). Further, we find that, as expected, NAS-associated PTCs are predictable from nucleotide-based machine learning approaches to predict splice disruption and, at least for pathogenic variants, are enriched in ESEs. Finally, we find that both in and out of frame mutations to TAA, TGA or TAG are associated with exon skipping. While a higher relative frequency of such skip-inducing mutations in-frame than out of frame lends some credence to the scanning model, these results reinforce the importance of considering splice motif modulation to understand the etiology of PTC-associated disease.
Collapse
Affiliation(s)
- Liam Abrahams
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Christine Mordstein
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.,Aarhus University, Department of Molecular Biology and Genetics, C F Møllers Allé 3, 8000 Aarhus, Denmark
| | - Bethan Young
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4:232-240. [PMID: 34414317 PMCID: PMC8355726 DOI: 10.31662/jmaj.2021-0019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
In 1995, we were the first to propose antisense oligonucleotide (ASO)-mediated exon-skipping therapy for the treatment of Duchenne muscular dystrophy (DMD), a noncurable, progressive muscle-wasting disease. DMD is caused by deletion mutations in one or more exons of the DMD gene that shift the translational reading frame and create a premature stop codon, thus prohibiting dystrophin production. The therapy aims to correct out-of-frame mRNAs to produce in-frame transcripts by removing an exon during splicing, with the resumption of dystrophin production. As this treatment is recognized as the most promising, many extensive studies have been performed to develop ASOs that induce the skipping of DMD exons. In 2016, an ASO designed to skip exon 51 was first approved by the Food and Drug Administration, which accelerated studies on the use of ASOs to treat other monogenic diseases. The ease of mRNA editing by ASO-mediated exon skipping has resulted in the further application of exon-skipping therapy to nonmonogenic diseases, such as diabetes mellites. Recently, this precision medicine strategy was drastically transformed for the emergent treatment of only one patient with one ASO, which represents a future aspect of ASO-mediated exon-skipping therapy for extremely rare diseases. Herein, the invention of ASO-mediated exon-skipping therapy for DMD and the current applications of ASO-mediated exon-skipping therapies are reviewed, and future perspectives on this therapeutic strategy are discussed. This overview will encourage studies on ASO-mediated exon-skipping therapy and will especially contribute to the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
7
|
Baeza-Centurion P, Miñana B, Valcárcel J, Lehner B. Mutations primarily alter the inclusion of alternatively spliced exons. eLife 2020; 9:59959. [PMID: 33112234 PMCID: PMC7673789 DOI: 10.7554/elife.59959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic analyses and systematic mutagenesis have revealed that synonymous, non-synonymous and intronic mutations frequently alter the inclusion levels of alternatively spliced exons, consistent with the concept that altered splicing might be a common mechanism by which mutations cause disease. However, most exons expressed in any cell are highly-included in mature mRNAs. Here, by performing deep mutagenesis of highly-included exons and by analysing the association between genome sequence variation and exon inclusion across the transcriptome, we report that mutations only very rarely alter the inclusion of highly-included exons. This is true for both exonic and intronic mutations as well as for perturbations in trans. Therefore, mutations that affect splicing are not evenly distributed across primary transcripts but are focussed in and around alternatively spliced exons with intermediate inclusion levels. These results provide a resource for prioritising synonymous and other variants as disease-causing mutations.
Collapse
Affiliation(s)
- Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Belén Miñana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
8
|
Torella A, Zanobio M, Zeuli R, del Vecchio Blanco F, Savarese M, Giugliano T, Garofalo A, Piluso G, Politano L, Nigro V. The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS One 2020; 15:e0237803. [PMID: 32813700 PMCID: PMC7437896 DOI: 10.1371/journal.pone.0237803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used the DMD gene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, the DMD gene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, because DMD mutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5’ nonsense mutations, if reinitiation can occur, or due to late 3’ nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.
Collapse
Affiliation(s)
- Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariateresa Zanobio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Roberta Zeuli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | | | - Marco Savarese
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Teresa Giugliano
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Arcomaria Garofalo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luisa Politano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- * E-mail:
| |
Collapse
|
9
|
Meulemans L, Mesman RLS, Caputo SM, Krieger S, Guillaud-Bataille M, Caux-Moncoutier V, Léone M, Boutry-Kryza N, Sokolowska J, Révillion F, Delnatte C, Tubeuf H, Soukarieh O, Bonnet-Dorion F, Guibert V, Bronner M, Bourdon V, Lizard S, Vilquin P, Privat M, Drouet A, Grout C, Calléja FMGR, Golmard L, Vrieling H, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Vreeswijk MPG, Martins A, Gaildrat P. Skipping Nonsense to Maintain Function: The Paradigm of BRCA2 Exon 12. Cancer Res 2020; 80:1374-1386. [PMID: 32046981 DOI: 10.1158/0008-5472.can-19-2491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
Germline nonsense and canonical splice site variants identified in disease-causing genes are generally considered as loss-of-function (LoF) alleles and classified as pathogenic. However, a fraction of such variants could maintain function through their impact on RNA splicing. To test this hypothesis, we used the alternatively spliced BRCA2 exon 12 (E12) as a model system because its in-frame skipping leads to a potentially functional protein. All E12 variants corresponding to putative LoF variants or predicted to alter splicing (n = 40) were selected from human variation databases and characterized for their impact on splicing in minigene assays and, when available, in patient lymphoblastoid cell lines. Moreover, a selection of variants was analyzed in a mouse embryonic stem cell-based functional assay. Using these complementary approaches, we demonstrate that a subset of variants, including nonsense variants, induced in-frame E12 skipping through the modification of splice sites or regulatory elements and, consequently, led to an internally deleted but partially functional protein. These data provide evidence, for the first time in a cancer-predisposition gene, that certain presumed null variants can retain function due to their impact on splicing. Further studies are required to estimate cancer risk associated with these hypomorphic variants. More generally, our findings highlight the need to exercise caution in the interpretation of putative LoF variants susceptible to induce in-frame splicing modifications. SIGNIFICANCE: This study presents evidence that certain presumed loss-of-function variants in a cancer predisposition gene can retain function due to their direct impact on RNA splicing.
Collapse
Affiliation(s)
- Laëtitia Meulemans
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Romy L S Mesman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Sophie Krieger
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France.,Normandie University, UNICAEN, Caen, France
| | | | | | | | | | | | | | | | - Hélène Tubeuf
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Omar Soukarieh
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Virginie Guibert
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Myriam Bronner
- Department of Genetics, Nancy University Hospital, Nancy, France
| | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Sarab Lizard
- Department of Genetics, Nancy University Hospital, Nancy, France
| | - Paul Vilquin
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Maud Privat
- University of Clermont Auvergne, Inserm U1240, Clermont Ferrand, France.,Department of Oncogenetics, Centre Jean Perrin, Clermont Ferrand, France
| | - Aurélie Drouet
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Charlotte Grout
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,Inserm U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Institut Curie, Paris, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Thierry Frebourg
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, Rouen University Hospital, Rouen, France
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexandra Martins
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Normandie Univ, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
10
|
Exon skipping induced by nonsense/frameshift mutations in DMD gene results in Becker muscular dystrophy. Hum Genet 2020; 139:247-255. [PMID: 31919629 PMCID: PMC6981323 DOI: 10.1007/s00439-019-02107-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by a nonsense or frameshift mutation in the DMD gene, while its milder form, Becker muscular dystrophy (BMD) is caused by an in-frame deletion/duplication or a missense mutation. Interestingly, however, some patients with a nonsense mutation exhibit BMD phenotype, which is mostly attributed to the skipping of the exon containing the nonsense mutation, resulting in in-frame deletion. This study aims to find BMD cases with nonsense/frameshift mutations in DMD and to investigate the exon skipping rate of those nonsense/frameshift mutations. We searched for BMD cases with nonsense/frameshift mutations in DMD in the Japanese Registry of Muscular Dystrophy. For each DMD mutation identified, we constructed minigene plasmids containing one exon with/without a mutation and its flanking intronic sequence. We then introduced them into HeLa cells and measured the skipping rate of transcripts of the minigene by RT-qPCR. We found 363 cases with a nonsense/frameshift mutation in DMD gene from a total of 1497 dystrophinopathy cases in the registry. Among them, 14 had BMD phenotype. Exon skipping rates were well correlated with presence or absence of dystrophin, suggesting that 5% exon skipping rate is critical for the presence of dystrophin in the sarcolemma, leading to milder phenotypes. Accurate quantification of the skipping rate is important in understanding the exact functions of the nonsense/frameshift mutations in DMD and for interpreting the phenotypes of the BMD patients.
Collapse
|
11
|
Barny I, Perrault I, Michel C, Soussan M, Goudin N, Rio M, Thomas S, Attié-Bitach T, Hamel C, Dollfus H, Kaplan J, Rozet JM, Gerard X. Basal exon skipping and nonsense-associated altered splicing allows bypassing complete CEP290 loss-of-function in individuals with unusually mild retinal disease. Hum Mol Genet 2019; 27:2689-2702. [PMID: 29771326 DOI: 10.1093/hmg/ddy179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022] Open
Abstract
CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base pair deletion in Exon 17, introducing a premature termination codon (PTC) in Exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of Exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in Exon 8 (c.508A>T, p.Lys170*) and Exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking Exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of Exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing alone (Exon 8), or with BES (Exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.
Collapse
Affiliation(s)
- Iris Barny
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Christel Michel
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Mickael Soussan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Nicolas Goudin
- Cell Imaging Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Imagine and Paris Descartes University, Paris, France
| | - Marlène Rio
- Department of Genetics, IHU Necker-Enfants Malades, University Paris Descartes, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, Paris, France
| | - Christian Hamel
- Centre de Référence des Affections Sensorielles Génétiques, Institut des Neurosciences de Montpellier, CHU-Saint Eloi Montpellier, Montpellier, France
| | - Hélène Dollfus
- Centre de Référence pour les Affections Génétiques Ophtalmologiques CARGO, CHRU Strasbourg, INSERM 1112, Université de Strasbourg, Strasbourg, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| | - Xavier Gerard
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases
| |
Collapse
|
12
|
Zhu Y, Deng H, Chen X, Li H, Yang C, Li S, Pan X, Tian S, Feng S, Tan X, Matsuo M, Zhang Z. Skipping of an exon with a nonsense mutation in the DMD gene is induced by the conversion of a splicing enhancer to a splicing silencer. Hum Genet 2019; 138:771-785. [DOI: 10.1007/s00439-019-02036-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023]
|
13
|
Barny I, Perrault I, Michel C, Goudin N, Defoort-Dhellemmes S, Ghazi I, Kaplan J, Rozet JM, Gerard X. AON-Mediated Exon Skipping to Bypass Protein Truncation in Retinal Dystrophies Due to the Recurrent CEP290 c.4723A > T Mutation. Fact or Fiction? Genes (Basel) 2019; 10:E368. [PMID: 31091803 PMCID: PMC6562928 DOI: 10.3390/genes10050368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in CEP290 encoding a centrosomal protein important to cilia formation cause a spectrum of diseases, from isolated retinal dystrophies to multivisceral and sometimes embryo-lethal ciliopathies. In recent years, endogenous and/or selective non-canonical exon skipping of mutant exons have been documented in attenuated retinal disease cases. This observation led us to consider targeted exon skipping to bypass protein truncation resulting from a recurrent mutation in exon 36 (c.4723A > T, p.Lys1575*) causing isolated retinal ciliopathy. Here, we report two unrelated individuals (P1 and P2), carrying the mutation in homozygosity but affected with early-onset severe retinal dystrophy and congenital blindness, respectively. Studying skin-derived fibroblasts, we observed basal skipping and nonsense associated-altered splicing of exon 36, producing low (P1) and very low (P2) levels of CEP290 products. Consistent with a more severe disease, fibroblasts from P2 exhibited reduced ciliation compared to P1 cells displaying normally abundant cilia; both lines presented however significantly elongated cilia, suggesting altered axonemal trafficking. Antisense oligonucleotides (AONs)-mediated skipping of exon 36 increased the abundance of the premature termination codon (PTC)-free mRNA and protein, reduced axonemal length and improved cilia formation in P2 but not in P1 expressing higher levels of skipped mRNA, questioning AON-mediated exon skipping to treat patients carrying the recurrent c.4723A > T mutation.
Collapse
Affiliation(s)
- Iris Barny
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Christel Michel
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Nicolas Goudin
- Cell Imaging Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Sabine Defoort-Dhellemmes
- Service D'exploration de la Vision et Neuro-Ophtalmologie, Pôle D'imagerie et Explorations Fonctionnelles, CHRU de Lille, 59037 Lille, France.
| | - Imad Ghazi
- Department of Ophthalmology, IHU Necker-Enfants Malades, 75015 Paris, France.
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
| | - Xavier Gerard
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetics Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Hôpital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland.
| |
Collapse
|
14
|
Tomar S, Moorthy V, Sethi R, Chai J, Low PS, Hong STK, Lai PS. Mutational spectrum of dystrophinopathies in Singapore: Insights for genetic diagnosis and precision therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:230-244. [DOI: 10.1002/ajmg.c.31704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Vikaesh Moorthy
- Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Josiah Chai
- Department of Neurology, National Neuroscience Institute Singapore
| | - Poh Sim Low
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Stacey Tay Kiat Hong
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| |
Collapse
|
15
|
Li Y, Furhang R, Ray A, Duncan T, Soucy J, Mahdi R, Chaitankar V, Gieser L, Poliakov E, Qian H, Liu P, Dong L, Rogozin IB, Redmond TM. Aberrant RNA splicing is the major pathogenic effect in a knock-in mouse model of the dominantly inherited c.1430A>G human RPE65 mutation. Hum Mutat 2019; 40:426-443. [PMID: 30628748 DOI: 10.1002/humu.23706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/03/2023]
Abstract
Human RPE65 mutations cause a spectrum of retinal dystrophies that result in blindness. While RPE65 mutations have been almost invariably recessively inherited, a c.1430A>G (p.(D477G)) mutation has been reported to cause autosomal dominant retinitis pigmentosa (adRP). To study the pathogenesis of this human mutation, we have replicated the mutation in a knock-in (KI) mouse model using CRISPR/Cas9-mediated genome editing. Significantly, in contrast to human patients, heterozygous KI mice do not exhibit any phenotypes in visual function tests. When raised in regular vivarium conditions, homozygous KI mice display relatively undisturbed visual functions with minimal retinal structural changes. However, KI/KI mouse retinae are more sensitive to light exposure and exhibit signs of degenerative features when subjected to light stress. We find that instead of merely producing a missense mutant protein, the A>G nucleotide substitution greatly affects appropriate splicing of Rpe65 mRNA by generating an ectopic splice site in comparable context to the canonical one, thereby disrupting RPE65 protein expression. Similar splicing defects were also confirmed for the human RPE65 c.1430G mutant in an in vitro Exontrap assay. Our data demonstrate that a splicing defect is associated with c.1430G pathogenesis, and therefore provide insights in the therapeutic strategy for human patients.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rachel Furhang
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Amanda Ray
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Todd Duncan
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Joseph Soucy
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rashid Mahdi
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
16
|
Waldrop MA, Gumienny F, El Husayni S, Frank DE, Weiss RB, Flanigan KM. Low-level dystrophin expression attenuating the dystrophinopathy phenotype. Neuromuscul Disord 2017; 28:116-121. [PMID: 29305136 DOI: 10.1016/j.nmd.2017.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/29/2022]
Abstract
The reading frame rule suggests that Duchenne muscular dystrophy (DMD) results from DMD mutations causing an out-of-frame transcript, whereas the milder Becker muscular dystrophy results from mutations causing an in-frame transcript. However, predicted nonsense mutations may instead result in altered splicing and an in-frame transcript. Here we report a 10-year-old boy with a predicted nonsense mutation in exon 42 who had a 6-minute walk time of 157% of that of age matched DMD controls, characterized as intermediate muscular dystrophy. RNA sequencing analysis from a muscle biopsy revealed only 6.0-9.8% of DMD transcripts were in-frame, excluding exon 42, and immunoblot demonstrated only 3.2% dystrophin protein expression. Another potential genetic modifier noted was homozygosity for the protective IAAM LTBP4 haplotype. This case suggests that very low levels of DMD exon skipping and dystrophin protein expression may result in amelioration of skeletal muscle weakness, a finding relevant to current dystrophin-restoring therapies.
Collapse
Affiliation(s)
- Megan A Waldrop
- The Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Neurology, The Ohio State University, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Felecia Gumienny
- The Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Saleh El Husayni
- Department of Translational Development, Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Diane E Frank
- Department of Translational Development, Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kevin M Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Neurology, The Ohio State University, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
17
|
Moore RS, Tirupathi S, Herron B, Sands A, Morrison PJ. Dystrophin Exon 29 Nonsense Mutations Cause a Variably Mild Phenotype. THE ULSTER MEDICAL JOURNAL 2017; 86:185-188. [PMID: 29581631 PMCID: PMC5849976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nonsense mutations in the dystrophin gene usually result in a severe Duchenne muscular dystrophy phenotype. FINDINGS We describe a 7-year-old boy with a rare pathogenic mutation in exon 29 c.3940C>T p.(Arg1314Ter) resulting in exon skipping, in turn rescuing the phenotype from a severe Duchenne type to a milder Becker muscular dystrophy type. No adults have been described with this mutation to date. CONCLUSIONS Exon skipping of exon 29 results in a higher level of functional dystrophin. Some cases of muscular dystrophy may still require muscle biopsy to determine optimal management and pharmaceutical treatment options.
Collapse
Affiliation(s)
- Rebecca S Moore
- Clinical Genetics Department, Belfast City Hospital, 51 Lisburn Road, Belfast, Northern Ireland BT9 7AB
| | - Sandya Tirupathi
- Paediatric Neurology, Royal Belfast Hospital for Sick Children, 274 Grosvenor Road, Belfast, Northern Ireland BT12 6BA
| | - Brian Herron
- Department of Pathology, Royal Victoria Hospital, Belfast, 274 Grosvenor Road, Belfast, Northern Ireland BT 12 6BA
| | - Andrew Sands
- Paediatric Cardiology, Royal Belfast Hospital for Sick Children, 274 Grosvenor Road, Belfast, Northern Ireland, BT12 6BA
| | - Patrick J Morrison
- Clinical Genetics Department, Belfast City Hospital, 51 Lisburn Road, Belfast, Northern Ireland BT9 7AB,Centre for Cancer Research and Cell Biology, Queens University of Belfast, 97 Lisburn Road, Belfast BT9 7AE,Correspondence to Prof P Morrison
| |
Collapse
|
18
|
Okubo M, Goto K, Komaki H, Nakamura H, Mori-Yoshimura M, Hayashi YK, Mitsuhashi S, Noguchi S, Kimura E, Nishino I. Comprehensive analysis for genetic diagnosis of Dystrophinopathies in Japan. Orphanet J Rare Dis 2017; 12:149. [PMID: 28859693 PMCID: PMC5580216 DOI: 10.1186/s13023-017-0703-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is the most common disease in children caused by mutations in the DMD gene, and DMD and Becker muscular dystrophy (BMD) are collectively called dystrophinopathies. Dystrophinopathies show a complex mutation spectrum. The importance of mutation databases, with clinical phenotypes and protein studies of patients, is increasingly recognized as a reference for genetic diagnosis and for the development of gene therapy. METHODS We used the data from the Japanese Registry of Muscular Dystrophy (Remudy) compiled during from July 2009 to March 2017, and reviewed 1497 patients with dystrophinopathies. RESULTS The spectrum of identified mutations contained exon deletions (61%), exon duplications (13%), nonsense mutations (13%), small deletions (5%), small insertions (3%), splice-site mutations (4%), and missense mutations (1%). Exon deletions were found most frequently in the central hot spot region between exons 45-52 (42%), and most duplications were detected in the proximal hot spot region between exons 3-25 (47%). In the 371 patients harboring a small mutation, 194 mutations were reported and 187 mutations were unreported. CONCLUSIONS We report the largest dystrophinopathies mutation dataset in Japan from a national patient registry, "Remudy". This dataset provides a useful reference to support the genetic diagnosis and treatment of dystrophinopathy.
Collapse
Affiliation(s)
- Mariko Okubo
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Pediatrics, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanako Goto
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Genome Medicine Development, Medical Genome Center, NCNP, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Harumasa Nakamura
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | | | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Genome Medicine Development, Medical Genome Center, NCNP, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - En Kimura
- Department of Promoting Clinical Trial and Translational Medicine, Translational Medical Center, NCNP, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan. .,Department of Genome Medicine Development, Medical Genome Center, NCNP, Tokyo, Japan.
| |
Collapse
|
19
|
Normal and altered pre-mRNA processing in the DMD gene. Hum Genet 2017; 136:1155-1172. [DOI: 10.1007/s00439-017-1820-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
|
20
|
Deo RC. Alternative Splicing, Internal Promoter, Nonsense-Mediated Decay, or All Three: Explaining the Distribution of Truncation Variants in Titin. ACTA ACUST UNITED AC 2016; 9:419-425. [PMID: 27625338 PMCID: PMC5068190 DOI: 10.1161/circgenetics.116.001513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 12/01/2022]
Abstract
Supplemental Digital Content is available in the text. Background— Truncating mutations in the giant sarcomeric gene Titin are the most common type of genetic alteration in dilated cardiomyopathy. Detailed studies have amassed a wealth of information about truncating variant position in cases and controls. Nonetheless, considerable confusion exists as to how to interpret the pathogenicity of these variants, hindering our ability to make useful recommendations to patients. Methods and Results— Building on our recent discovery of a conserved internal promoter within the Titin gene, we sought to develop an integrative statistical model to explain the observed pattern of Titin truncation variants in patients with dilated cardiomyopathy and population controls. We amassed Titin truncation mutation information from 1714 human dilated cardiomyopathy cases and >69 000 controls and found 3 factors explaining the distribution of Titin mutations: (1) alternative splicing, (2) whether the internal promoter Cronos isoform was disrupted, and (3) whether the distal C terminus was targeted (in keeping with the observation that truncation variants in this region escape nonsense-mediated decay and continue to be incorporated in the sarcomere). A model using these 3 factors had strong predictive performance with an area under the receiver operating characteristic curve of 0.81. Accordingly, individuals with either the most severe form of dilated cardiomyopathy or whose mutations demonstrated clear family segregation experienced the highest risk profile across all 3 components. Conclusions— We conclude that quantitative models derived from large-scale human genetic and phenotypic data can be applied to help overcome the ever-growing challenges of genetic data interpretation. Results of our approach can be found at http://cvri.ucsf.edu/~deo/TTNtruncationvariant.html.
Collapse
Affiliation(s)
- Rahul C Deo
- From the Department of Medicine, Institute for Human Genetics, California Institute for Quantitative Biosciences and Cardiovascular Research Institute, University of California, San Francisco.
| |
Collapse
|
21
|
Nishida A, Oda A, Takeuchi A, Lee T, Awano H, Hashimoto N, Takeshima Y, Matsuo M. Staurosporine allows dystrophin expression by skipping of nonsense-encoding exon. Brain Dev 2016; 38:738-45. [PMID: 27021413 DOI: 10.1016/j.braindev.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/13/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Antisense oligonucleotides that induce exon skipping have been nominated as the most plausible treatment method for dystrophin expression in dystrophin-deficient Duchenne muscular dystrophy. Considering this therapeutic efficiency, small chemical compounds that can enable exon skipping have been highly awaited. In our previous report, a small chemical kinase inhibitor, TG003, was shown to enhance dystrophin expression by enhancing exon skipping. PURPOSE Staurosporine (STS), a small chemical broad kinase inhibitor, was examined for enhanced skipping of a nonsense-encoding dystrophin exon. METHODS STS was added to culture medium of HeLa cells transfected with minigenes expressing wild-type or mutated exon 31 with c.4303G>T (p.Glu1435X), and the resulting mRNAs were analyzed by RT-PCR amplification. Dystrophin mRNA and protein were analyzed in muscle cells treated with STS by RT-PCR and western blotting, respectively. RESULTS STS did not alter splicing of the wild-type minigene. In the mutated minigene, STS increased the exon 31-skipped product. A combination of STS and TG003 did not significantly increase the exon 31-skipped product. STS enhanced skipping of exon 4 of the CDC-like kinase 1 gene, whereas TG003 suppressed it. Two STS analogs with selective kinase inhibitory activity did not enhance the mutated exon 31 skipping. When immortalized muscle cells with c.4303G>T in the dystrophin gene were treated with STS, skipping of the mutated exon 31 and dystrophin expression was enhanced. CONCLUSIONS STS, a broad kinase inhibitor, was shown to enhance skipping of the mutated exon 31 and dystrophin expression, but selective kinase inhibitors did not.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Japan; Biopharmaceutical Innovation Research Department, Research Institute, Research Division, JCR Pharmaceuticals Co. Ltd., Japan
| | - Ayaka Oda
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Japan; Department of Clinical Pharmacology, Kobe Pharmaceutical University, Japan
| | - Atsuko Takeuchi
- Department of Clinical Pharmacology, Kobe Pharmaceutical University, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Japan
| | | | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Japan.
| |
Collapse
|
22
|
Brinkmeyer-Langford C, Balog-Alvarez C, Cai JJ, Davis BW, Kornegay JN. Genome-wide association study to identify potential genetic modifiers in a canine model for Duchenne muscular dystrophy. BMC Genomics 2016; 17:665. [PMID: 27549615 PMCID: PMC4994242 DOI: 10.1186/s12864-016-2948-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. Results We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. Conclusions The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2948-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Cynthia Balog-Alvarez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Brian W Davis
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Namgoong JH, Bertoni C. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis 2016; 6:37-48. [PMID: 30050367 PMCID: PMC6053089 DOI: 10.2147/dnnd.s71808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an autosomal dominant, X-linked neuromuscular disorder caused by mutations in dystrophin, one of the largest genes known to date. Dystrophin gene mutations are generally transmitted from the mother to male offspring and can occur throughout the coding length of the gene. The majority of the methodologies aimed at treating the disorder have focused on restoring a shorter, although partially functional, dystrophin protein. The approach has the potential of converting a severe DMD phenotype into a milder form of the disease known as Becker muscular dystrophy. Others have focused on ameliorating the disease by targeting secondary pathologies such as inflammation or loss of regeneration. Of great potential is the development of strategies that are capable of restoring full-length dystrophin expression due to their ability to produce a normal, fully functional protein. Among these strategies, the use of read-through compounds (RTCs) that could be administered orally represents an ideal option. Gentamicin has been previously tested in clinical trials for DMD with limited or no success, and its use in the clinic has been dismissed due to issues of toxicity and lack of clear benefits to patients. More recently, new RTCs have been identified and tested in animal models for DMD. This review will focus on one of those RTCs known as ataluren that has now completed Phase III clinical studies for DMD and at providing an overview of the different stages that have led to its clinical development for the disease. The impact that this new drug may have on DMD and its future perspectives will also be described, with an emphasis on the importance of further assessing the clinical benefits of this molecule in patients as it becomes available on the market in different countries.
Collapse
Affiliation(s)
- John Hyun Namgoong
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA,
| | - Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA,
| |
Collapse
|
24
|
Matsuo M, Takeshima Y, Nishio H. Contributions of Japanese patients to development of antisense therapy for DMD. Brain Dev 2016; 38:4-9. [PMID: 26094594 DOI: 10.1016/j.braindev.2015.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a fatal progressive muscle wasting disease considered untreatable since its first description in 1868. In 1987, the dystrophin gene responsible for DMD was cloned. This paved the way for the development of therapies. Antisense oligonucleotide (AO)-mediated exon skipping therapy is now reaching the stage of marketing authorization. On the 20th anniversary of the proposal of AO-mediated exon skipping therapy for DMD, this review explores the contributions of Japanese patients. RESULTS In 1990, a Japanese DMD patient was reported as having a small deletion within dystrophin exon 19 and complicating exon 19 skipping in the absence of any mutation at the consensus splice sites. This led to identification of a splicing enhancer sequence within exon 19. Remarkably, AOs against this sequence were shown to induce exon skipping. This encouraged us to propose AO-mediated exon skipping therapy for DMD in 1995. The therapy's effectiveness was verified in a Japanese patient with a nonsense dystrophin mutation manifesting as Becker muscular dystrophy. The patient showed skipping of the nonsense mutation-encoding exon. Finally, a DMD patient carrying a deletion of exon 20 volunteered to undergo intravenous AO infusion, enabling us to obtain proof of concept. The findings from these three patients greatly facilitated studies on exon skipping therapy. As a result, more than 300 reports on AO-mediated exon skipping therapy for DMD have been published, including at least two a month during the last few years. CONCLUSION We greatly appreciate the important contributions of Japanese patients to development of the exon skipping therapy for DMD.
Collapse
Affiliation(s)
- Masafumi Matsuo
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobe Gakuin University, Japan.
| | | | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
25
|
|
26
|
Miro J, Laaref AM, Rofidal V, Lagrafeuille R, Hem S, Thorel D, Méchin D, Mamchaoui K, Mouly V, Claustres M, Tuffery-Giraud S. FUBP1: a new protagonist in splicing regulation of the DMD gene. Nucleic Acids Res 2015; 43:2378-89. [PMID: 25662218 PMCID: PMC4344520 DOI: 10.1093/nar/gkv086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1. Functional studies in a human myoblast cell line transfected with DMD minigenes confirmed the splicing inhibitory activity of hnRNPA1 and hnRNPA2/B1, and showed that DAZAP1, also known to activate splicing, acts negatively in the context of the mutated exon 39. Furthermore, we uncovered that recognition of endogenous DMD exon 39 in muscle cells is promoted by FUSE binding protein 1 (FUBP1), a multifunctional DNA- and RNA-binding protein whose role in splicing is largely unknown. By serial deletion and mutagenesis studies in minigenes, we delineated a functional intronic splicing enhancer (ISE) in intron 38. FUBP1 recruitment to the RNA sequence containing the ISE was established by RNA pull down and RNA EMSA, and further confirmed by RNA-ChIP on endogenous DMD pre-mRNA. This study provides new insights about the splicing regulation of DMD exon 39, highlighting the emerging role of FUBP1 in splicing and describing the first ISE for constitutive exon inclusion in the mature DMD transcript.
Collapse
Affiliation(s)
- Julie Miro
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Abdelhamid Mahdi Laaref
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Valérie Rofidal
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Rosyne Lagrafeuille
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Sonia Hem
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Delphine Thorel
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Déborah Méchin
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Kamel Mamchaoui
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Vincent Mouly
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Mireille Claustres
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Sylvie Tuffery-Giraud
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| |
Collapse
|
27
|
Yu RY, Brazaitis J, Gallagher G. The human IL-23 receptor rs11209026 A allele promotes the expression of a soluble IL-23R-encoding mRNA species. THE JOURNAL OF IMMUNOLOGY 2014; 194:1062-8. [PMID: 25552541 DOI: 10.4049/jimmunol.1401850] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The human IL23R gene single nucleotide polymorphism rs11209026 A allele confers protection against inflammatory diseases. However, although this difference has been associated with reductions in IL-23-induced IL-17A production and STAT3 phosphorylation, the molecular mechanism underlying these changes remains undefined. Th17 cell maturation depends on IL-23 signaling. Multiple splice forms of the human IL23R transcript exist, and one, Δ9, encodes a soluble form of the receptor. In this study, we asked whether this protective allele was associated with mRNA splicing. Using mini-gene constructs and competitive oligonucleotide binding, we showed that the A allele alters IL-23R α-chain mRNA splicing and favors exon 9 skipping by reducing the binding of the splicing enhancer SF2. This enhances expression of the Δ9 mRNA and consequently diminishes IL-23 signaling. Thus, the presence of the A allele increases expression of the soluble form of IL23R mRNA (which then functions as a decoy receptor) and lowers the ability to develop a Th17 phenotype upon IL-23 stimulation. We further showed that antisense oligonucleotides targeting the SF2 binding site could efficiently induce exon 9 skipping in the presence of the G allele, and thereby replicate the effect of the A allele. Antisense oligonucleotide treatment caused dose-responsive induction of the IL23RΔ9 mRNA and interfered with in vitro differentiation of human Th17 cells, reducing their expression of the signature Th17 cytokines IL-17A and IL-17F. This may represent a novel approach to therapy of Th17-mediated diseases by elevating soluble IL-23R while simultaneously reducing the remaining cell surface receptor density.
Collapse
Affiliation(s)
- Raymond Y Yu
- Genetic Immunology Laboratory, HUMIGEN, The Institute for Genetic Immunology, Genesis Biotechnology Group, Hamilton, NJ 08690
| | - Jonathan Brazaitis
- Genetic Immunology Laboratory, HUMIGEN, The Institute for Genetic Immunology, Genesis Biotechnology Group, Hamilton, NJ 08690
| | - Grant Gallagher
- Genetic Immunology Laboratory, HUMIGEN, The Institute for Genetic Immunology, Genesis Biotechnology Group, Hamilton, NJ 08690
| |
Collapse
|
28
|
Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27. J Hum Genet 2014; 60:151-5. [PMID: 25537791 PMCID: PMC4374993 DOI: 10.1038/jhg.2014.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 01/16/2023]
Abstract
We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device (LVAD) implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAins GG), in which 7 base pairs are deleted and two are inserted. While this predicts an amino acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both siblings developed progressive heart failure secondary to early onset DCM. In addition, their 7 year old nephew with delayed gross motor development, mild proximal muscle weakness, and markedly elevated serum creatine kinase (CK) level (> 13,000 IU/L) at 16 months was recently demonstrated to have the familial DMD mutation. Here we report a novel genotype of BMD with early onset DCM and progressive lethal heart failure during early adolescence.
Collapse
|
29
|
Trabelsi M, Beugnet C, Deburgrave N, Commere V, Orhant L, Leturcq F, Chelly J. When a mid-intronic variation of DMD gene creates an ESE site. Neuromuscul Disord 2014; 24:1111-7. [DOI: 10.1016/j.nmd.2014.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023]
|
30
|
Ishikawa Y. A commentary on a novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy. J Hum Genet 2014; 59:419-20. [DOI: 10.1038/jhg.2014.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Vandevenne M, O'Connell MR, Helder S, Shepherd NE, Matthews JM, Kwan AH, Segal DJ, Mackay JP. Engineering Specificity Changes on a RanBP2 Zinc Finger that Binds Single-Stranded RNA. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Vandevenne M, O'Connell MR, Helder S, Shepherd NE, Matthews JM, Kwan AH, Segal DJ, Mackay JP. Engineering specificity changes on a RanBP2 zinc finger that binds single-stranded RNA. Angew Chem Int Ed Engl 2014; 53:7848-52. [PMID: 25044781 DOI: 10.1002/anie.201402980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 12/13/2022]
Abstract
The realization that gene transcription is much more pervasive than previously thought and that many diverse RNA species exist in simple as well as complex organisms has triggered efforts to develop functionalized RNA-binding proteins (RBPs) that have the ability to probe and manipulate RNA function. Previously, we showed that the RanBP2-type zinc finger (ZF) domain is a good candidate for an addressable single-stranded-RNA (ssRNA) binding domain that can recognize ssRNA in a modular and specific manner. In the present study, we successfully engineered a sequence specificity change onto this ZF scaffold by using a combinatorial approach based on phage display. This work constitutes a foundation from which a set of RanBP2 ZFs might be developed that is able to recognize any given RNA sequence.
Collapse
Affiliation(s)
- Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, N.S.W 2006 (Australia)
| | | | | | | | | | | | | | | |
Collapse
|
33
|
A novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy. J Hum Genet 2014; 59:423-9. [PMID: 24871807 DOI: 10.1038/jhg.2014.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/30/2014] [Accepted: 04/18/2014] [Indexed: 12/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disease, is mostly caused by exon deletion mutations in the DMD gene. The reading frame rule explains that out-of-frame deletions lead to muscle dystrophin deficiency in DMD. In outliers to this rule, deletion junction sequences have never previously been explored as splicing modulators. In a Japanese case, we identified a single exon 45 deletion in the patient's DMD gene, indicating out-of-frame mutation. However, immunohistochemical examination disclosed weak dystrophin signals in his muscle. Reverse transcription-PCR amplification of DMD exons 42 to 47 revealed a major normally spliced product with exon 45 deletion and an additional in-frame product with deletion of both exons 44 and 45, indicating upstream exon 44 skipping. We considered the latter to underlie the observed dystrophin expression. Remarkably, the junction sequence cloned by PCR walking abolished the splicing enhancer activity of the upstream intron in a chimeric doublesex gene pre-mRNA in vitro splicing. Furthermore, antisense oligonucleotides directed against the junction site counteracted this effect. These indicated that the junction sequence was a splicing silencer that induced upstream exon 44 skipping. It was strongly suggested that creation of splicing regulator is a modifier of dystrophinopathy.
Collapse
|
34
|
Puisac B, Teresa-Rodrigo ME, Arnedo M, Gil-Rodríguez MC, Pérez-Cerdá C, Ribes A, Pié A, Bueno G, Gómez-Puertas P, Pié J. Analysis of aberrant splicing and nonsense-mediated decay of the stop codon mutations c.109G>T and c.504_505delCT in 7 patients with HMG-CoA lyase deficiency. Mol Genet Metab 2013; 108:232-40. [PMID: 23465862 DOI: 10.1016/j.ymgme.2013.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells can be protected against mutations that generate stop codons by nonsense-mediated mRNA decay (NMD) and/or nonsense-associated altered splicing (NAS). However, the processes are only partially understood and do not always occur. In this work, we study these phenomena in the stop codon mutations c.109G>T (p.Glu37*) and c.504_505delCT; the second and third most frequent mutations in HMG-CoA lyase deficiency (MIM #246450). The deficiency affects the synthesis of ketone bodies and produces severe disorders during early childhood. We used a minigene approach, real-time quantitative PCR and the inhibition of NMD by puromycin treatment, to study the effect of stop codons on splicing (NAS) and NMD in seven patients. Surprisingly, none of the stop codons studied appears to be the direct cause of aberrant splicing. In the mutation c.109G>T, the splicing is due to the base change G>T at position 109, which is critical and cannot be explained by disruption of exonic splicing enhancer (ESE) elements, by the appearance of exonic splicing silencer (ESS) elements which were predicted by bioinformatic tools or by the stop codons. Moreover, the mutation c.504_505delCT produces two mRNA transcripts both with stop codons that generate simultaneous NMD phenomena. The effects of the mutations studied on splicing seemed to be similar in all the patients. Furthermore, we report a Spanish patient with 3-hydroxy-3-methylglutaric aciduria and a novel missense mutation: c.825C>G (p.Asn275Lys).
Collapse
Affiliation(s)
- Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, E-50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Juan-Mateu J, González-Quereda L, Rodríguez MJ, Verdura E, Lázaro K, Jou C, Nascimento A, Jiménez-Mallebrera C, Colomer J, Monges S, Lubieniecki F, Foncuberta ME, Pascual-Pascual SI, Molano J, Baiget M, Gallano P. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes. PLoS One 2013; 8:e59916. [PMID: 23536893 PMCID: PMC3607557 DOI: 10.1371/journal.pone.0059916] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/19/2013] [Indexed: 12/12/2022] Open
Abstract
DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Lidia González-Quereda
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Maria José Rodríguez
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Edgard Verdura
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Kira Lázaro
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Cristina Jou
- Servei d'Anatomia Patològica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Andrés Nascimento
- Unitat de Patologia Neuromuscular, Servei de Neurologia, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Jaume Colomer
- Unitat de Patologia Neuromuscular, Servei de Neurologia, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Soledad Monges
- Servicio de Neuropediatría, Hospital Nacional Pediátrico Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Servicio de Patología, Hospital Nacional Pediátrico Garrahan, Buenos Aires, Argentina
| | | | | | - Jesús Molano
- Unidad de Genética Molecular and CIBERER U753, Hospital Universitario Materno Infantil La Paz, Madrid, Spain
| | - Montserrat Baiget
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Pia Gallano
- Servei de Genètica, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
- * E-mail:
| |
Collapse
|
36
|
Rani AQ, Sasongko TH, Sulong S, Bunyan D, Salmi AR, Zilfalil BA, Matsuo M, Zabidi-Hussin ZAMH. Mutation Spectrum ofDystrophinGene in Malaysian Patients with Duchenne/Becker Muscular Dystrophy. J Neurogenet 2013; 27:11-5. [DOI: 10.3109/01677063.2012.762580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
The medical genetics of dystrophinopathies: Molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord 2013; 23:4-14. [DOI: 10.1016/j.nmd.2012.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 01/01/2023]
|
38
|
Thu Tran TH, Zhang Z, Yagi M, Lee T, Awano H, Nishida A, Okinaga T, Takeshima Y, Matsuo M. Molecular characterization of an X(p21.2;q28) chromosomal inversion in a Duchenne muscular dystrophy patient with mental retardation reveals a novel long non-coding gene on Xq28. J Hum Genet 2012; 58:33-9. [DOI: 10.1038/jhg.2012.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Mendive FM, Rivolta CM, González-Sarmiento R, Medeiros-Neto G, Targovnik HM. Nonsense-Associated Alternative Splicing of the Human Thyroglobulin Gene. ACTA ACUST UNITED AC 2012; 9:143-9. [PMID: 16271015 DOI: 10.1007/bf03260082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION We have described in previous articles a nonsense mutation (4588C>T, R1511X) in exon 22 of the thyroglobulin (TG) gene in a member of a family with a complex history of congenital goiter. In the mutated thyroid gland, full-length thyroglobulin mRNA is almost undetectable. However, a smaller transcript is detected in which the mutated exon 22 is skipped and the reading frame restored. It is conceivable that alternative splicing might be a mechanism involved in the rescue of nonsense mutations. METHODS To investigate whether the detection of the alternative mRNA is due to an increase in its concentration or its preferential amplification during reverse transcriptase-PCR in the absence of the normal full-length mRNA competitor, we set up an assay in which the competitor mRNA was provided. We also studied the effect of the 4588C>T mutation on exon definition and processing using wild-type and mutated minigenes. RESULTS The detection of the alternative mRNA lacking exon 22 is not caused by the absence of the full-length competitor. In contrast, our results demonstrate that the alternative transcript preferentially accumulates in the mutated thyroid at a level similar to the full-length transcript in control tissue. Transient expression experiments with wild-type and mutated minigenes indicate that the mutated exon is as efficiently spliced as the wild-type, suggesting that the 4588C>T mutation does not interfere with exon 22 definition and processing. CONCLUSIONS The alternative splicing of the TG gene described in this article constitutes a new case of nonsense-associated alternative splicing. We have shown that the mutation itself does not interfere with exon definition and processing in vitro. Our results support the hypothesis that the alternative splicing of the mutated exon is driven by the interruption of the reading frame.
Collapse
Affiliation(s)
- Fernando M Mendive
- Laboratory of Molecular Biology, Department of Genetic and Molecular Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
40
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
41
|
Malueka RG, Takaoka Y, Yagi M, Awano H, Lee T, Dwianingsih EK, Nishida A, Takeshima Y, Matsuo M. Categorization of 77 dystrophin exons into 5 groups by a decision tree using indexes of splicing regulatory factors as decision markers. BMC Genet 2012; 13:23. [PMID: 22462762 PMCID: PMC3350383 DOI: 10.1186/1471-2156-13-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/31/2012] [Indexed: 12/29/2022] Open
Abstract
Background Duchenne muscular dystrophy, a fatal muscle-wasting disease, is characterized by dystrophin deficiency caused by mutations in the dystrophin gene. Skipping of a target dystrophin exon during splicing with antisense oligonucleotides is attracting much attention as the most plausible way to express dystrophin in DMD. Antisense oligonucleotides have been designed against splicing regulatory sequences such as splicing enhancer sequences of target exons. Recently, we reported that a chemical kinase inhibitor specifically enhances the skipping of mutated dystrophin exon 31, indicating the existence of exon-specific splicing regulatory systems. However, the basis for such individual regulatory systems is largely unknown. Here, we categorized the dystrophin exons in terms of their splicing regulatory factors. Results Using a computer-based machine learning system, we first constructed a decision tree separating 77 authentic from 14 known cryptic exons using 25 indexes of splicing regulatory factors as decision markers. We evaluated the classification accuracy of a novel cryptic exon (exon 11a) identified in this study. However, the tree mislabeled exon 11a as a true exon. Therefore, we re-constructed the decision tree to separate all 15 cryptic exons. The revised decision tree categorized the 77 authentic exons into five groups. Furthermore, all nine disease-associated novel exons were successfully categorized as exons, validating the decision tree. One group, consisting of 30 exons, was characterized by a high density of exonic splicing enhancer sequences. This suggests that AOs targeting splicing enhancer sequences would efficiently induce skipping of exons belonging to this group. Conclusions The decision tree categorized the 77 authentic exons into five groups. Our classification may help to establish the strategy for exon skipping therapy for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Rusdy Ghazali Malueka
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Chuo, Kobe 6500017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Howard MT, Sampson JB, Swoboda KJ, Bromberg MB, Mendell JR, Taylor LE, Anderson CB, Pestronk A, Florence JM, Connolly AM, Mathews KD, Wong B, Finkel RS, Bonnemann CG, Day JW, McDonald C, Weiss RB. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene. Hum Mutat 2012; 32:299-308. [PMID: 21972111 DOI: 10.1002/humu.21426] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.
Collapse
Affiliation(s)
- Kevin M Flanigan
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takeshima Y, Yagi M, Matsuo M. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing. Methods Mol Biol 2012; 867:131-41. [PMID: 22454059 DOI: 10.1007/978-1-61779-767-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.
Collapse
Affiliation(s)
- Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | |
Collapse
|
44
|
Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2011; 2:308. [PMID: 21556062 PMCID: PMC3113229 DOI: 10.1038/ncomms1306] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/11/2011] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by a loss of the dystrophin protein. Control of dystrophin mRNA splicing to convert severe DMD to a milder phenotype is attracting much attention. Here we report a dystrophinopathy patient who has a point mutation in exon 31 of the dystrophin gene. Although the mutation generates a stop codon, a small amount of internally deleted, but functional, dystrophin protein is produced in the patient cells. An analysis of the mRNA reveals that the mutation promotes exon skipping and restores the open reading frame of dystrophin. Presumably, the mutation disrupts an exonic splicing enhancer and creates an exonic splicing silencer. Therefore, we searched for small chemicals that enhance exon skipping, and found that TG003 promotes the skipping of exon 31 in the endogenous dystrophin gene in a dose-dependent manner and increases the production of the dystrophin protein in the patient's cells. Duchenne muscular dystrophy is caused by a loss of the dystrophin gene, and control of dystrophin mRNA splicing could aid treatment of the disease. Nishida et al. show that a small molecule promotes skipping of exon 31 and increases production of a functional dystrophin protein in a patient.
Collapse
|
45
|
Abstract
Analysis of RB1 mRNA from blood leukocytes of patients with retinoblastoma identified the effects of mutations involving consensus splice site, exonic substitution and whole-exon deletions identified in genomic DNA of these patients. In addition, this study identified mutations in cases in which no mutations were detectable in the genomic DNA. One proband had mutation at the canonical splice site at +5 position of IVS22, and analysis of the transcripts in this family revealed skipping of exon 22 in three members of this family. In one proband, a missense substitution of c.652T greater than G (g.56897T greater than G; Leu218Val) in exon 7 led to splicing aberrations involving deletions of exons 7 and 8, suggesting the formation of a cryptic splice site. In two probands with no detectable changes in the genomic DNA upon screening of RB1 exons and flanking intronic sequences, transcripts were found to have deletions of exon 6 in one, and exons 21 and 22 in another family. In two probands, RNA analysis confirmed genomic deletions involving one or more exons. This study reveals novel effects of RB1 mutations on splicing and suggests the utility of RNA analysis as an adjunct to mutational screening of genomic DNA in retinoblastoma.
Collapse
|
46
|
Malueka RG, Yagi M, Awano H, Lee T, Dwianingsih EK, Nishida A, Takeshima Y, Matsuo M. Antisense oligonucleotide induced dystrophin exon 45 skipping at a low half-maximal effective concentration in a cell-free splicing system. Nucleic Acid Ther 2011; 21:347-53. [PMID: 21967521 DOI: 10.1089/nat.2011.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antisense oligonucleotides (AOs) can facilitate the expression of internally deleted dystrophin in dystrophin-deficient Duchenne muscular dystrophy (DMD) by correcting the reading frame of the pre-mRNA with AO-mediated exon skipping. An antisense 18-mer 2'-O-methyl RNA/ethylene-bridged nucleic acid chimera AO targeting exon 45 of the dystrophin gene, AO85, can induce exon 45 skipping efficiently in cultured cells. AO85 is expected to facilitate dystrophin expression in 8%-9% of all DMD patients. Here, we examined the kinetics of AO85-mediated exon 45 skipping in a cell-free splicing system. In vitro transcribed pre-mRNAs containing dystrophin exon 45 and part of its flanking introns within a hybrid minigene were incubated with HeLa cell nuclear extract, and the resultant mRNAs were amplified by semiquantitative reverse transcriptase-polymerase chain reaction. Time-course analysis revealed that the splicing process fitted well to first order kinetics. Addition of AO85 produced an extra spliced product, deleting exon 45 (Δexon 45), indicating AO85-mediated exon 45 skipping. Production of Δexon 45 increased linearly with increasing concentrations of AO85, reaching a maximum of nearly 80% of the transcripts. The half-maximal effective concentration (EC(50)) of AO85 was 58.0 nM. The percentage of Δexon 45 among the transcripts decreased inversely with the pre-mRNA concentration; Lineweaver-Burk plotting revealed a competitive fashion of AO85 action. The low EC(50) indicates high potential of AO85 for clinical application.
Collapse
|
47
|
Ota M, Takeshima Y, Nishida A, Awano H, Lee T, Yagi M, Matsuo M. A G-to-T transversion at the splice acceptor site of dystrophin exon 14 shows multiple splicing outcomes that are not exemplified by transition mutations. Genet Test Mol Biomarkers 2011; 16:3-8. [PMID: 21854195 DOI: 10.1089/gtmb.2010.0276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations at splicing consensus sequences have been shown to induce splicing errors such as exon skipping or cryptic splice site activation. Here, we identified eight splicing products caused by a G-to-T transversion mutation at the splice acceptor site of exon 14 of the dystrophin gene (c.1603-1G>T). Unexpectedly, the most abundant product showed skipping of the two consecutive exons 14 and 15, and exon 14 skipping was observed as the second most abundant product. To examine the cause of this splicing multiplicity, minigenes containing dystrophin exons 14 and 15 with their flanking introns were constructed and subjected to in vitro splicing. Minigenes with the wild-type sequence or a G>A transition at position c.1603-1 produced only the mature mRNA. On the other hand, the minigenes with a G>T or G>C transversion mutation produced multiple splicing products. A time-course analysis of the in vitro splicing revealed that splicing of the middle intron, intron 14, was the first step in transcript maturation for all four minigene constructs. The identity of the mutant nucleotide, but not its position, is a factor leading to multiple splicing outcomes. Our results suggest that exon skipping therapy for Duchenne's muscular dystrophy should be carefully monitored for their splicing outcomes.
Collapse
Affiliation(s)
- Mitsunori Ota
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR. Loss of exon identity is a common mechanism of human inherited disease. Genome Res 2011; 21:1563-71. [PMID: 21750108 DOI: 10.1101/gr.118638.110] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ~25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated.
Collapse
Affiliation(s)
- Timothy Sterne-Weiler
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
49
|
Rani AQ, Malueka RG, Sasongko TH, Awano H, Lee T, Yagi M, Zilfalil BA, Salmi ABR, Takeshima Y, Zabidi-Hussin ZAMH, Matsuo M. Two closely spaced nonsense mutations in the DMD gene in a Malaysian family. Mol Genet Metab 2011; 103:303-4. [PMID: 21514860 DOI: 10.1016/j.ymgme.2011.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/02/2011] [Accepted: 04/02/2011] [Indexed: 12/31/2022]
Abstract
In Duchenne muscular dystrophy (DMD), identification of one nonsense mutation in the DMD gene has been considered an endpoint of genetic diagnosis. Here, we identified two closely spaced nonsense mutations in the DMD gene. In a Malaysian DMD patient two nonsense mutations (p.234S>X and p.249Q>X, respectively) were identified within exon 8. The proband's mother carried both mutations on one allele. Multiple mutations may explain the occasional discrepancies between genotype and phenotype in dystrophinopathy.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Forrest S, Meloni PL, Muntoni F, Kim J, Fletcher S, Wilton SD. Personalized exon skipping strategies to address clustered non-deletion dystrophin mutations. Neuromuscul Disord 2011; 20:810-6. [PMID: 20817455 DOI: 10.1016/j.nmd.2010.07.276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 11/30/2022]
Abstract
Antisense oligomer induced exon skipping is showing promise as a therapy to reduce the severity of Duchenne muscular dystrophy. To date, the focus has been on excluding single exons flanking frame-shifting deletions in the dystrophin gene. However, a third of all Duchenne muscular dystrophy causing mutations are more subtle DNA changes. Thirty nine dystrophin exons are potentially frame-shifting and mutations in these will require the targeted removal of exon blocks to generate in-frame transcripts. We report that clustered non-deletion mutations in the dystrophin gene respond differently to different antisense oligomer preparations targeting the same dual exon block, the removal of which bypasses the mutation and restores the open reading-frame. The personalized nature of the responses to antisense oligomer application presents additional challenges to the induction of multi-exon skipping with a single oligomer preparation.
Collapse
Affiliation(s)
- Sarah Forrest
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|