1
|
Ma W, Tang W, Kwok JS, Tong AH, Lo CW, Chu AT, Chung BH. A review on trends in development and translation of omics signatures in cancer. Comput Struct Biotechnol J 2024; 23:954-971. [PMID: 38385061 PMCID: PMC10879706 DOI: 10.1016/j.csbj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.
Collapse
Affiliation(s)
- Wei Ma
- Hong Kong Genome Institute, Hong Kong, China
| | - Wenshu Tang
- Hong Kong Genome Institute, Hong Kong, China
| | | | | | | | | | - Brian H.Y. Chung
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Kong Genome Project
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
3
|
Dutta D, Lorenzo-Martín LF, Rivest F, Broguiere N, Tillard L, Ragusa S, Brandenberg N, Höhnel S, Saugy D, Rusakiewicz S, Homicsko K, Coukos G, Lutolf MP. Probing the killing potency of tumor-infiltrating lymphocytes on microarrayed colorectal cancer tumoroids. NPJ Precis Oncol 2024; 8:179. [PMID: 39143103 PMCID: PMC11324658 DOI: 10.1038/s41698-024-00661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Immunotherapy has emerged as a new standard of care for certain cancer patients with specific cellular and molecular makeups. However, there is still an unmet need for ex vivo models able to readily assess the effectiveness of immunotherapeutic treatments in a high-throughput and patient-specific manner. To address this issue, we have developed a microarrayed system of patient-derived tumoroids with recreated immune microenvironments that are optimized for the high-content evaluation of tumor-infiltrating lymphocyte functionality. Here we show that this system offers unprecedented opportunities to evaluate tumor immunogenicity, characterize the response to immunomodulators, and explore novel approaches for personalized immuno-oncology.
Collapse
Affiliation(s)
- Devanjali Dutta
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Genmab B.V., Utrecht, Netherlands
| | - L Francisco Lorenzo-Martín
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - François Rivest
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lunaphore, Tolochenaz, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucie Tillard
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Simone Ragusa
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Molecular Partners AG, Zürich, Switzerland
| | - Nathalie Brandenberg
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- DOPPL, Lausanne, Switzerland
| | - Sylke Höhnel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SUN bioscience, Lausanne, Switzerland
| | - Damien Saugy
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Krisztian Homicsko
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
4
|
Li Y, Pan C, Gao Y, Zhang L, Ji D, Cui X, Zhang X, Cai Y, Zhang Y, Yao Y, Wang L, Leng J, Zhan T, Wu D, Gao Z, Sun YS, Li Z, Luo H, Wu A. Total Neoadjuvant Therapy With PD-1 Blockade for High-Risk Proficient Mismatch Repair Rectal Cancer. JAMA Surg 2024; 159:529-537. [PMID: 38381429 PMCID: PMC10882505 DOI: 10.1001/jamasurg.2023.7996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/25/2023] [Indexed: 02/22/2024]
Abstract
Importance Total neoadjuvant therapy (TNT) is the standard treatment for locally advanced rectal cancer, especially for patients with high-risk factors. However, the efficacy of TNT combined with immunotherapy for patients with proficient mismatch repair (pMMR) rectal cancer is unknown. Objectives To evaluate the safety and efficacy of TNT with induction chemoimmunotherapy followed by long-course chemoradiation in patients with high-risk, pMMR rectal cancer and to identify potential molecular biomarkers associated with treatment efficacy. Design, Setting, and Participants This cohort study was a single-arm phase 2 trial conducted at Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, from June 2020 to October 2021. Biopsies and plasma were collected before treatment for whole-exome sequencing and cell-free DNA sequencing, respectively. Data were analyzed from May 2022 to September 2022. Interventions Participants received 3 cycles of induction oxaliplatin and capecitabine combined with camrelizumab and radiotherapy (50.6 Gy in 22 fractions) with concurrent capecitabine. Patients without disease progression received 2 cycles of consolidation oxaliplatin/capecitabine. Main Outcomes and Measures The primary end point was pathologic complete response rate. Results Of 25 patients enrolled (19 men [76%]; 6 women [24%]; median [IQR] age, 58 [48-64] years), 22 patients (88%) completed the TNT schedule. The pathologic complete response rate was 33.3% (7/21). Twelve patients (48%) achieved clinical complete response, and 4 patients (16%) chose to watch and wait. R0 resection was achieved in 21 of 21 patients, and the major pathologic response rate was 38.1% (8/21). The most common adverse event was nausea (80%, 20/25); grade 3 toxic effects occurred in 9 of 25 patients (36%). Patients with tumor shrinkage of 50% or greater after induction oxaliplatin/capecitabine and camrelizumab or clinical complete response had higher percentages of LRP1B mutation. Mutation of LRP1B was associated with high tumor mutation burden and tumor neoantigen burden. Patients with high tumor mutation burden all benefited from therapy. Conclusions and Relevance This study found that TNT with induction chemoimmunotherapy followed by long-course chemoradiation was safe and effective for patients with high-risk rectal cancer with pMMR status. Longer follow-up and larger clinical studies are needed to validate this innovative regimen. There is also an urgent need to further validate the predictive value of LRP1B and discover other novel biomarkers with potential predictive value for rectal cancer.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chaohu Pan
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology, Shenzhen, China
| | - Yuye Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Pathology, Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Dengbo Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology, Shenzhen, China
| | - Xiaoyan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiology, Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiation Oncology, Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Yangzi Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiation Oncology, Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Yunfeng Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiahua Leng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tiancheng Zhan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology, Shenzhen, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology, Shenzhen, China
| | - Ying-Shi Sun
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiology, Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Pathology, Beijing Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology, Shenzhen, China
| | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
5
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
6
|
Kgokolo MCM, Malinga NZ, Steel HC, Meyer PWA, Smit T, Anderson R, Rapoport BL. Transforming growth factor-β1 and soluble co-inhibitory immune checkpoints as putative drivers of immune suppression in patients with basal cell carcinoma. Transl Oncol 2024; 42:101867. [PMID: 38308919 PMCID: PMC10847768 DOI: 10.1016/j.tranon.2023.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024] Open
Abstract
The current study compared the levels and possible associations between systemic soluble immune checkpoints (sICPs, n = 17) and a group of humoral modulators of immune suppressor cells (n = 7) in a cohort of patients with basal cell carcinoma (BCC, n = 40) and a group of healthy control subjects (n = 20). The seven humoral modulators of immunosuppressor cells were represented by the enzymes, arginase 1 and fibroblast activation protein (FAP), the chemokine, RANTES (CCL5) and the cytokines, interleukin-10 and transforming growth factor-β1 (TGF-β1), as well as the M2-type macrophage markers, soluble CD163 (sCD163) and sCD206. The plasma levels of six co-inhibitory sICPs, sCTLA-4, sLAG-3, sPD-1, sPD-L1, sTIM-3 and sPD-L2 were significantly elevated in the cohort of BCC patients (p<0.001-p<0.00001), while that of sBTLA was significantly decreased (p<0.006). Of the co-stimulatory sICPs, sCD27 and sGITR were significantly increased (p<0.0002 and p<0.0538) in the cohort of BCC patients, while the others were essentially comparable with those of the control participants; of the dual active sICPs, sHVEM was significantly elevated (p<0.00001) and TLR2 comparable with the control group. A correlation heat map revealed selective, strong associations of TGF-β1 with seven co-stimulatory (z = 0.618468-0.768131) and four co-inhibitory (z = 0.674040-0.808365) sICPs, as well as with sTLR2 (z = 0.696431). Notwithstanding the association of BCC with selective elevations in the levels of a large group of co-inhibitory sICPs, our novel findings also imply the probable involvement of TGF-β1 in driving immunosuppression in this malignancy, possibly via activation of regulatory T cells. Notably, these abnormalities were present in patients with either newly diagnosed or recurrent disease.
Collapse
Affiliation(s)
- Mahlatse C M Kgokolo
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa.
| | - Nonkululeko Z Malinga
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Pieter W A Meyer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bernardo L Rapoport
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa.
| |
Collapse
|
7
|
Shi J, Yu X, Li G, Zhao X, Chen J, Fang Y, Yang Y, Wang T, Xu T, Bian L, Lyu L, He Y. DTL promotes head and neck squamous cell carcinoma progression by mediating the degradation of ARGLU1 to regulate the Notch signaling pathway. Int J Biol Macromol 2024; 259:129184. [PMID: 38218284 DOI: 10.1016/j.ijbiomac.2023.129184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with a high incidence in squamous epithelium. The E3 ubiquitin ligase DTL is a component of the CRL4A complex and is widely involved in tumor progression. We aimed to analyze the role of DTL in HNSCC and to explore its mechanism of action. Through clinical analysis, we found that DTL is upregulated in HNSCC tissues and is associated with the tumor microenvironment and poor survival in patients. Through gain-of-function and loss-of-function assays, we showed that DTL promotes cell proliferation and migration in vitro and tumor growth in vivo. Mass spectrometry analysis and immunoprecipitation assays showed that DTL interacts with ARGLU1 to promote K11-linked ubiquitination-mediated degradation of ARGLU1, thereby promoting the activation of the CSL-dependent Notch signaling pathway. Furthermore, siARGLU1 blocks the inhibitory effects of DTL knockdown on HNSCC cells. In this study, we showed that DTL promotes HNSCC progression through K11-linked ubiquitination of ARGLU1 to activate the CSL-dependent Notch pathway. These findings identify a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jingpei Shi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaonan Yu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China
| | - Guoyu Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Xiaoyu Zhao
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032,Yunnan, China
| | - Jiwen Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Fang
- Department of Infection and Hepatology, The First Affiliated Hospital of Kunming Medical University, 650032, Yunnan, China
| | - Yan Yang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantion, the First People's Hospital of Kunming, Kunming 650011, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Tianyong Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Yongwen He
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Qujing Medical College, Qujing 655099, Yunnan, China.
| |
Collapse
|
8
|
Shang Z, Wang Z, Zhang Y, Liu S. DNA damage repair molecular subtype derived immune signature applicable for the prognosis and immunotherapy response prediction in colon cancer. Transl Cancer Res 2023; 12:2781-2805. [PMID: 37969400 PMCID: PMC10643980 DOI: 10.21037/tcr-23-747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 11/17/2023]
Abstract
Background The DNA damage repair (DDR) pathway is one of the pathways of tumor pathogenesis, but its relationship with the immunophenotype has not been clarified in colon cancer (CC). Methods We identified the differentially expressed immune-related genes (DEIRGs) between two DDR molecular subtypes, namely, C1 and C2, and used univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis to construct the risk score in the training cohort [n=1,009, a combination of The Cancer Genome Atlas (TCGA) and GSE39582]. Regarding the median risk score as the unified cutoff to classify the patients into high- and low-risk groups. Two independent cohorts (GSE17538, n=232; GSE38832, n=122) were used for external validation of the prognostic value of the risk score. The IMvigor210 cohort (n=348) was used to test the predictive value of the risk score for immunotherapy response. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were performed to discover the underlying mechanism. Immune cell infiltration was quantified by the single sample gene set enrichment analysis (ssGSEA) algorithm. Results The high-risk group showed significantly reduced overall survival (OS), disease-specific survival (DSS), disease-free survival (DFS), progression-free survival (PFS), and relapse-free survival (RFS) compared to the low-risk group, and the two groups differed significantly in lymphatic invasion, American Joint Committee on Cancer (AJCC) TNM stage, preoperative carcinoembryonic antigen (CEA) level, etc. The enrichment levels of pathways related to colorectal cancer, epithelial-mesenchymal transition (EMT), angiogenesis, hypoxia, P53, TGF-β, KRAS signaling, etc., were upregulated in the high-risk group, but DDR-related pathways were defective in the high-risk group. The immunophenotypes of the high-risk group tended to be desert and excluded, and the risk score of patients who responded to immunotherapy was significantly lower than that of patients who did not respond to immunotherapy. The higher the infiltration levels of gamma delta T cells (γδ T cells), immature dendritic cells, and T follicular helper (Tfh) cells, the more significant adverse impact on the prognosis of CC patients was exhibited and an obviously positive correlation with the risk score was showed. Conclusions An immune gene risk score associated with the DDR molecular subtype was built and verified herein; that is applicable to the prognosis and immunotherapy response prediction in CC.
Collapse
Affiliation(s)
- Zhen Shang
- Medical Department of Qingdao University, Qingdao, China
| | - Ze Wang
- Department of Emergency Medicine, Qingdao Haici Medical Treatment Group, Qingdao, China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Magkouta SF, Vaitsi PC, Iliopoulou MP, Pappas AG, Kosti CN, Psarra K, Kalomenidis IT. MTH1 Inhibition Alleviates Immune Suppression and Enhances the Efficacy of Anti-PD-L1 Immunotherapy in Experimental Mesothelioma. Cancers (Basel) 2023; 15:4962. [PMID: 37894329 PMCID: PMC10605650 DOI: 10.3390/cancers15204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND MTH1 protects tumor cells and their supporting endothelium from lethal DNA damage triggered by oxidative stress in the tumor microenvironment, thus promoting tumor growth. The impact of MTH1 on the tumor-related immune compartment remains unknown. We hypothesized that MTH1 regulates immune fitness and therefore enhances the activity of currently used immunotherapeutic regimens. METHODS Our hypotheses were validated in two syngeneic murine mesothelioma models using the clinically relevant MTH1 inhibitor, karonudib. We also examined the effect of combined MTH1 and PD-L1 blockade in mesothelioma progression, focusing on the main immune players. RESULTS Karonudib administration enhances M1 macrophage polarization, stimulates CD8 expansion and promotes the activation of DC and T cells. Combined administration of PD-L1 and MTH1 inhibitors impairs mesothelioma tumor growth and mesothelioma-associated pleural effusion accumulation more effectively compared to each monotherapy. CONCLUSIONS Combined MTH1 and PD-L1 inhibition holds promise for the successful clinical management of mesothelioma.
Collapse
Affiliation(s)
- Sophia F. Magkouta
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Photene C. Vaitsi
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Marianthi P. Iliopoulou
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Apostolos G. Pappas
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Chrysavgi N. Kosti
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| | - Katherina Psarra
- Department of Immunology-Histocompatibility, Evangelismos Hospital, 10675 Athens, Greece;
| | - Ioannis T. Kalomenidis
- “Marianthi Simou Laboratory”, 1st Department of Critical Care and Pulmonary Medicine, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens 10676 Athens, Greece; (P.C.V.); (M.P.I.); (A.G.P.); (C.N.K.); (I.T.K.)
| |
Collapse
|
10
|
Song Y, Long J, Su X, Chen Z, He Y, Shao W, Wang B, Chen C. Case Report: Genetic and immune microenvironmental characteristics of a rectal cancer patient with MSS/PD-L1-negative recurrent hepatopulmonary metastasis who achieved complete remission after treatment with PD-1 inhibitor. Front Immunol 2023; 14:1197543. [PMID: 37520536 PMCID: PMC10373867 DOI: 10.3389/fimmu.2023.1197543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Currently, microsatellite high instability (MSI-H)/mismatch repair protein deletion (dMMR) has become a crucial biomarker for utilizing immune checkpoint inhibitors in patients with advanced colorectal cancer (mCRC). However, the proportion of MSI-H/dMMR in advanced patients is only about 5% and mCRC patients with microsatellite stability (MSS)/proficient mismatch repair (pMMR) exhibit poor responses to immunotherapy. Although diverse immune combination therapy regimens have been examined in patients with advanced colorectal cancer who demonstrate MSS/pMMR, these approaches have not yielded favorable efficacy and only a limited proportion of patients have benefited, especially for advanced colorectal cancer patients with liver metastases. Therefore, the mechanism of benefit and potential biomarkers of immunotherapy in patients with MSS/pMMR mCRC deserve more in-depth exploration. Here, we present a case study of a rectal cancer patient with MSS and PD-L1-negative recurrent hepatopulmonary metastases who attained complete remission (CR) and sustained benefits with immunotherapy after systemic therapy had failed. The analysis of the patient's genetic and immune microenvironmental characteristics revealed that mutations in DNA damage repair (DDR) pathway genes and the existence of abundant tumor-infiltrating lymphocytes could contribute to his potential benefit.
Collapse
Affiliation(s)
- Yang Song
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Juan Long
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaona Su
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue He
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | | | - Bin Wang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
12
|
Zhu Y, Wu W, Qiao L, Ji J, Duan L, Gong L, Ren D, Li F, Wei L, Pan K. The characteristics and clinical relevance of tumor fusion burden in non-EBV (+) gastric cancer with MSS. BMC Gastroenterol 2023; 23:153. [PMID: 37189078 DOI: 10.1186/s12876-023-02765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is maturely applied for gene fusion detection. Although tumor fusion burden (TFB) has been identified as an immune marker for cancer, the relationship between these fusions and the immunogenicity and molecular characteristics of gastric cancer (GC) patients remains unclear. GCs have different clinical significance depending on their subtypes, and thus, this study aimed to investigate the characteristics and clinical relevance of TFB in non-Epstein-Barr-virus-positive (EBV+) GC with microsatellite stability (MSS). METHODS A total of 319 GC patients from The Cancer Genome Atlas stomach adenocarcinoma (TCGA-STAD) and a cohort of 45-case from ENA (PRJEB25780) were included. The cohort characteristics and distribution of TFB among the patients were analyzed. Additionally, the correlations of TFB with mutation characteristics, pathway differences, relative abundance of immune cells, and prognosis were examined in the TCGA-STAD cohort of MSS and non-EBV (+) patients. RESULTS We observed that in the MSS and non-EBV (+) cohort, the TFB-low group exhibited significantly lower gene mutation frequency, gene copy number, loss of heterozygosity score, and tumor mutation burden than in the TFB-high group. Additionally, the TFB-low group exhibited a higher abundance of immune cells. Furthermore, the immune gene signatures were significantly upregulated in the TFB-low group, 2-year disease-specific survival was markedly increased in the TFB-low group compared with to the TFB-high group. The rates of TFB-low cases were significantly higher TFB-than high cases in durable clinical benefit (DCB) and response groups with pembrolizumab treatment. Low TFB may serve as a predictor of GC prognosis, and the TFB-low group exhibits higher immunogenicity. CONCLUSION In conclusion, this study reveals that the TFB-based classification of GC patient may be instructive for individualized immunotherapy regimens.
Collapse
Affiliation(s)
- Yongjun Zhu
- Department of Gastrointestinal surgery, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Weixin Wu
- Department of Oncology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004, China
| | - Liangliang Qiao
- Oncology Department I, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jingfen Ji
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, China
| | - Lunxi Duan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, China
| | - Longlong Gong
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China
| | - Dandan Ren
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China
| | - Feifei Li
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China
| | - Lihui Wei
- Department of Medicine, Genecast Biotechnology Co., Ltd, 214000, Wuxi, China.
| | - Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, China.
| |
Collapse
|
13
|
Guberina N, Wirsdörfer F, Stuschke M, Jendrossek V. Combined radiation- and immune checkpoint-inhibitor-induced pneumonitis – The challenge to predict and detect overlapping immune-related adverse effects from evolving laboratory biomarkers and clinical imaging. Neoplasia 2023; 39:100892. [PMID: 37011458 PMCID: PMC10124136 DOI: 10.1016/j.neo.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The risk of overlapping pulmonary toxicity induced by thoracic radio(chemo)therapy and immune checkpoint inhibitor therapy in the treatment of patients suffering from non-small cell lung cancer (NSCLC) is one important challenge in successful radioimmunotherapy. In the present opinion we highlight factors that we find important to be considered before treatment initiation, during the treatment sequence, and after treatment completion combined or sequential application of radio(chemo)therapy and immune checkpoint inhibitor therapy. A major aim is to optimize the therapeutic index and to avoid immune related adverse effects. The goals in the future will be focused not only on identifying patients already in the pretreatment phase who could benefit from this complex treatment, but also in identifying patients, who are most likely to have higher grade toxicity. In this respect, proper assessment of clinical performance status, monitoring for the presence of certain comorbidities, evaluation of laboratory parameters such as TGF-α and IL-6 levels, human leukocyte antigens (HLA), and consideration of other potential biomarkers which will evolve in near future are essential. Likewise, the critical parameters must be monitored during the treatment phase and follow-up care to detect potential side effects in time. With the help of high-end imaging which is already used on a daily basis in image guided radiotherapy (IGRT) for intensity modulated radiotherapy (IMRT), its advanced form volumetric modulated arc therapy (VMAT), and adaptive radiation therapy (ART), clinically relevant changes in lung tissue can be detected at an early stage of disease. Concurrent radiotherapy and immunotherapy requires a special focus on adverse events, particularly of the lung, but, when properly approached and applied, it may offer new perspectives for patients with locally advanced NSCLC to be seriously considered as a curative option.
Collapse
|
14
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
15
|
Zhang H, Yan X, Gu H, Xue Q, Liu X. High SERPINH1 expression predicts poor prognosis in lung adenocarcinoma. J Thorac Dis 2022; 14:4785-4802. [PMID: 36647484 PMCID: PMC9840017 DOI: 10.21037/jtd-22-1518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Background Serpine Protease Inhibitorclade H1 (SERPINH1) is abnormally expressed in a variety of tumor tissues and is linked to the biological processes of tumorigenesis, migration, invasion, and metastasis. SERPINH1 expression and prognosis in malignant tumors, such as gastric, colorectal, and breast cancers, have previously been studied, but the gene has not yet been investigated in lung adenocarcinoma (LUAD) in terms of prognosis and the potential mechanisms of action. Methods SERPINH1 was identified as an independent prognostic factor for LUAD in The Cancer Genome Atlas (TCGA) cohort and Affiliated Hospital of Nantong University (NTU) cohort (the LUAD data set) by univariate and multivariate Cox regression analyses. Additionally, we performed immunohistochemical staining to analyze the expression of SERPINH1 in LUAD and normal lung tissue. Based on the TCGA database, we analyzed the correlation of this gene with the tumor mutation burden (TMB), tumor microenvironment, immune infiltration, immune checkpoints, and anti-tumor drugs using the R language-related R package. Results SERPINH1 was highly expressed in LUAD tissue. Kaplan-Meier survival curves in both the TCGA cohort and the NTU cohort showed that the SERPINH1 low-expression group had a higher survival rate than the high-expression group. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the SERPINH1 co-expressed genes revealed that the gene was associated with the extracellular matrix and cell proliferation and migration. The analysis of SERPINH1 and the TMB revealed a superior survival advantage for patients with high TMB and high SERPINH1 expression, and worse survival for those with low TMB and high SERPINH1 expression. The analysis of the tumor microenvironment (TME) and immune infiltration revealed that the high and low expression of SERPINH1 was associated with different immune infiltration characteristics. The analysis of the immune checkpoints and anti-tumor drugs showed that immunotherapy and anti-neoplastic treatment were more efficacious in the high SERPINH1 expression group than the low SERPINH1 expression group. Conclusions Using LUAD tissues and clinical samples, we showed that SERPINH1 can be used as a prognostic biomarker for LUAD. Our findings provide a new approach and strategy for the clinical treatment of LUAD patients.
Collapse
Affiliation(s)
- Hailing Zhang
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Yan
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmei Gu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiang Xue
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiancheng Liu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
16
|
Jiang A, Song J, Fang X, Fang Y, Wang Z, Liu B, Wu Z, Qu L, Luo P, Wang L. A novel thinking: DDR axis refines the classification of ccRCC with distinctive prognosis, multi omics landscape and management strategy. Front Public Health 2022; 10:1029509. [PMID: 36478716 PMCID: PMC9720257 DOI: 10.3389/fpubh.2022.1029509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background DNA damage response and repair (DDR) related signatures play an important role in maintaining genome stability and other biological processes. It also affects the occurrence, development, and treatment of cancer. However, in renal cell carcinoma (RCC), especially clear cell renal carcinoma (ccRCC), the potential association between DDR-related signatures and tumor heterogeneity and tumor microenvironment (TME) remains unclear. Methods Utilizing unsupervised clustering algorithm, we divided RCC into two subgroups, DCS1 and DCS2, according to the differences in DDR gene expression, and compared the characteristics of the two subgroups through multiple dimensions. Results Compared with DCS1, DCS2 patients have higher clinical stage/grade and worse prognosis, which may be related to active metabolic status and immunosuppression status. At the same time, the high mutation rate in DCS2 may also be an important reason for the prognosis. We also analyzed the sensitivity of the two subgroups to different therapeutic agents and established a subtypes' biomarkers-based prognostic system with good validation results to provide ideas for clinical diagnosis and treatment. Finally, we identified a pivotal role for DDX1 in the DDR gene set, which may serve as a future therapeutic target. Conclusion This study showed that DDR has an important impact on the development and treatment of RCC. DCS2 subtypes have a poor prognosis, and more personalized treatment and follow-up programs may be needed. The assessment of DDR gene mutations in patients may be helpful for clinical decision-making. DDX1 may be one of the effective targets for RCC treatment in the future.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Xiao Fang
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhenjie Wu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Le Qu
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Peng Luo
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China,Linhui Wang
| |
Collapse
|
17
|
Gueble SE, Vasquez JC, Bindra RS. The Role of PARP Inhibitors in Patients with Primary Malignant Central Nervous System Tumors. Curr Treat Options Oncol 2022; 23:1566-1589. [PMID: 36242713 DOI: 10.1007/s11864-022-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Primary malignant central nervous (CNS) tumors are a devastating group of diseases with urgent need for improved treatment options. Surgery, radiation, and cytotoxic chemotherapy remain the primary standard treatment modalities, with molecularly targeted therapies having proven efficacy in only small subsets of cases. Poly(ADP-ribose) polymerase (PARP) inhibitors, which have had immense success in the treatment of extracranial cancers with homologous recombination deficiency (HRD), are emerging as a potential targeted treatment for various CNS tumors. Although few primary CNS tumors display canonical BRCA gene defects, preclinical evidence suggests that PARP inhibitors may benefit certain CNS tumors with functional HRD or elevated replication stress. In addition, other preclinical studies indicate that PARP inhibitors may synergize with standard therapies used for CNS tumors including radiation and alkylating agents and may prevent or overcome drug resistance. Thus far, initial clinical trials with early-generation PARP inhibitors, typically as monotherapy or in the absence of selective biomarkers, have shown limited efficacy. However, the scientific rationale remains promising, and many clinical trials are ongoing, including investigations of more CNS penetrant or more potent inhibitors and of combination therapy with immune checkpoint inhibitors. Early phase trials are also critically focusing on determining active drug CNS penetration and identifying biomarkers of therapy response. In this review, we will discuss the preclinical evidence supporting use of PARP inhibitors in primary CNS tumors and clinical trial results to date, highlighting ongoing trials and future directions in the field that may yield important findings and potentially impact the treatment of these devastating malignancies in the coming years.
Collapse
Affiliation(s)
- Susan E Gueble
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, HRT 134, New Haven, CT, 06520-8040, USA. .,Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
19
|
Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nat Genet 2022; 54:996-1012. [PMID: 35817971 PMCID: PMC10181095 DOI: 10.1038/s41588-022-01108-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/26/2022] [Indexed: 12/13/2022]
Abstract
Defects in pathways governing genomic fidelity have been linked to improved response to immune checkpoint blockade therapy (ICB). Pathogenic POLE/POLD1 mutations can cause hypermutation, yet how diverse mutations in POLE/POLD1 influence antitumor immunity following ICB is unclear. Here, we comprehensively determined the effect of POLE/POLD1 mutations in ICB and elucidated the mechanistic impact of these mutations on tumor immunity. Murine syngeneic tumors harboring Pole/Pold1 functional mutations displayed enhanced antitumor immunity and were sensitive to ICB. Patients with POLE/POLD1 mutated tumors harboring telltale mutational signatures respond better to ICB than patients harboring wild-type or signature-negative tumors. A mutant POLE/D1 function-associated signature-based model outperformed several traditional approaches for identifying POLE/POLD1 mutated patients that benefit from ICB. Strikingly, the spectrum of mutational signatures correlates with the biochemical features of neoantigens. Alterations that cause POLE/POLD1 function-associated signatures generate T cell receptor (TCR)-contact residues with increased hydrophobicity, potentially facilitating T cell recognition. Altogether, the functional landscapes of POLE/POLD1 mutations shape immunotherapy efficacy.
Collapse
|
20
|
Survival-related indicators ALOX12B and SPRR1A are associated with DNA damage repair and tumor microenvironment status in HPV 16-negative head and neck squamous cell carcinoma patients. BMC Cancer 2022; 22:714. [PMID: 35768785 PMCID: PMC9241267 DOI: 10.1186/s12885-022-09722-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To investigate prognostic-related gene signature based on DNA damage repair and tumor microenvironment statue in human papillomavirus 16 negative (HPV16-) head and neck squamous cell carcinoma (HNSCC). METHODS For the RNA-sequence matrix in HPV16- HNSCC in the Cancer Genome Atlas (TCGA) cohort, the DNA damage response (DDR) and tumor microenvironment (TM) status of each patient sample was estimated by using the ssGSEA algorithm. Through bioinformatics analysis in DDR_high/TM_high (n = 311) and DDR_high/TM_low (n = 53) groups, a survival-related gene signature was selected in the TCGA cohort. Two independent external validation cohorts (GSE65858 (n = 210) and GSE41613 (n = 97)) with HPV16- HNSCC patients validated the gene signature. Correlations among the clinical-related hub differentially expressed genes (DEGs) and infiltrated immunocytes were explored with the TIMER2.0 server. Drug screening based on hub DEGs was performed using the CellMiner and GSCALite databases. The loss-of-function studies were used to evaluate the effect of screened survival-related gene on the motility of HPV- HNSCC cells in vitro. RESULTS A high DDR level (P = 0.025) and low TM score (P = 0.012) were independent risk factors for HPV16- HNSCC. Downregulated expression of ALOX12B or SPRR1A was associated with poor survival rate and advanced cancer stages. The pathway enrichment analysis showed the DDR_high/TM_low samples were enriched in glycosphingolipid biosynthesis-lacto and neolacto series, glutathione metabolism, platinum drug resistance, and ferroptosis pathways, while the DDR_high/TM_low samples were enriched in Th17 cell differentiation, Neutrophil extracellular trap formation, PD - L1 expression and PD - 1 checkpoint pathway in cancer. Notably, the expression of ALOX12B and SPRR1A were negatively correlated with cancer-associated fibroblasts (CAFs) infiltration and CAFs downstream effectors. Sensitivity to specific chemotherapy regimens can be derived from gene expressions. In addition, ALOX12B and SPRR1A expression was associated with the mRNA expression of insulin like growth factor 1 receptor (IGF1R), AKT serine/threonine kinase 1 (AKT1), mammalian target of rapamycin (MTOR), and eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) in HPV negative HNSCC. Down-regulation of ALOX12B promoted HPV- HNSCC cells migration and invasion in vitro. CONCLUSIONS ALOX12B and SPRR1A served as a gene signature for overall survival in HPV16- HNSCC patients, and correlated with the amount of infiltrated CAFs. The specific drug pattern was determined by the gene signature.
Collapse
|
21
|
Yuan B, Jiang C, Chen L, Wen L, Cui J, Chen M, Zhang S, Zhou L, Cai Y, Mao JH, Zou X, Hang B, Wang P. A Novel DNA Repair Gene Signature for Immune Checkpoint Inhibitor-Based Therapy in Gastric Cancer. Front Cell Dev Biol 2022; 10:893546. [PMID: 35676932 PMCID: PMC9168368 DOI: 10.3389/fcell.2022.893546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
Gastric cancer is a heterogeneous group of diseases with only a fraction of patients responding to immunotherapy. The relationships between tumor DNA damage response, patient immune system and immunotherapy have recently attracted attention. Accumulating evidence suggests that DNA repair landscape is a significant factor in driving response to immune checkpoint blockade (ICB) therapy. In this study, to explore new prognostic and predictive biomarkers for gastric cancer patients who are sensitive and responsive to immunotherapies, we developed a novel 15-DNA repair gene signature (DRGS) and its related scoring system and evaluated the efficiency of the DRGS in discriminating different molecular and immune characteristics and therapeutic outcomes of patients with gastric adenocarcinoma, using publicly available datasets. The results demonstrated that DRGS high score patients showed significantly better therapeutic outcomes for ICB compared to DRGS low score patients (p < 0.001). Integrated analysis of multi-omics data demonstrated that the patients with high DRGS score were characteristic of high levels of anti-tumor lymphocyte infiltration, tumor mutation burden (TMB) and PD-L1 expression, and these patients exhibited a longer overall survival, as compared to the low-score patients. Results obtained from HPA and IHC supported significant dysregulation of the genes in DRGS in gastric cancer tissues, and a positive correlation in protein expression between DRGS and PD-L1. Therefore, the DRGS scoring system may have implications in tailoring immunotherapy in gastric cancers. A preprint has previously been published (Yuan et al., 2021).
Collapse
Affiliation(s)
- Binbin Yuan
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chengfei Jiang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lingyan Chen
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lihui Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jinlong Cui
- Berkeley-Nanjing Research Center, Nanjing, China
| | - Min Chen
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shu Zhang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lin Zhou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yimeng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaoping Zou
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Xiaoping Zou, ; Bo Hang, ; Pin Wang,
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- *Correspondence: Xiaoping Zou, ; Bo Hang, ; Pin Wang,
| | - Pin Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Xiaoping Zou, ; Bo Hang, ; Pin Wang,
| |
Collapse
|
22
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
23
|
Shah SM, Demidova EV, Lesh RW, Hall MJ, Daly MB, Meyer JE, Edelman MJ, Arora S. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat Rev 2022; 104:102337. [PMID: 35051883 PMCID: PMC9016579 DOI: 10.1016/j.ctrv.2021.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
DNA repair vulnerabilities are present in a significant proportion of cancers. Specifically, germline alterations in DNA repair not only increase cancer risk but are associated with treatment response and clinical outcomes. The therapeutic landscape of cancer has rapidly evolved with the FDA approval of therapies that specifically target DNA repair vulnerabilities. The clinical success of synthetic lethality between BRCA deficiency and poly(ADP-ribose) polymerase (PARP) inhibition has been truly revolutionary. Defective mismatch repair has been validated as a predictor of response to immune checkpoint blockade associated with durable responses and long-term benefit in many cancer patients. Advances in next generation sequencing technologies and their decreasing cost have supported increased genetic profiling of tumors coupled with germline testing of cancer risk genes in patients. The clinical adoption of panel testing for germline assessment in high-risk individuals has generated a plethora of genetic data, particularly on DNA repair genes. Here, we highlight the therapeutic relevance of germline aberrations in DNA repair to identify patients eligible for precision treatments such as PARP inhibitors (PARPis), immune checkpoint blockade, chemotherapy, radiation therapy and combined treatment. We also discuss emerging mechanisms that regulate DNA repair.
Collapse
Affiliation(s)
- Shreya M Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Science Scholars Program, Temple University, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Kazan Federal University, Kazan, Russian Federation
| | - Randy W Lesh
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
24
|
Hwang BJ, Tsao LC, Acharya CR, Trotter T, Agarwal P, Wei J, Wang T, Yang XY, Lei G, Osada T, Lyerly HK, Morse MA, Hartman ZC. Sensitizing immune unresponsive colorectal cancers to immune checkpoint inhibitors through MAVS overexpression. J Immunother Cancer 2022; 10:e003721. [PMID: 35361727 PMCID: PMC8971789 DOI: 10.1136/jitc-2021-003721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The majority of colorectal carcinomas (CRCs) are insensitive to programmed death protein-1/programmed death-ligand 1 (anti-PD-1/PD-L1) immune checkpoint inhibitor (ICI) antibodies. While there are many causes for ICI insensitivity, recent studies suggest that suppression of innate immune gene expression in tumor cells could be a root cause of this insensitivity and an important factor in the evolution of tumor immunosuppression. METHODS We first assessed the reduction of mitochondrial antiviral signaling gene (MAVS) and related RIG-I pathway gene expression in several patient RNA expression datasets. We then engineered MAVS expressing tumor cells and tested their ability to elicit innate and adaptive anti-tumor immunity using both in vitro and in vivo approaches, which we then confirmed using MAVS expressing viral vectors. Finally, we observed that MAVS stimulated PD-L1 expression in multiple cell types and then assessed the combination of PD-L1 ICI antibodies with MAVS tumor expression in vivo. RESULTS MAVS was significantly downregulated in CRCs, but its re-expression could stimulate broad cellular interferon-related responses, in both murine and patient-derived CRCs. In vivo, local MAVS expression elicited significant anti-tumor responses in both immune-sensitive and insensitive CRC models, through the stimulation of an interferon responsive axis that provoked tumor antigen-specific adaptive immunity. Critically, we found that tumor-intrinsic MAVS expression triggered systemic adaptive immune responses that enabled abscopal CD8 +T cell cytotoxicity against distant CRCs. As MAVS also induced PD-L1 expression, we further found synergistic anti-tumor responses in combination with anti-PD-L1 ICIs. CONCLUSION These data demonstrate that intratumoral MAVS expression results in local and systemic tumor antigen-specific T cell responses, which could be combined with PD-L1 ICI to permit effective anti-tumor immunotherapy in ICI resistant cancers.
Collapse
Affiliation(s)
- Bin-Jin Hwang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Li-Chung Tsao
- Surgery, Duke University, Durham, North Carolina, USA
| | | | | | | | - Junping Wei
- Surgery, Duke University, Durham, North Carolina, USA
| | - Tao Wang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Xiao-Yi Yang
- Surgery, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Surgery, Duke University, Durham, North Carolina, USA
| | - Takuya Osada
- Surgery, Duke University, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Surgery, Duke University, Durham, North Carolina, USA
- Immunology, Duke University, Durham, North Carolina, USA
- Pathology, Duke University, Durham, North Carolina, USA
| | - Michael A Morse
- Surgery, Duke University, Durham, North Carolina, USA
- Medicine, Duke University, Durham, NC, USA
| | - Zachary Conrad Hartman
- Surgery, Duke University, Durham, North Carolina, USA
- Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
25
|
Farmanbar A, Firouzi S, Kneller R, Khiabanian H. Mutational signatures reveal ternary relationships between homologous recombination repair, APOBEC, and mismatch repair in gynecological cancers. J Transl Med 2022; 20:65. [PMID: 35109853 PMCID: PMC8812249 DOI: 10.1186/s12967-022-03259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Background Revealing the impacts of endogenous and exogenous mutagenesis processes is essential for understanding the etiology of somatic genomic alterations and designing precise prognostication and treatment strategies for cancer. DNA repair deficiency is one of the main sources of endogenous mutagenesis and is increasingly recognized as a target for cancer therapeutics. The role and prevalence of mechanisms that underly different forms of DNA repair deficiencies and their interactions remain to be elucidated in gynecological malignancies. Methods We analyzed 1231 exomes and 268 whole-genomes from three major gynecological malignancies including uterine corpus endometrial carcinoma (UCEC) as well as ovarian and cervical cancers. We also analyzed data from 134 related cell lines. We extracted and compared de novo and refitted mutational signature profiles using complementary and confirmatory approaches and performed interaction analysis to detect co-occurring and mutually exclusive signatures. Results We found an inverse relationship between homologous recombination deficiency (HRd) and mismatch repair deficiency (MMRd). Moreover, APOBEC co-occurred with HRd but was mutually exclusive with MMRd. UCEC tumors were dominated by MMRd, yet a subset of them manifested the HRd and APOBEC signatures. Conversely, ovarian tumors were dominated by HRd, while a subset represented MMRd and APOBEC. In contrast to both, cervical tumors were dominated by APOBEC with a small subsets showing the POLE, HRd, and MMRd signatures. Although the type, prevalence, and heterogeneity of mutational signatures varied across the tumor types, the patterns of co-occurrence and exclusivity were consistently observed in all. Notably, mutational signatures in gynecological tumor cell lines reflected those detected in primary tumors. Conclusions Taken together, these analyses indicate that application of mutation signature analysis not only advances our understanding of mutational processes and their interactions, but also it has the potential to stratify patients that could benefit from treatments available for tumors harboring distinct mutational signatures and to improve clinical decision-making for gynecological malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03259-0.
Collapse
Affiliation(s)
- Amir Farmanbar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Sanaz Firouzi
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA.
| | - Robert Kneller
- Research Center for Advanced Science and Technology, University of Tokyo, Minato-ku, Tokyo, 153-8904, Japan
| | - Hossein Khiabanian
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA. .,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
26
|
Fischer S, Hamed M, Emmert S, Wolkenhauer O, Fuellen G, Thiem A. The Prognostic and Predictive Role of Xeroderma Pigmentosum Gene Expression in Melanoma. Front Oncol 2022; 12:810058. [PMID: 35174087 PMCID: PMC8841870 DOI: 10.3389/fonc.2022.810058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background Assessment of immune-specific markers is a well-established approach for predicting the response to immune checkpoint inhibitors (ICIs). Promising candidates as ICI predictive biomarkers are the DNA damage response pathway genes. One of those pathways, which are mainly responsible for the repair of DNA damage caused by ultraviolet radiation, is the nucleotide excision repair (NER) pathway. Xeroderma pigmentosum (XP) is a hereditary disease caused by mutations of eight different genes of the NER pathway, or POLH, here together named the nine XP genes. Anecdotal evidence indicated that XP patients with melanoma or other skin tumors responded impressively well to anti-PD-1 ICIs. Hence, we analyzed the expression of the nine XP genes as prognostic and anti-PD-1 ICI predictive biomarkers in melanoma. Methods We assessed mRNA gene expression in the TCGA-SKCM dataset (n = 445) and two pooled clinical melanoma cohorts of anti-PD-1 ICI (n = 75). In TCGA-SKCM, we applied hierarchical clustering on XP genes to reveal clusters, further utilized as XP cluster scores. In addition, out of 18 predefined genes representative of a T cell inflamed tumor microenvironment, the TIS score was calculated. Besides these scores, the XP genes, immune-specific single genes (CD8A, CXCL9, CD274, and CXCL13) and tumor mutational burden (TMB) were cross-correlated. Survival analysis in TCGA-SKCM was conducted for the selected parameters. Lastly, the XP response prediction value was calculated for the two pooled anti-PD-1 cohorts by classification models. Results In TCGA-SKCM, expression of the XP genes was divided into two clusters, inversely correlated with immune-specific markers. A higher ERCC3 expression was associated with improved survival, particularly in younger patients. The constructed models utilizing XP genes, and the XP cluster scores outperformed the immune-specific gene-based models in predicting response to anti-PD-1 ICI in the pooled clinical cohorts. However, the best prediction was achieved by combining the immune-specific gene CD274 with three XP genes from both clusters. Conclusion Our results suggest pre-therapeutic XP gene expression as a potential marker to improve the prediction of anti-PD-1 response in melanoma.
Collapse
Affiliation(s)
- Sarah Fischer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.,Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.,Leibniz-Institute for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
27
|
Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol 2021; 14:206. [PMID: 34930377 PMCID: PMC8686226 DOI: 10.1186/s13045-021-01218-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China.
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
28
|
Predicted Immunogenicity of CDK12 Biallelic Loss-of-Function Tumors Varies across Cancer Types. J Mol Diagn 2021; 23:1761-1773. [PMID: 34562615 DOI: 10.1016/j.jmoldx.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
CDK12 biallelic inactivation is associated with a distinct genomic signature of focal tandem duplications (FTDs). Gene fusions resulting from FTDs increase neoantigen load, raising interest in CDK12 as a biomarker of response to immune checkpoint inhibitors. Despite evidence of FTDs in multiple CDK12-altered cancer types, notably prostate and ovarian, report of fusion-associated neoantigen load is limited to prostate cancer. Molecular profiles were retrospectively reviewed for CDK12-biallelic (CDK12-biLOF) and -monoallelic loss-of-function (CDK12-monoLOF) in a primary cohort of >9000 tumors, representing 39 cancer types, and immune epitopes were predicted from fusions detected by whole transcriptome sequencing. CDK12-biLOF was identified for 0.3% tumors overall, most frequently in prostate cancer (4.7%). CDK12-biLOF tumors had higher mean fusion rates and fusion-associated neoantigen load than CDK12-monoLOF and CDK12-WT tumors (P < 0.01). However, concurrent mismatch repair deficiency/microsatellite instability with CDK12-biLOF associated with low fusion rates. Among CDK12-biLOF tumors, fusion-associated neoantigen load was highest in prostate and ovarian cancers, which correlated with distinct immune profiles. In a validation cohort, CDK12-biLOF tumors (0.4%) exhibited high mean fusion rates, particularly for prostate and ovarian tumors. Low fusion rates in other CDK12-biLOF tumor types warrant further investigation and highlight the value of quantitative biomarkers. Fusion rate and fusion-associated neoantigen load are linked to CDK12-biLOF in select cancers and may help to identify responders of immune checkpoint inhibitor therapy.
Collapse
|
29
|
Rochefort P, Desseigne F, Bonadona V, Dussart S, Coutzac C, Sarabi M, la Fouchardiere CD. Immune checkpoint inhibitor sensitivity of DNA repair deficient tumors. Immunotherapy 2021; 13:1205-1213. [PMID: 34494466 DOI: 10.2217/imt-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Faithful DNA replication is necessary to maintain genome stability and implicates a complex network with several pathways depending on DNA damage type: homologous repair, nonhomologous end joining, base excision repair, nucleotide excision repair and mismatch repair. Alteration in components of DNA repair machinery led to DNA damage accumulation and potentially carcinogenesis. Preclinical data suggest sensitivity to immune checkpoint inhibitors in tumors with DNA repair deficiency. Here, we review clinical studies that explored the use of immune checkpoint inhibitor in patient harboring tumor with DNA repair deficiency.
Collapse
Affiliation(s)
- Pauline Rochefort
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | | | - Valérie Bonadona
- Unit of Genetic Epidemiology & Prevention, Centre Léon Bérard, 69008, Lyon, France
| | - Sophie Dussart
- Unit of Genetic Epidemiology & Prevention, Centre Léon Bérard, 69008, Lyon, France
| | - Clélia Coutzac
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | - Matthieu Sarabi
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | | |
Collapse
|
30
|
Chan WY, Brown LJ, Reid L, Joshua AM. PARP Inhibitors in Melanoma-An Expanding Therapeutic Option? Cancers (Basel) 2021; 13:cancers13184520. [PMID: 34572747 PMCID: PMC8464708 DOI: 10.3390/cancers13184520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanomas with homologous recombination DNA damage repair pathways represent a subset of melanoma that may benefit from PARP inhibitors and immunotherapy. PARP inhibitors have an established role in treating cancers with underlying BRCA mutation through synthetic lethality; however, there is increasing evidence that it can be applied to a larger population including other types of homologous recombination defects. These gene mutations can be found in 20–40% of cutaneous melanoma. To date, PARP inhibitors and immunotherapy have been overlooked in the management of melanoma. This review explores the reasons for combining PARP inhibitors and immunotherapy. There is evidence to suggest that PARP inhibitors can improve the therapeutic effect of immune checkpoint inhibitors. Therefore, this combination approach has the potential to impact future treatment of patients with melanoma, particularly those with homologous recombination DNA damage repair defects. Abstract Immunotherapy has transformed the treatment landscape of melanoma; however, despite improvements in patient outcomes, monotherapy can often lead to resistance and tumour escape. Therefore, there is a need for new therapies, combination strategies and biomarker-guided decision making to increase the subset of patients most likely to benefit from treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors act by synthetic lethality to target tumour cells with homologous recombination deficiencies such as BRCA mutations. However, the application of PARP inhibitors could be extended to a broad range of BRCA-negative cancers with high rates of DNA damage repair pathway mutations, such as melanoma. Additionally, PARP inhibition has the potential to augment the therapeutic effect of immunotherapy through multi-faceted immune-priming capabilities. In this review, we detail the immunological role of PARP and rationale for combining PARP and immune checkpoint inhibitors, with a particular focus on a subset of melanoma with homologous recombination defects that may benefit most from this targeted approach. We summarise the biology supporting this combined regimen and discuss preclinical results as well as ongoing clinical trials in melanoma which may impact future treatment.
Collapse
Affiliation(s)
- Wei Yen Chan
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lauren J. Brown
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lee Reid
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony M. Joshua
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Melanoma Institute of Australia, Sydney, NSW 2016, Australia
- Correspondence:
| |
Collapse
|
31
|
Prostate Cancer in 2021: Novelties in Prognostic and Therapeutic Biomarker Evaluation. Cancers (Basel) 2021; 13:cancers13143471. [PMID: 34298683 PMCID: PMC8307279 DOI: 10.3390/cancers13143471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In 2021, the identification of effective biomarkers became a major focus of prostate cancer (PCa) in order to improve outcomes and select potentially responsive patients. The aim of this contribution is to review the main 2021 novelties in prognostic and therapeutic markers in PCa, with special reference to PCa grading, aggressive variant PCa and molecular markers predicting significant disease or response to therapy. Abstract The 2021 novelties in prognostic and therapeutic tissue markers in patients with prostate cancer (PCa) can be subdivided into two major groups. The first group is related to prognostic markers based on morphological and immunohistochemical evaluations. The novelties in this group can then be subdivided into two subgroups, one involving morphologic evaluation only, i.e., PCa grading, and the other involving both morphologic and immunohistochemical evaluations, i.e., aggressive variant PCa (AVPCa). Grading concerns androgen-dependent PCa, while AVPCa represents a late phase in its natural history, when it becomes androgen-independent. The novelties of the other major group are related to molecular markers predicting significant disease or response to therapy. This group mainly includes novelties in the molecular evaluation of PCa in tissue material and liquid biopsies.
Collapse
|
32
|
Kiely M, Ambs S. Immune Inflammation Pathways as Therapeutic Targets to Reduce Lethal Prostate Cancer in African American Men. Cancers (Basel) 2021; 13:2874. [PMID: 34207505 PMCID: PMC8227648 DOI: 10.3390/cancers13122874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/17/2023] Open
Abstract
Despite substantial improvements in cancer survival, not all population groups have benefitted equally from this progress. For prostate cancer, men of African descent in the United States and England continue to have about double the rate of fatal disease compared to other men. Studies suggest that when there is equal access to care, survival disparities are greatly diminished. However, notable differences exist in prostate tumor biology across population groups. Ancestral factors and disparate exposures can lead to altered tumor biology, resulting in a distinct disease etiology by population group. While equal care remains the key target to improve survival, additional efforts should be made to gain comprehensive knowledge of the tumor biology in prostate cancer patients of African descent. Such an approach may identify novel intervention strategies in the era of precision medicine. A growing body of evidence shows that inflammation and the immune response may play a distinct role in prostate cancer disparities. Low-grade chronic inflammation and an inflammatory tumor microenvironment are more prevalent in African American patients and have been associated with adverse outcomes. Thus, differences in activation of immune-inflammatory pathways between African American and European American men with prostate cancer may exist. These differences may influence the response to immune therapy which is consistent with recent observations. This review will discuss mechanisms by which inflammation may contribute to the disparate outcomes experienced by African American men with prostate cancer and how these immunogenic and inflammatory vulnerabilities could be exploited to improve their survival.
Collapse
Affiliation(s)
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| |
Collapse
|
33
|
Keenan BP, VAN Loon K, Khilnani AD, Fidelman N, Behr SC, Atreya CE, Oh DY. Molecular and Radiological Features of Microsatellite Stable Colorectal Cancer Cases With Dramatic Responses to Immunotherapy. Anticancer Res 2021; 41:2985-2992. [PMID: 34083289 PMCID: PMC8631311 DOI: 10.21873/anticanres.15080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The majority of colorectal cancer (CRC) cases, which are microsatellite stable (MSS) and do not harbor mismatch repair deficiency/microsatellite instability, are resistant to immunotherapy. Identification of patients with exceptional responses in MSS CRC and predictive biomarkers is an unmet need that needs to be addressed. CASE REPORT We report three cases of MSS CRC with durable clinical benefit from immunotherapy with anti-PD-1 checkpoint inhibitors. Two cases bear a POLE P286R mutation, which has been associated with lack of immunotherapy response in MSS CRC. Two cases bear alterations in Ataxia-Telangiectasia Mutated (ATM) which may contribute to observed responses, including interaction with a co-administered intratumoral stimulator of interferon genes (STING) pathway agonist in one patient. CONCLUSION Novel DNA damage repair alterations, including mutations in ATM, can provide insight into additional mechanisms by which genomic alterations can sensitize MSS CRC to diverse immunotherapies.
Collapse
Affiliation(s)
- Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, U.S.A
| | - Katherine VAN Loon
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, U.S.A
| | | | - Nicholas Fidelman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, U.S.A
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, U.S.A
| | - Chloe E Atreya
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, U.S.A
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, U.S.A.;
| |
Collapse
|
34
|
Lee RH, Kang H, Yom SS, Smogorzewska A, Johnson DE, Grandis JR. Treatment of Fanconi Anemia-Associated Head and Neck Cancer: Opportunities to Improve Outcomes. Clin Cancer Res 2021; 27:5168-5187. [PMID: 34045293 DOI: 10.1158/1078-0432.ccr-21-1259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Fanconi anemia, the most frequent genetic cause of bone marrow failure, is characterized by an extreme predilection toward multiple malignancies, including a greater than 500-fold incidence of head and neck squamous cell carcinoma (HNSCC) relative to the general population. Fanconi anemia-associated HNSCC and esophageal SCC (FA-HNSCC) often present at advanced stages with poor survival. Surgical resection remains the primary treatment for FA-HNSCC, and there is often great reluctance to administer systemic agents and/or radiotherapy to these patients given their susceptibility to DNA damage. The paucity of FA-HNSCC case reports limits evidence-based management, and such cases have not been analyzed collectively in detail. We present a systematic review of FA-HNSCC treatments reported from 1966 to 2020, defining a cohort of 119 patients with FA-HNSCC including 16 esophageal SCCs (131 total primary tumors), who were treated with surgery, radiotherapy, systemic therapy (including cytotoxic agents, EGFR inhibitors, or immune checkpoint inhibitors), or a combination of modalities. We summarize the clinical responses and regimen-associated toxicities by treatment modality. The collective evidence suggests that when possible, surgical resection with curative intent should remain the primary treatment modality for FA-HNSCC. Radiation can be administered with acceptable toxicity in the majority of cases, including patients who have undergone stem cell transplantation. Although there is little justification for cytotoxic chemotherapy, EGFR inhibitors and tyrosine kinase inhibitors may be both safe and effective. Immunotherapy may also be considered. Most oncologists have little personal experience with FA-HNSCC. This review is intended as a comprehensive resource for clinicians.
Collapse
Affiliation(s)
- Rex H Lee
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
35
|
Sridharan V, Mino-Kenudson M, Cleary JM, Rahma OE, Perez K, Clark JW, Clancy TE, Rubinson DA, Goyal L, Bazerbachi F, Visrodia KH, Qadan M, Parikh A, Ferrone CR, Casey BW, Fernandez-Del Castillo C, Ryan DP, Lillemoe KD, Warshaw AL, Krishnan K, Hernandez-Barco YG. Pancreatic acinar cell carcinoma: A multi-center series on clinical characteristics and treatment outcomes. Pancreatology 2021; 21:S1424-3903(21)00162-9. [PMID: 34023183 DOI: 10.1016/j.pan.2021.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acinar cell carcinoma (ACC) is a very rare tumor of the exocrine pancreas, representing less than 1% of all pancreatic malignancies. The majority of data regarding ACC are limited to small case series. METHODS This is a retrospective study conducted at a large healthcare system from 1996 to 2019. Patients with pathologically confirmed ACC were included, and demographic data, tumor characteristics, and treatment outcomes were abstracted by chart review. Survival curves were obtained by using the Kaplan-Meier method and compared using the log-rank test. RESULTS Sixty-six patients with ACC were identified. The median patient age at diagnosis was 64, and 42% presented with metastatic disease. The majority presented with abdominal pain or pancreatitis (69%), and laboratory parameters did not correlate with tumor size, metastatic disease, or survival. Several somatic abnormalities were noted in tumors (BRCA2, TP53, and mismatch-repair genes). In patients with localized disease that underwent resection, the median time to develop metastatic lesions was 13 months. The median overall survival (OS) was 24.7 months from diagnosis, with a survival difference based on metastatic disease at diagnosis (median 15 vs 38 mos). Surgery was associated with improved survival in non-metastatic cases (p = 0.006) but not metastatic cases (p = 0.22), and chemotherapy showed OS benefit in metastatic disease (p < 0.01). Patients with metastatic ACC treated after 2010 utilized more platinum-based agents, and there was a OS benefit to FOLFOX or FOLFIRINOX chemotherapy compared to gemcitabine or capecitabine-based regimens (p = 0.006). CONCLUSION Pancreatic ACC patients often present with advanced disease. Surgery was associated with survival benefit among patients presenting with localized disease. The use of FOLFOX or FOLFIRINOX chemotherapy regimens was associated with improved OS in metastatic patients. These data add to our knowledge in this rare malignancy, and improves understanding about the genomic underpinnings, prognosis and treatment for acinar cancers.
Collapse
Affiliation(s)
- Vishwajith Sridharan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Mari Mino-Kenudson
- Division of Pathology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - James M Cleary
- Dana Farber Cancer Institute and Brigham Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Osama E Rahma
- Dana Farber Cancer Institute and Brigham Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Kimberly Perez
- Dana Farber Cancer Institute and Brigham Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Jeffrey W Clark
- Division of Medical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Thomas E Clancy
- Dana Farber Cancer Institute and Brigham Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Douglas A Rubinson
- Dana Farber Cancer Institute and Brigham Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Lipika Goyal
- Division of Medical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Fateh Bazerbachi
- Division of Gastroenterology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Kavel H Visrodia
- Division of Gastroenterology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Aparna Parikh
- Division of Medical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Cristina R Ferrone
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Brenna W Casey
- Division of Gastroenterology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | | | - David Patrick Ryan
- Division of Medical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Keith D Lillemoe
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Andrew L Warshaw
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Kumar Krishnan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Yasmin G Hernandez-Barco
- Division of Gastroenterology, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, USA.
| |
Collapse
|
36
|
Luo D, Kuang F, Du J, Zhou M, Peng F, Gan Y, Fang C, Yang X, Li B, Su S. Characterization of the Immune Cell Infiltration Profile in Pancreatic Carcinoma to Aid in Immunotherapy. Front Oncol 2021; 11:677609. [PMID: 34055645 PMCID: PMC8155731 DOI: 10.3389/fonc.2021.677609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of tumor cells, infiltrating immune cells, and stroma. Multiple reports suggest that the immune cell infiltration (ICI) in TME is strongly associated with responsiveness to immunotherapy and prognosis of certain cancers. Thus far, the ICI profile of pancreatic carcinoma (PC) remains unclear. Here, we employed two algorithms to characterize the ICI profile of PC patients. Based on our results, we identified 2 ICI patterns and calculated the ICI score by using principal component analysis. Furthermore, we revealed that patients with low ICI scores had a better prognosis, compared to high ICI scores. Moreover, we discovered that a low tumor mutation burden (TMB) offered better overall survival (OS), relative to high TMB. In this study, a high ICI score referred to elevated PD-L1/TGF-β levels, increased activation of cell cycle pathway and DNA repair pathway, as well as reduced expression of immune-activation-related genes. We also demonstrated that three metabolic pathways were suppressed in the low ICI score group. These data may explain why a high ICI score equates to a poor prognosis. Based on our analysis, the ICI score can be used as an effective predictor of PC prognosis. Hence, establishing an ICI profile, based on a large patient population, will not only enhance our knowledge of TME but also aid in the development of immunotherapies specific to PC.
Collapse
Affiliation(s)
- De Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Mengjia Zhou
- Department of Ultrasound, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangyi Peng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Gan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Hoppe MM, Jaynes P, Wardyn JD, Upadhyayula SS, Tan TZ, Lie S, Lim DGZ, Pang BNK, Lim S, P S Yeong J, Karnezis A, Chiu DS, Leung S, Huntsman DG, Sedukhina AS, Sato K, Topp MD, Scott CL, Choi H, Patel NR, Brown R, Kaye SB, Pitt JJ, Tan DSP, Jeyasekharan AD. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med 2021; 13:e13366. [PMID: 33709473 PMCID: PMC8103098 DOI: 10.15252/emmm.202013366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Early relapse after platinum chemotherapy in epithelial ovarian cancer (EOC) portends poor survival. A-priori identification of platinum resistance is therefore crucial to improve on standard first-line carboplatin-paclitaxel treatment. The DNA repair pathway homologous recombination (HR) repairs platinum-induced damage, and the HR recombinase RAD51 is overexpressed in cancer. We therefore designed a REMARK-compliant study of pre-treatment RAD51 expression in EOC, using fluorescent quantitative immunohistochemistry (qIHC) to overcome challenges in quantitation of protein expression in situ. In a discovery cohort (n = 284), RAD51-High tumours had shorter progression-free and overall survival compared to RAD51-Low cases in univariate and multivariate analyses. The association of RAD51 with relapse/survival was validated in a carboplatin monotherapy SCOTROC4 clinical trial cohort (n = 264) and was predominantly noted in HR-proficient cancers (Myriad HRDscore < 42). Interestingly, overexpression of RAD51 modified expression of immune-regulatory pathways in vitro, while RAD51-High tumours showed exclusion of cytotoxic T cells in situ. Our findings highlight RAD51 expression as a determinant of platinum resistance and suggest possible roles for therapy to overcome immune exclusion in RAD51-High EOC. The qIHC approach is generalizable to other proteins with a continuum instead of discrete/bimodal expression.
Collapse
Affiliation(s)
- Michal M Hoppe
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Patrick Jaynes
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joanna D Wardyn
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | | | - Tuan Zea Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Stefanus Lie
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Diana G Z Lim
- Department of PathologyNational University HospitalSingapore
| | - Brendan N K Pang
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University HospitalSingapore
| | - Sherlly Lim
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joe P S Yeong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Anthony Karnezis
- British Columbia Cancer AgencyVancouverBCCanada
- Present address:
Pathology and Lab medicineUC Davis Medical CentreSacramentoCAUSA
| | | | | | | | - Anna S Sedukhina
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Ko Sato
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Monique D Topp
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Hyungwon Choi
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | | | - Robert Brown
- Division of CancerImperial College LondonLondonUK
| | - Stan B Kaye
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Jason J Pitt
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - David S P Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| |
Collapse
|
38
|
Tong Z, Wang L, Shi W, Zeng Y, Zhang H, Liu L, Zheng Y, Chen C, Xia W, Fang W, Zhao P. Clonal Evolution Dynamics in Primary and Metastatic Lesions of Pancreatic Neuroendocrine Neoplasms. Front Med (Lausanne) 2021; 8:620988. [PMID: 34026777 PMCID: PMC8131504 DOI: 10.3389/fmed.2021.620988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Data on inter-tumoral heterogeneity and clonal evolution of pancreatic neuroendocrine neoplasms (panNENs) with liver metastasis are limited. The aim of this study was to explore different patterns of clonal evolution of pancreatic neuroendocrine neoplasms with liver metastasis and the possible distinctive signaling pathways involved between G2 neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs). Methods: Tumor tissues of five patients (10 samples) with pancreatic neuroendocrine neoplasms with synchronous liver metastasis were analyzed using next-generation sequencing. PyClone, Gene Ontology, and Reactome pathway enrichment analysis were also applied. Results: Mutated genes varied in individuals, reflecting the inter-tumoral heterogeneity of panNENs. The distribution of subclones varied during tumor metastasis, and different clonal evolution patterns were revealed between NETs and NECs. Gene Ontology and Reactome analyses revealed that in both NETs and NECs, signaling pathways and biological processes shared similarities and differences in the primary and metastatic lesions. In addition, the signaling pathway features were different between NETs and NECs. In the primary lesions, epigenetic changes and post-transcriptional modifications participated in NETs, while FGFR signaling, EGFR signaling, and NTRK2 signaling were largely involved in NECs. Although DNA repair and TP53 regulation were both involved in the metastatic lesions, most of the signaling pathways and biological processes disrupted by the mutated genes were different. Conclusions: Our study revealed spatial inter-tumoral heterogeneity and temporal clonal evolution in PanNENs, providing potential therapeutic targets for further prospective clinical trials.
Collapse
Affiliation(s)
- Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Xia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Mann EK, Lee KJ, Chen D, da Silva LM, Dal Zotto VL, Scalici J, Gassman NR. Associations between DNA Damage and PD-L1 Expression in Ovarian Cancer, a Potential Biomarker for Clinical Response. BIOLOGY 2021; 10:biology10050385. [PMID: 33946684 PMCID: PMC8146974 DOI: 10.3390/biology10050385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Simple Summary This work establishes that ovarian tumors contain persistent oxidative DNA damage levels that can be measured using Repair Assisted Damage Detection (RADD). The persistent DNA damage correlates with increased protein expression of PD-L1, establishing a link between genomic instability and PD-L1 expression across ovarian tumors. DNA damage may be a potential biomarker for immunotherapy. Abstract Programmed death ligand-1 (PD-L1) inhibitors are currently under investigation as a potential treatment option for ovarian cancer. Although this therapy has shown promise, its efficacy is highly variable among patients. Evidence suggests that genomic instability influences the expression of PD-L1, but little is known about this relationship in ovarian cancer. To examine the relationship between PD-L1 expression and genomic instability, we measured DNA damage using Repair Assisted Damage Detection (RADD). We then correlated the presence of persistent DNA damage in the ovarian tumor with protein expression of PD-L1 using immunohistochemistry. Ovarian tumors showed a high prevalence of oxidative DNA damage. As the level of oxidative DNA damage increased, we saw a significant correlation with PD-L1 expression. The highest correlation between DNA damage and PD-L1 expression was observed for mucinous ovarian tumors (r = 0.82), but a strong correlation was also observed for high grade serous and endometrioid tumors (r = 0.67 and 0.69, respectively). These findings link genomic instability to PD-L1 protein expression in ovarian cancer and suggest that persistent DNA damage can be used as a potential biomarker for patient selection for immunotherapy treatment.
Collapse
Affiliation(s)
- Elise K. Mann
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.K.M.); (K.J.L.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (L.M.d.S.); (J.S.)
| | - Kevin J. Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.K.M.); (K.J.L.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (L.M.d.S.); (J.S.)
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Luciana Madeira da Silva
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (L.M.d.S.); (J.S.)
| | - Valeria L. Dal Zotto
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Jennifer Scalici
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (L.M.d.S.); (J.S.)
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.K.M.); (K.J.L.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (L.M.d.S.); (J.S.)
- Correspondence:
| |
Collapse
|
40
|
Zhang T, Zheng S, Liu Y, Li X, Wu J, Sun Y, Liu G. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer. DNA Repair (Amst) 2021; 102:103112. [PMID: 33838550 DOI: 10.1016/j.dnarep.2021.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Ovarian cancer has a poor prognosis due to drug resistance, relapse and metastasis. In recent years, immunotherapy has been applied in numerous cancers clinically. However, the effect of immunotherapy monotherapy in ovarian cancer is limited. DNA damage response (DDR) is an essential factor affecting the efficacy of tumor immunotherapy. Defective DNA repair may lead to carcinogenesis and tumor genomic instability, but on the other hand, it may also portend particular vulnerability of tumors and can be used as biomarkers for immunotherapy patient selection. Programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway mediates tumor immune escape, which may be a promising target for immunotherapy. Therefore, further understanding of the mechanism of PD-L1 expression after DDR may help guide the development of immunotherapy in ovarian cancer. In this review, we present the DNA damage repair pathway and summarize how DNA damage repair affects the PD-1/PD-L1 pathway in cancer cells. And then we look for biomarkers that affect efficacy or prognosis. Finally, we review the progress of PD-1/PD-L1-based immunotherapy in combination with other therapies that may affect the DDR pathway in ovarian cancer.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Shuangshuang Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yang Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| |
Collapse
|
41
|
Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer 2021; 125:101-111. [PMID: 33772151 DOI: 10.1038/s41416-021-01337-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CHK1 is considered an oncogene with overexpression in numerous cancers. However, CHK1 signalling regulation in hepatocellular carcinoma (HCC) remains unclear. METHODS CHEK1 mRNA, protein, pri-miR-195 and miR-195 expression in HCC tissue was determined by qPCR, WB and IF staining assay. Survival analyses in HCC with high- and low-CHEK1 mRNA expression was performed using TCGA database. Relative luciferase activity was investigated in HCC cells transfected with p-CHEK1 3'UTR. Apoptosis was detected by TUNEL assay. NK and CD8+ T cells were analysed by flow cytometry. RESULTS CHK1 is increased in human HCC tumours compared with non-cancerous liver. High CHK1 predicts worse prognosis. IFN-γ suppresses CHK1 via IRF-1 in HCC cells. The molecular mechanism of IRF-1 suppressing CHK1 is post-transcriptional by promoting miR-195 binding to CHEK1 mRNA 3'UTR, which exerts a translational blockade. Upregulated IRF-1 inhibits CHK1, which induces apoptosis of HCC cells. Likewise, CHK1 inhibition augments cellular apoptosis in HCC tumours. This effect may be a result of increased tumour NK cell infiltration. However, IRF-1 expression or CHK1 inhibition also upregulates PD-L1 expression via increased STAT3 phosphorylation. CONCLUSIONS IRF-1 induces miR-195 to suppress CHK1 protein expression. Both increased IRF-1 and decreased CHK1 upregulate cellular apoptosis and PD-L1 expression in HCC.
Collapse
|
42
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
43
|
O’Meara TA, Tolaney SM. Tumor mutational burden as a predictor of immunotherapy response in breast cancer. Oncotarget 2021; 12:394-400. [PMID: 33747355 PMCID: PMC7939529 DOI: 10.18632/oncotarget.27877] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
Tumor mutational burden (TMB) is a promising tool to help define patients with triple-negative breast cancer (TNBC) most likely to benefit from immune checkpoint blockade (ICB) therapies. Roughly reflecting the degree of neo-antigens that tumors present to immune cells, TMB associates with multiple measures of tumoral immunogenicity and has proven clinically useful in cancers with relatively high mutation burden. TNBC carries higher TMB than other breast cancer subtypes, and recent data suggest that high-TMB TNBC cases may derive particular benefit from ICB in combination with chemotherapy (GeparNuevo, IMpassion130) or even ICB alone (KEYNOTE-119, TAPUR). Given the recent approval of pembrolizumab and atezolizumab in combination with chemotherapy for PD-L1-positive, metastatic TNBC, standardizing TMB calculation methods and cut-off values is of critical importance to deploy this clinical biomarker.
Collapse
Affiliation(s)
- Tess A. O’Meara
- Department of Internal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
45
|
Hu-Lieskovan S, Malouf GG, Jacobs I, Chou J, Liu L, Johnson ML. Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need. Future Oncol 2021; 17:1401-1439. [PMID: 33475012 DOI: 10.2217/fon-2020-0967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various cancers by reversing the immunosuppressive mechanisms employed by tumors to restore anticancer immunity. Although ICIs have demonstrated substantial clinical efficacy, patient response can vary in depth and duration, and many do not respond at all or eventually develop resistance. ICI resistance mechanisms can be tumor-intrinsic, related to the tumor microenvironment or patient-specific factors. Multiple resistance mechanisms may be present within one tumor subtype, or heterogeneity exists among patients with the same tumor type. Consequently, designing effective combination treatment strategies is challenging. This review will discuss ICI resistance mechanisms, and summarize findings from key preclinical and clinical trials of ICIs, to identify potential treatment strategies or pathways to overcome ICI resistance.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Medicine, Division of Oncology, Huntsman Cancer Institute / University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg & Department of Functional Genomics & Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch Cedex, Strasbourg, France
| | | | | | - Li Liu
- Pfizer Inc, San Diego, CA 92121, USA
| | - Melissa L Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN 37203, USA
| |
Collapse
|
46
|
Awasthi S, Berglund A, Abraham-Miranda J, Rounbehler RJ, Kensler K, Serna A, Vidal A, You S, Freeman MR, Davicioni E, Liu Y, Karnes RJ, Klein EA, Den RB, Trock BJ, Campbell JD, Einstein DJ, Gupta R, Balk S, Lal P, Park JY, Cleveland JL, Rebbeck TR, Freedland SJ, Yamoah K. Comparative Genomics Reveals Distinct Immune-oncologic Pathways in African American Men with Prostate Cancer. Clin Cancer Res 2020; 27:320-329. [PMID: 33037017 DOI: 10.1158/1078-0432.ccr-20-2925] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The role of immune-oncologic mechanisms of racial disparities in prostate cancer remains understudied. Limited research exists to evaluate the molecular underpinnings of immune differences in African American men (AAM) and European American men (EAM) prostate tumor microenvironment (TME). EXPERIMENTAL DESIGN A total of 1,173 radiation-naïve radical prostatectomy samples with whole transcriptome data from the Decipher GRID registry were used. Transcriptomic expressions of 1,260 immune-specific genes were selected to assess immune-oncologic differences between AAM and EAM prostate tumors. Race-specific differential expression of genes was assessed using a rank test, and intergene correlational matrix and gene set enrichment was used for pathway analysis. RESULTS AAM prostate tumors have significant enrichment of major immune-oncologic pathways, including proinflammatory cytokines, IFNα, IFNγ, TNFα signaling, ILs, and epithelial-mesenchymal transition. AAM TME has higher total immune content score (ICSHIGH) compared with 0 (37.8% vs. 21.9%, P = 0.003). AAM tumors also have lower DNA damage repair and are genomically radiosensitive as compared with EAM. IFITM3 (IFN-inducible transmembrane protein 3) was one of the major proinflammatory genes overexpressed in AAM that predicted increased risk of biochemical recurrence selectively for AAM in both discovery [HRAAM = 2.30; 95% confidence interval (CI), 1.21-4.34; P = 0.01] and validation (HRAAM = 2.42; 95% CI, 1.52-3.86; P = 0.0001) but not in EAM. CONCLUSIONS Prostate tumors of AAM manifest a unique immune repertoire and have significant enrichment of proinflammatory immune pathways that are associated with poorer outcomes. Observed immune-oncologic differences can aid in a genomically adaptive approach to treating prostate cancer in AAM.
Collapse
Affiliation(s)
- Shivanshu Awasthi
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | - Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | - Robert J Rounbehler
- Department of Tumor Biology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | - Kevin Kensler
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Amparo Serna
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | | | - Sungyong You
- Cedar-Sinai Medical Center, Los Angeles, California
| | | | - Elai Davicioni
- Decipher Bioscience, Inc, Vancouver, British Columbia, Canada
| | - Yang Liu
- Decipher Bioscience, Inc, Vancouver, British Columbia, Canada
| | | | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert B Den
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bruce J Trock
- Department of Epidemiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joshua D Campbell
- Department of Computational Biomedicine, Boston University, Boston, Massachusetts
| | - David J Einstein
- Beth Israel Deaconess Medical Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raavi Gupta
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Steven Balk
- Beth Israel Deaconess Medical Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jong Y Park
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | - John L Cleveland
- Department of Tumor Biology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, Massachusetts
| | | | - Kosj Yamoah
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida.
- Department of Radiation Oncology, H Lee Moffitt Cancer Center & Research Institutes, Tampa, Florida
| |
Collapse
|
47
|
Beshnova D, Ye J, Onabolu O, Moon B, Zheng W, Fu YX, Brugarolas J, Lea J, Li B. De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection. Sci Transl Med 2020; 12:eaaz3738. [PMID: 32817363 PMCID: PMC7887928 DOI: 10.1126/scitranslmed.aaz3738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/05/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023]
Abstract
The adaptive immune system recognizes tumor antigens at an early stage to eradicate cancer cells. This process is accompanied by systemic proliferation of the tumor antigen-specific T lymphocytes. While detection of asymptomatic early-stage cancers is challenging due to small tumor size and limited somatic alterations, tracking peripheral T cell repertoire changes may provide an attractive solution to cancer diagnosis. Here, we developed a deep learning method called DeepCAT to enable de novo prediction of cancer-associated T cell receptors (TCRs). We validated DeepCAT using cancer-specific or non-cancer TCRs obtained from multiple major histocompatibility complex I (MHC-I) multimer-sorting experiments and demonstrated its prediction power for TCRs specific to cancer antigens. We blindly applied DeepCAT to distinguish over 250 patients with cancer from over 600 healthy individuals using blood TCR sequences and observed high prediction accuracy, with area under the curve (AUC) ≥ 0.95 for multiple early-stage cancers. This work sets the stage for using the peripheral blood TCR repertoire for noninvasive cancer detection.
Collapse
Affiliation(s)
- Daria Beshnova
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Oreoluwa Onabolu
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin Moon
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenxin Zheng
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Abstract
DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.
Collapse
|
49
|
Development and validation of an individualized DNA repair-related gene signature in localized clear cell renal cell carcinoma. World J Urol 2020; 39:1203-1210. [PMID: 32458095 DOI: 10.1007/s00345-020-03270-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND To establish a robust, individualized DNA repair-related gene signature to estimate prognosis for patients with localized clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS We retrospectively analyzed gene expression profiles of 541 localized ccRCC patients from two public ccRCC cohorts. The DNA repair-related gene pair index (DRPI) was constructed with the least absolute shrinkage and selection operator (LASSO) regression model. The associations between DRPI, overall survival (OS), and disease-specific survival (DSS) were evaluated by Kaplan-Meier analysis, univariate analysis, and multivariate Cox regression survival analysis. We compared the predictive accuracy of different risk models with Harrel's C-index. RESULTS In the primary univariate analysis, patients in DRPI-high-risk group had significantly shorter OS [P < 0.001, HR (95% CI) 2.093 (1.431-3.061)] and DSS [P < 0.001, HR (95% CI) 3.567 (2.017-6.339)]. After adjusted for stage and grade, DRPI-high-risk group remained an independent adverse risk factor for both OS [P = 0.026, HR (95% CI) 1.629 (1.094-2.452)] and DSS [P = 0.010, HR (95% CI) 2.209 (1.217-4.010)]. DPRI showed comparable predictive accuracy with cell cycle proliferation (CCP) score and ccA/ccB signature. Copy number alterations and tumor mutation burden were enriched in DRPI-high tumors. There were elevated number of Treg cells and higher T cell exhaustion marker expression in DRPI-high-risk tumors. The combined DNA repair-clinical score outperformed other risk models in terms of C-index. CONCLUSION We validated the proposed DRPI as a predictor of clinical outcome in localized ccRCC patients. It provides an individualized and more accurate risk assessment beyond clinicopathological characteristics.
Collapse
|
50
|
Liu J, Li S, Feng G, Meng H, Nie S, Sun R, Yang J, Cheng W. Nine glycolysis-related gene signature predicting the survival of patients with endometrial adenocarcinoma. Cancer Cell Int 2020; 20:183. [PMID: 32489319 PMCID: PMC7247270 DOI: 10.1186/s12935-020-01264-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Endometrial cancer is the fourth most common cancer in women. The death rate for endometrial cancer has increased. Glycolysis of cellular respiration is a complex reaction and is the first step in most carbohydrate catabolism, which was proved to participate in tumors. Methods We analyzed the sample data of over 500 patients from TCGA database. The bioinformatic analysis included GSEA, cox and lasso regression analysis to select prognostic genes, as well as construction of a prognostic model and a nomogram for OS evaluation. The immunohistochemistry staining, survival analysis and expression level validation were also performed. Maftools package was for mutation analysis. GSEA identified Glycolysis was the most related pathway to EC. qRT-PCR verified the expression level of hub gene in clinical samples. Results According to the prognostic model using the train set, 9 glycolysis-related genes including B3GALT6, PAM, LCT, GMPPB, GLCE, DCN, CAPN5, GYS2 and FBP2 were identified as prognosis-related genes. Based on nine gene signature, the EC patients could be classified into high and low risk subgroups, and patients with high risk score showed shorter survival time. Time-dependent ROC analysis and Cox regression suggested that the risk score predicted EC prognosis accurately and independently. Analysis of test and train sets yielded consistent results A nomogram which incorporated the 9-mRNA signature and clinical features was also built for prognostic prediction. Immunohistochemistry staining and TCGA validation showed that expression levels of these genes do differ between EC and normal tissue samples. GSEA revealed that the samples of the low-risk group were mainly concentrated on Bile Acid Metabolism. Patients in the low-risk group displayed obvious mutation signatures compared with those in the high-risk group. The expression levels of B3GALT6, DCN, FBP2 and GYS2 are lower in tumor samples and higher in normal tissue samples. The expression of CAPN5 and LCT in clinical sample tissues is just the opposite. Conclusion This study found that the Glycolysis pathway is associated with EC and screened for hub genes on the Glycolysis pathway, which may serve as new target for the treatment of EC.
Collapse
Affiliation(s)
- JinHui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - SiYue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Gao Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu China
| | - HuangYang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - SiPei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Rui Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - WenJun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|