1
|
Tang Y, Liu W, Wang W, Fidler T, Woods B, Levine RL, Tall AR, Wang N. Inhibition of JAK2 Suppresses Myelopoiesis and Atherosclerosis in Apoe -/- Mice. Cardiovasc Drugs Ther 2020; 34:145-152. [PMID: 32086626 PMCID: PMC7125070 DOI: 10.1007/s10557-020-06943-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Increased myelopoiesis has been linked to risk of atherosclerotic cardiovascular disease (ACD). Excessive myelopoiesis can be driven by dyslipidemia and cholesterol accumulation in hematopoietic stem and progenitor cells (HSPC) and may involve increased signaling via Janus kinase 2 (JAK2). Constitutively activating JAK2 mutants drive biased myelopoiesis and promote development of myeloproliferative neoplasms (MPN) or clonal hematopoiesis, conditions associated with increased risk of ACD. JAK2 inhibitors have been developed as a therapy for MPNs. The potential for JAK2 inhibitors to protect against atherosclerosis has not been tested. We therefore assessed the impact of JAK2 inhibition on atherogenesis. METHODS A selective JAK2 inhibitor TG101348 (fedratinib) or vehicle was given to high-fat high-cholesterol Western diet (WD)-fed wild-type (WT) or Apoe-/- mice. Hematopoietic cell profiles, cell proliferation, and atherosclerosis in WT or Apoe-/- mice were assessed. RESULTS TG101348 selectively reversed neutrophilia, monocytosis, HSPC, and granulocyte-macrophage progenitor (GMP) expansion in Apoe-/- mice with decreased cellular phosphorylated STAT5 and ERK1/2 and reduced cell cycling and BrdU incorporation in HSPCs, indicating inhibition of JAK/STAT signaling and cell proliferation. Ten-week WD feeding allowed the development of marked aortic atherosclerosis in Apoe-/- mice which was substantially reduced by TG101348. CONCLUSIONS Selective JAK2 inhibition reduces atherogenesis by suppressing excessive myelopoiesis in hypercholesterolemic Apoe-/- mice. These findings suggest selective JAK2 inhibition as a potential therapeutic approach to decrease ACD risk in patients with increased myelopoiesis and leukocytosis.
Collapse
Affiliation(s)
- Yang Tang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.,Department of Hematology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Wei Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Trevor Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Britany Woods
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
2
|
De Alessandris S, Ferguson GJ, Dodd AJ, Juss JK, Devaprasad A, Piper S, Wyatt O, Killick H, Corkill DJ, Cohen ES, Pandit A, Radstake TRDJ, Simmonds R, Condliffe AM, Sleeman MA, Cowburn AS, Finch DK, Chilvers ER. Neutrophil GM-CSF receptor dynamics in acute lung injury. J Leukoc Biol 2019; 105:1183-1194. [PMID: 30942918 PMCID: PMC6850700 DOI: 10.1002/jlb.3ma0918-347r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
GM‐CSF is important in regulating acute, persistent neutrophilic inflammation in certain settings, including lung injury. Ligand binding induces rapid internalization of the GM‐CSF receptor (GM‐CSFRα) complex, a process essential for signaling. Whereas GM‐CSF controls many aspects of neutrophil biology, regulation of GM‐CSFRα expression is poorly understood, particularly the role of GM‐CSFRα in ligand clearance and whether signaling is sustained despite major down‐regulation of GM‐CSFRα surface expression. We established a quantitative assay of GM‐CSFRα surface expression and used this, together with selective anti‐GM‐CSFR antibodies, to define GM‐CSFRα kinetics in human neutrophils, and in murine blood and alveolar neutrophils in a lung injury model. Despite rapid sustained ligand‐induced GM‐CSFRα loss from the neutrophil surface, which persisted even following ligand removal, pro‐survival effects of GM‐CSF required ongoing ligand‐receptor interaction. Neutrophils recruited to the lungs following LPS challenge showed initially high mGM‐CSFRα expression, which along with mGM‐CSFRβ declined over 24 hr; this was associated with a transient increase in bronchoalveolar lavage fluid (BALF) mGM‐CSF concentration. Treating mice in an LPS challenge model with CAM‐3003, an anti‐mGM‐CSFRα mAb, inhibited inflammatory cell influx into the lung and maintained the level of BALF mGM‐CSF. Consistent with neutrophil consumption of GM‐CSF, human neutrophils depleted exogenous GM‐CSF, independent of protease activity. These data show that loss of membrane GM‐CSFRα following GM‐CSF exposure does not preclude sustained GM‐CSF/GM‐CSFRα signaling and that this receptor plays a key role in ligand clearance. Hence neutrophilic activation via GM‐CSFR may play an important role in neutrophilic lung inflammation even in the absence of high GM‐CSF levels or GM‐CSFRα expression.
Collapse
Affiliation(s)
| | - G John Ferguson
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Alison J Dodd
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Jatinder K Juss
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Abhinandan Devaprasad
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Centre, Utrecht, Netherlands
| | - Siân Piper
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Owen Wyatt
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Helen Killick
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Dominic J Corkill
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - E Suzanne Cohen
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Aridaman Pandit
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Centre, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Centre, Utrecht, Netherlands
| | - Rosalind Simmonds
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Sleeman
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Andrew S Cowburn
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Donna K Finch
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Wang W, Tang Y, Wang Y, Tascau L, Balcerek J, Tong W, Levine RL, Welch C, Tall AR, Wang N. LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. Circ Res 2016; 119:e91-e103. [PMID: 27430239 DOI: 10.1161/circresaha.116.308955] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
RATIONALE Human genome-wide association studies have revealed novel genetic loci that are associated with coronary heart disease. One such locus resides in LNK/SH2B3, which in mice is expressed in hematopoietic cells and suppresses thrombopoietin signaling via its receptor myeloproliferative leukemia virus oncogene. However, the mechanisms underlying the association of LNK single-nucleotide polymorphisms with coronary heart disease are poorly understood. OBJECTIVE To understand the functional effects of LNK single-nucleotide polymorphisms and explore the mechanisms whereby LNK loss of function impacts atherosclerosis and thrombosis. METHODS AND RESULTS Using human cord blood, we show that the common TT risk genotype (R262W) of LNK is associated with expansion of hematopoietic stem cells and enhanced megakaryopoiesis, demonstrating reduced LNK function and increased myeloproliferative leukemia virus oncogene signaling. In mice, hematopoietic Lnk deficiency leads to accelerated arterial thrombosis and atherosclerosis, but only in the setting of hypercholesterolemia. Hypercholesterolemia acts synergistically with LNK deficiency to increase interleukin 3/granulocyte-macrophage colony-stimulating factor receptor signaling in bone marrow myeloid progenitors, whereas in platelets cholesterol loading combines with Lnk deficiency to increase activation. Platelet LNK deficiency increases myeloproliferative leukemia virus oncogene signaling and AKT activation, whereas cholesterol loading decreases SHIP-1 phosphorylation, acting convergently to increase AKT and platelet activation. Together with increased myelopoiesis, platelet activation promotes prothrombotic and proatherogenic platelet/leukocyte aggregate formation. CONCLUSIONS LNK (R262W) is a loss-of-function variant that promotes thrombopoietin/myeloproliferative leukemia virus oncogene signaling and platelet and leukocyte production. In mice, LNK deficiency is associated with both increased platelet production and activation. Hypercholesterolemia acts in platelets and hematopoietic progenitors to exacerbate thrombosis and atherosclerosis associated with LNK deficiency.
Collapse
Affiliation(s)
- Wei Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yang Tang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Liana Tascau
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanna Balcerek
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Tong
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L Levine
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carrie Welch
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
4
|
Carbone CJ, Fuchs SY. Eliminative signaling by Janus kinases: role in the downregulation of associated receptors. J Cell Biochem 2014; 115:8-16. [PMID: 23959845 DOI: 10.1002/jcb.24647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Activation of cytokine receptor-associated Janus kinases (JAKs) mediates most, if not all, of the cellular responses to peptide hormones and cytokines. Consequently, JAKs play a paramount role in homeostasis and immunity. Members of this family of tyrosine kinases control the cytokine/hormone-induced alterations in cell gene expression program. This function is largely mediated through an ability to signal toward activation of the signal transducer and activator of transcription proteins (STAT), as well as toward some other pathways. Importantly, JAKs are also instrumental in tightly controlling the expression of associated cytokine and hormone receptors, and, accordingly, in regulating the cell sensitivity to these cytokines and hormones. This review highlights the enzymatic and non-enzymatic mechanisms of this regulation and discusses the importance of the ambidextrous nature of JAK as a key signaling node that integrates the combining functions of forward signaling and eliminative signaling. Attention to the latter aspect of JAK function may contribute to emancipating our approaches to the pharmacological modulation of JAKs.
Collapse
Affiliation(s)
- Christopher J Carbone
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | |
Collapse
|
5
|
Bunda S, Kommaraju K, Heir P, Ohh M. SOCS-1 mediates ubiquitylation and degradation of GM-CSF receptor. PLoS One 2013; 8:e76370. [PMID: 24086733 PMCID: PMC3784415 DOI: 10.1371/journal.pone.0076370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 08/28/2013] [Indexed: 12/02/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and the related cytokines interleukin (IL)-3 and IL-5 regulate the production and functional activation of hematopoietic cells. GM-CSF acts on monocytes/macrophages and granulocytes, and several chronic inflammatory diseases and a number of haematological malignancies such as Juvenile myelomonocytic leukaemia (JMML) are associated with deregulated GM-CSF receptor (GMR) signaling. The downregulation of GMR downstream signaling is mediated in part by the clearance of activated GMR via the proteasome, which is dependent on the ubiquitylation of βc signaling subunit of GMR via an unknown E3 ubiquitin ligase. Here, we show that suppressor of cytokine signaling 1 (SOCS-1), best known for its ability to promote ubiquitin-mediated degradation of the non-receptor tyrosine kinase Janus kinase 2 (JAK2), also targets GMRβc for ubiquitin-mediated degradation and attenuates GM-CSF-induced downstream signaling.
Collapse
Affiliation(s)
- Severa Bunda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kamya Kommaraju
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pardeep Heir
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Javadi M, Richmond TD, Huang K, Barber DL. CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN. J Biol Chem 2013; 288:19459-70. [PMID: 23696637 DOI: 10.1074/jbc.m113.475087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways.
Collapse
Affiliation(s)
- Mojib Javadi
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|
7
|
Hartsock A, Nelson WJ. Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS One 2012; 7:e37476. [PMID: 22693575 PMCID: PMC3365061 DOI: 10.1371/journal.pone.0037476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/23/2012] [Indexed: 12/31/2022] Open
Abstract
p120-Catenin binding to, and Hakai-mediated ubiquitination of the E-cadherin juxtamembrane domain (JMD) are thought to be involved in regulating E-cadherin internalization and degradation. However, the relationship between these two pathways is not understood. We targeted the E-cadherin JMD to mitochondria (WT-JMD) to isolate this domain from the plasma membrane and internalization, and to examine protein modifications and degradation. WT-JMD localized to mitochondria, but did not accumulate there except when proteasome activity was inhibited. We found WT-JMD was ubiquitinated, and arginine substitution of lysines at position 5 (K5R) and 83 (K83R) resulted in the stable accumulation of mutant JMD at mitochondria. p120-Catenin did not localize, or bind to WT-JMD even upon proteasome inhibition, whereas the K5,83R-JMD mutant bound and localized p120-catenin to mitochondria. Mutation of the p120-catenin binding site in combination with these lysine mutations inhibited p120-catenin binding, but did not decrease JMD stability or its accumulation at mitochondria. Thus, increased stability of JMD lysine mutants was due to inhibition of ubiquitination and not to p120-catenin binding. Finally, mutation of these critical lysines in full length E-cadherin had similar effects on protein stability as WT-JMD. Our results indicate that ubiquitination of the JMD inhibits p120-catenin binding, and targets E-cadherin for degradation.
Collapse
Affiliation(s)
- Andrea Hartsock
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lei JT, Mazumdar T, Martinez-Moczygemba M. Three lysine residues in the common β chain of the interleukin-5 receptor are required for Janus kinase (JAK)-dependent receptor ubiquitination, endocytosis, and signaling. J Biol Chem 2011; 286:40091-103. [PMID: 21965659 DOI: 10.1074/jbc.m111.273482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Eosinophils are multifunctional leukocytes implicated in the pathogenesis of numerous inflammatory diseases including allergic asthma and hypereosinophilic syndrome. Eosinophil physiology is critically dependent on IL-5 and the IL-5 receptor (IL-5R), composed of a ligand binding α chain (IL-5Rα), and a common β chain, βc. Previously, we demonstrated that the βc cytoplasmic tail is ubiquitinated and degraded by proteasomes following IL-5 stimulation. However, a complete understanding of the role of βc ubiquitination in IL-5R biology is currently lacking. By using a well established, stably transduced HEK293 cell model system, we show here that in the absence of ubiquitination, βc subcellular localization, IL-5-induced endocytosis, turnover, and IL-5R signaling were significantly impaired. Whereas ubiquitinated IL-5Rs internalized into trafficking endosomes for their degradation, ubiquitination-deficient IL-5Rs accumulated on the cell surface and displayed blunted signaling even after IL-5 stimulation. Importantly, we identified a cluster of three membrane-proximal βc lysine residues (Lys(457), Lys(461), and Lys(467)) whose presence was required for both JAK1/2 binding to βc and receptor ubiquitination. These findings establish that JAK kinase binding to βc requires the presence of three critical βc lysine residues, and this binding event is essential for receptor ubiquitination, endocytosis, and signaling.
Collapse
Affiliation(s)
- Jonathan T Lei
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
9
|
Takatsu K. Interleukin-5 and IL-5 receptor in health and diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:463-85. [PMID: 21986312 PMCID: PMC3313690 DOI: 10.2183/pjab.87.463] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/03/2011] [Indexed: 05/31/2023]
Abstract
While interleukin-5 (IL-5) is initially identified by its ability to support the growth and terminal differentiation of mouse B cells in vitro into antibody-secreting cells, recombinant IL-5 exerts pleiotropic activities on various target cells including B cells, eosinophils, and basophils. IL-5 is produced by both hematopoietic and non-hematopoietic cells including T cells, granulocytes, and natural helper cells. IL-5 exerts its effects for proliferation and differentiation via receptors that comprise an IL-5-specific α and common β-subunit. IL-5Rα expression in activated B cells is regulated by a complex of transcription factors including E12, E47, Sp1, c/EBPβ, and Oct2. IL-5 signals are transduced through JAK-STAT, Btk, and Ras/Raf-ERK signaling pathways and lead to maintenance of survival and functions of B cells and eosinophils. Overexpression of IL-5 in vivo significantly increases eosinophils and B cells in number, while mice lacking a functional gene for IL-5 or IL-5 receptor display a number of developmental and functional impairments in B cells and eosinophil lineages. In humans, the biologic effects of IL-5 are best characterized for eosinophils. The recent expansion in our understanding of eosinophil development and activation and pathogenesis of eosinophil-dependent inflammatory diseases has led to advance in therapeutic options. Intravenous administration of humanized anti-IL-5 monoclonal antibody reduces baseline bronchial mucosal eosinophils in mild asthma; providing important implications for strategies that inhibit the actions of IL-5 to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| |
Collapse
|
10
|
Radhakrishnan ML, Tidor B. Cellular level models as tools for cytokine design. Biotechnol Prog 2010; 26:919-37. [PMID: 20568274 DOI: 10.1002/btpr.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency.
Collapse
Affiliation(s)
- Mala L Radhakrishnan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
11
|
Piazza TM, Lu JC, Carver KC, Schuler LA. SRC family kinases accelerate prolactin receptor internalization, modulating trafficking and signaling in breast cancer cells. Mol Endocrinol 2008; 23:202-12. [PMID: 19056863 DOI: 10.1210/me.2008-0341] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the growing body of evidence supporting prolactin (PRL) actions in human breast cancer, little is known regarding PRL regulation of its own receptor in these cells. Ligand-initiated endocytosis is a key process in the regulation of receptor availability and signaling cascades that may lead to oncogenic actions. Although exposure to exogenous PRL accelerates degradation of the long isoform of the PRL receptor (lPRLR), neither the signals initiated by PRL that lead to lPRLR internalization and subsequent down-regulation, nor the relationship to downstream pathways are understood in breast cancer cells. In this study, we showed that PRL-induced down-regulation of the lPRLR was reduced by inhibition of src family kinases (SFKs), but not Janus kinase 2, in MCF-7 cells. Inhibition of SFKs also resulted in accumulation of a PRL-induced PRLR fragment containing the extracellular domain, which appeared to be generated from newly synthesized PRLR. lPRLR was constitutively associated with SFKs in lipid rafts. PRL-induced SFK activation led to recruitment of the guanosine triphosphatase, dynamin-2, to an internalization complex, resulting in endocytosis. Inhibition of endocytosis by small interfering RNA-mediated knockdown of dynamin-2 blocked PRL-induced down-regulation of lPRLR, confirming that internalization is essential for this process. Endocytosis also was required for optimal phosphorylation of ERK1/2 and Akt, but not for Janus kinase 2 or signal transducer and activator of transcription 5, indicating that internalization selectively modulates signaling cascades. Together, these data indicate that SFKs are key mediators of ligand-initiated lPRLR internalization, down-regulation, and signal transduction in breast cancer cells, and underscore the importance of target cell context in receptor trafficking and signal transduction.
Collapse
Affiliation(s)
- Timothy M Piazza
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
12
|
Pazdrak K, Young TW, Stafford S, Olszewska-Pazdrak B, Straub C, Starosta V, Brasier A, Kurosky A. Cross-talk between ICAM-1 and granulocyte-macrophage colony-stimulating factor receptor signaling modulates eosinophil survival and activation. THE JOURNAL OF IMMUNOLOGY 2008; 180:4182-90. [PMID: 18322230 DOI: 10.4049/jimmunol.180.6.4182] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reversal of eosinophilic inflammation has been an elusive therapeutic goal in the management of asthma pathogenesis. In this regard, GM-CSF is a primary candidate cytokine regulating eosinophil activation and survival in the lung; however, its molecular mechanism of propagation and maintenance of stimulated eosinophil activation is not well understood. In this study, we elucidate those late interactions occurring between the GM-CSF receptor and activated eosinophil signaling molecules. Using coimmunoprecipitation with GM-CSF-stimulated eosinophils, we have identified that the GM-CSF receptor beta-chain (GMRbeta) interacted with ICAM-1 and Shp2 phosphatase, as well as Slp76 and ADAP adaptor proteins. Separate experiments using affinity binding with a tyrosine-phosphorylated peptide containing an ITIM (ICAM-1 residues 480-488) showed binding to Shp2 phosphatase and GMRbeta. However, the interaction of GMRbeta with the phosphorylated ICAM-1-derived peptide was observed only with stimulated eosinophil lysates, suggesting that the interaction of GMRbeta with ICAM-1 required phosphorylated Shp2 and/or phosphorylated GMRbeta. Importantly, we found that inhibition of ICAM-1 in activated eosinophils blocked GM-CSF-induced expression of c-fos, c-myc, IL-8, and TNF-alpha. Moreover, inhibition of ICAM-1 expression with either antisense oligonucleotide or an ICAM-1-blocking Ab effectively inhibited ERK activation and eosinophil survival. We concluded that the interaction between ICAM-1 and the GM-CSF receptor was essential for GM-CSF-induced eosinophil activation and survival. Taken together, these results provide novel mechanistic insights defining the interaction between ICAM-1 and the GM-CSF receptor and highlight the importance of targeting ICAM-1 and GM-CSF/IL-5/IL-3 receptor systems as a therapeutic strategy to counter eosinophilia in asthma.
Collapse
Affiliation(s)
- Konrad Pazdrak
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lei JT, Martinez-Moczygemba M. Separate endocytic pathways regulate IL-5 receptor internalization and signaling. J Leukoc Biol 2008; 84:499-509. [PMID: 18511572 DOI: 10.1189/jlb.1207828] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are critically dependent on IL-5 for their activation, differentiation, survival, and augmentation of cytotoxic activity. We previously showed that the cytoplasmic domain of the hematopoietic receptor, betac, which is shared by IL-5, IL-3, and GM-CSF, is directly ubiquitinated and degraded by the proteasomes in a JAK2-dependent manner. However, studies describing the spatial distribution, endocytic regulation, and trafficking of betac-sharing receptors in human eosinophils are currently lacking. Using deconvolution microscopy and biochemical methods, we clearly demonstrate that IL-5Rs reside in and are internalized by clathrin- and lipid raft-dependent endocytic pathways. Microscopy analyses in TF1 cells and human eosinophils revealed significant colocalization of betac, IL-5Ralpha, and Cy3-labeled IL-5 with transferrin- (clathrin) and cholera toxin-B- (lipid raft) positive vesicles. Moreover, whereas internalized IL-5Rs were detected in both clathrin- and lipid raft-positive vesicles, biochemical data revealed that tyrosine phosphorylated, ubiquitinated, and proteasome-degraded IL-5Rs partitioned to the soluble, nonraft fractions (clathrin-containing). Lastly, we show that optimal IL-5-induced signaling requires entry of activated IL-5Rs into the intracellular compartment, as coimmunoprecipitation of key signaling molecules with the IL-5R was completely blocked when either endocytic pathway was inhibited. These data provide the first evidence that IL-5Rs segregate and traffic into two distinct plasma membrane compartments, and they further establish that IL-5R endocytosis regulates signaling both positively and negatively.
Collapse
Affiliation(s)
- Jonathan T Lei
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
14
|
Lu JC, Piazza TM, Schuler LA. Proteasomes mediate prolactin-induced receptor down-regulation and fragment generation in breast cancer cells. J Biol Chem 2005; 280:33909-16. [PMID: 16103113 PMCID: PMC1976473 DOI: 10.1074/jbc.m508118200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin regulates a variety of physiological processes, including mammary gland growth and differentiation, and recent findings support an important role in breast cancer development and progression. However, little is known about the trafficking of its receptor, a member of the cytokine receptor superfamily. In the present study, we examined the effect of ligand on the endogenous "long" isoform of the prolactin receptor in breast cancer cells. We found that prolactin caused rapid and prolonged down-regulation of this receptor. The prolactin-induced increase in degradation was blocked by inhibitors of both proteasomes and lysosomes. However, the ubiquitin-conjugating system was not required for internalization. Prolactin also resulted in the concomitant appearance of a cell-associated prolactin receptor fragment containing the extracellular domain. This latter process required proteasomal, but not metalloprotease, activity, distinguishing it from ectodomain "shedding" of other membrane receptors, which are secreted as binding proteins. The prolactin receptor fragment was labeled by surface biotinylation and independent of protein synthesis. Together, these data indicated that prolactin binding initiates limited proteasomal cleavage of its receptor, generating a cell-associated fragment containing the extracellular domain. Our findings described a new potential mediator of prolactin action and a novel mechanism whereby proteasomes modulate cellular processes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- From the Department of Comparative Biosciences
- Endocrinology-Reproductive Physiology Program, and
| | - Timothy M. Piazza
- From the Department of Comparative Biosciences
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Wisconsin 53706
| | - Linda A. Schuler
- From the Department of Comparative Biosciences
- Endocrinology-Reproductive Physiology Program, and
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Wisconsin 53706
- To whom correspondence should be addressed: Dept. of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706. Tel.: 608-263-9825; Fax: 608-263-3926; E-mail:
| |
Collapse
|