1
|
Zhu L, Chen M, Shi Y, Huang X, Ding H. Prenatal detection of novel compound heterozygous variants of the PLD1 gene in a fetus with congenital heart disease. Front Genet 2024; 15:1498485. [PMID: 39553471 PMCID: PMC11564120 DOI: 10.3389/fgene.2024.1498485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and heart valve defects are the most common cardiac defect, accounting for over 25% of all congenital heart diseases. To date, more than 400 genes have been linked to CHD, the genetic analysis of CHD cases is crucial for both clinical management and etiological determination. Patients with autosomal-recessive variants of PLD1 are predisposed to Cardiac Valvular Dysplasia-1 (CVDP1), which predominantly affects the right-sided heart valves, including the pulmonic, tricuspid, and mitral valves. Methods Databases were utilized to predict the impact of the c.1062-59A>G variant on splicing. Whole-exome sequencing (WES), reverse transcription polymerase chain reaction (RT-PCR), Sanger sequencing, and TA clone sequencing were conducted on both the parents and the fetus. Results A compound heterozygous variation in the PLD1(NM_002662.5):c.1937G>C (p. G646A) from the father and PLD1(NM_002662.5):c.1062-59A>G from the mother, was identified and confirmed in the fetus. The c.1937G>C (p. G646A) and the c.1062-59A>G variants were all classified as variant of uncertain significance (VUS) per ACMG guidelines. RT-PCR and TA clone sequencing revealed a 76-bp intronic insertion and exon 11 skipping in the proband and her mother's transcripts, causing a frameshift and premature stop codon in PLD1. Consequently, after being informed about the risks of their variant of unknown significance (VUS), the couple chose pre-implantation genetic testing for monogenic disorders (PGT-M) and had a healthy child. Conclusion Our study identified novel variants to expand the mutation spectrum of CHD and provided reliable evidence for the recurrent risk and reproductive care options.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yubo Shi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaxi Huang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huiqing Ding
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Zhang H, He X, Wang Y, Li C, Jiang H, Hou S, Huang D, Zhang W, Tan J, Du X, Cao Y, Chen D, Yan H, Peng L, Lei D. Simultaneous CNV-seq and WES: An effective strategy for molecular diagnosis of unexplained fetal structural anomalies. Heliyon 2024; 10:e39392. [PMID: 39502218 PMCID: PMC11535759 DOI: 10.1016/j.heliyon.2024.e39392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background Fetal structural anomalies are detected by ultrasound in approximately 3 % of pregnancies. Numerous genetic diagnostic strategies have been widely applied to identify the genetic causes of prenatal abnormalities. We aimed to assess the value of simultaneous copy number variation sequencing (CNV-seq) and whole exome sequencing (WES) in diagnosing fetuses with structural anomalies. Methods Fetuses with structural anomalies detected by ultrasound were included for eligibility. After genetic counseling, WES and CNV-seq were performed on DNA samples of fetuses and their parents. All detected variants were evaluated for pathogenicity according to ACMG criteria, with the final diagnosis was determined based on ultrasound results and relevant family history. Results The diagnostic rate of 174 fetuses with prenatal ultrasound abnormalities was 26.44 %, higher than that achieved through either CNV or WES analysis alone. Furthermore, the highest diagnostic rate was observed in fetuses with multiple system anomalies, accounting for 50 % of the total diagnostic yield, followed by skeletal system anomalies at 45.45 %. Three cases with multiple system abnormalities were found to have a dual diagnosis of pathogenic CNVs and SNV variants, representing 1.72 % of the total cohort. 38 pregnant women in their third trimester of pregnancy (27 weeks+) participated in this study, and 23.68 % received a confirmed genetic diagnosis. Finally, 31 women (67.39 %) voluntarily terminated their pregnancy following the testing and extensive genetic counseling. Conclusions Our study demonstrated that the simultaneous CNV-seq and WES analyses are beneficial for the molecular diagnosis of underlying unexplained structural anomalies in fetuses. This strategy is more efficient in elucidating prenatal abnormalities with compound problems, such as dual diagnoses. Furthermore, the simultaneous strategy has a shorter turnaround time and is particularly suitable for families with structural anomalies found in the third trimester of pregnancy.
Collapse
Affiliation(s)
- Haoqing Zhang
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuankun Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Caiyun Li
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Hongguo Jiang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
| | - Shuai Hou
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Dongqun Huang
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Wenqian Zhang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Jufang Tan
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Xiaoyun Du
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Yinli Cao
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Danjing Chen
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Haiying Yan
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Lingling Peng
- The Chenzhou Affiliated Hospital, Department of Gynecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Dongzhu Lei
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| |
Collapse
|
3
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Dong BB, Li YJ, Liu XY, Huang RT, Yang CX, Xu YJ, Lv HT, Yang YQ. Discovery of BMP10 as a new gene underpinning congenital heart defects. Am J Transl Res 2024; 16:109-125. [PMID: 38322548 PMCID: PMC10839403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE Aggregating evidence convincingly establishes the predominant genetic basis underlying congenital heart defects (CHD), though the heritable determinants contributing to CHD in the majority of cases remain elusive. In the current investigation, BMP10 was selected as a prime candidate gene for human CHD mainly due to cardiovascular developmental abnormalities in Bmp10-knockout animals. The objective of this retrospective study was to identify a new BMP10 mutation responsible for CHD and characterize the functional effect of the identified CHD-causing BMP10 mutation. METHODS Sequencing assay of BMP10 was fulfilled in a cohort of 276 probands with various CHD and a total of 288 non-CHD volunteers. The available family members from the proband harboring an identified BMP10 mutation were also BMP10-genotyped. The effect of the identified CHD-causative BMP10 mutation on the transactivation of TBX20 and NKX2.5 by BMP10 was quantitatively analyzed in maintained HeLa cells utilizing a dual-luciferase reporter assay system. RESULTS A novel heterozygous BMP10 mutation, NM_014482.3:c.247G>T;p.(Glu83*), was identified in one proband with patent ductus arteriosus (PDA), which was confirmed to co-segregate with the PDA phenotype in the mutation carrier's family. The nonsense mutation was not observed in 288 non-CHD volunteers. Functional analysis unveiled that Glu83*-mutant BMP10 had no transactivation on its two representative target genes TBX20 and NKX2.5, which were both reported to cause CHD. CONCLUSION These findings provide strong evidence indicating that genetically compromised BMP10 predisposes human beings to CHD, which sheds light on the new molecular mechanism that underlies CHD and allows for antenatal genetic counseling and individualized precise management of CHD.
Collapse
Affiliation(s)
- Bin-Bin Dong
- Department of Cardiology, Children’s Hospital of Soochow UniversitySuzhou 215003, Jiangsu, China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Hai-Tao Lv
- Department of Cardiology, Children’s Hospital of Soochow UniversitySuzhou 215003, Jiangsu, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| |
Collapse
|
5
|
Perrot A, Rickert-Sperling S. Human Genetics of Ventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:505-534. [PMID: 38884729 DOI: 10.1007/978-3-031-44087-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Jensen B, Andelfinger GU, Postma AV. Molecular Pathways and Animal Models of Ebstein's Anomaly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:915-928. [PMID: 38884760 DOI: 10.1007/978-3-031-44087-8_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ebstein's anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein's anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein's anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Gregor U Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte Justine, Université de Montréal, Montréal, QC, Canada
| | - Alex V Postma
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
- Department of Human Genetics, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Masuda Y, Nagayasu Y, Murakami H, Nishie R, Morita N, Hashida S, Daimon A, Nunode M, Maruoka H, Yoo M, Sano T, Odanaka Y, Fujiwara S, Fujita D, Okamoto N, Ohmichi M. Triple repeated fetal congenital heart disease linked to PLD1 mutation: a case report. J Med Case Rep 2023; 17:411. [PMID: 37770978 PMCID: PMC10540367 DOI: 10.1186/s13256-023-04149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Congenital heart disease occurs in approximately 1 in 100 cases. Although sibling occurrence is high (3-9%), the causative genes for this disease are still being elucidated. PLD1 (Phospholipase D1) is a recently discovered gene; however, few case reports have been published on it. In this report, we describe a case of triplicate fetal congenital heart disease that was diagnosed as a PDL1 mutation. Our objective is to explore the clinical manifestations of PLD1 mutations in this particular case. CASE PRESENTATION A 32-year-old Japanese woman (gravida, para 0) was introduced since fetus four chamber view was not clear and was diagnosed with ductus arteriosus-dependent left ventricular single ventricle and pulmonary atresia at 21 weeks and 1 day of gestation during her first pregnancy. Artificial abortion using Gemeprost was performed at 21 weeks and 5 days of gestation. The second pregnancy was diagnosed as pulmonary atresia with intact ventricular septum with cardiomegaly, a cardiothoracic area ratio of more than 35%, and a circulatory shunt at 13 weeks and 3 days of gestation. Subsequently, intrauterine fetal death was confirmed at 14 weeks and 3 days of gestation. Regarding the third pregnancy, fetal ultrasonography at 11 weeks and 5 days of gestation showed mild fetal hydrops and moderate tricuspid valve regurgitation. At 16 weeks and 5 days of gestation, the fetus was suspected to have a left ventricular-type single ventricle, trace right ventricle, pulmonary atresia with intact ventricular septum, or cardiomyopathy. Cardiac function gradually declined at 26 weeks of gestation, and intrauterine fetal death was confirmed at 27 weeks and 5 days of gestation. The fourth pregnancy resulted in a normal heart with good progression and no abnormal baby. We submitted the first and second fetuses' umbilical cord, third fetus' placenta, and the fourth fetus' blood to genetic testing using whole exome analysis with next generation sequencing. Genetic analysis identified hemizygous PLD1 mutations in the first, second, and third fetuses. The fourth fetus was heterozygous. In addition, the parents were heterozygous for PLD1. This case is based on three consecutive cases of homozygosity for the PLD1 gene in the sibling cases and the fetuses with recurrent right ventricular valve dysplasia. This will elucidate the cause of recurrent congenital heart disease and intrauterine fetal death and may serve as an indicator for screening the next fetus. To date, homozygous mutations in PLD1 that repeat three times in a row are not reported, only up to two times. The novelty of this report is that it was repeated three times, followed by a heterozygous live birth. CONCLUSIONS This report is consistent with previous reports that mutations in PLD1 cause right ventricular valve dysplasia. However, there have been few case reports of PLD1 mutations, and we hope that this report will contribute to elucidate the causes of congenital heart disease, especially right ventricular valve dysplasia, and that the accumulation of such information will provide more detailed information on PLD1 mutations in heart disease.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- Department of Obstetrics and Gynecology, Saiseikai Suita Hospital, Suita, Japan
| | - Yoko Nagayasu
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| | - Hikaru Murakami
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ruri Nishie
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Sosuke Hashida
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Atsushi Daimon
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Misa Nunode
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroshi Maruoka
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masae Yoo
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takumi Sano
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yutaka Odanaka
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Satoe Fujiwara
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Daisuke Fujita
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
8
|
Ivanoshchuk DE, Kolker AB, Timoshchenko OV, Semaev SE, Shakhtshneider EV. Searching for new genes associated with the familial hypercholesterolemia phenotype using whole-genome sequencing and machine learning. Vavilovskii Zhurnal Genet Selektsii 2023; 27:522-529. [PMID: 37808210 PMCID: PMC10551936 DOI: 10.18699/vjgb-23-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 10/10/2023] Open
Abstract
One of the most common congenital metabolic disorders is familial hypercholesterolemia. Familial hypercholesterolemia is a condition caused by a type of genetic defect leading to a decreased rate of removal of low-density lipoproteins from the bloodstream and a pronounced increase in the blood level of total cholesterol. This disease leads to the early development of cardiovascular diseases of atherosclerotic etiology. Familial hypercholesterolemia is a monogenic disease that is predominantly autosomal dominant. Rare pathogenic variants in the LDLR gene are present in 75-85 % of cases with an identified molecular genetic cause of the disease, and variants in other genes (APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, and others) occur at a frequency of < 5 % in this group of patients. A negative result of genetic screening for pathogenic variants in genes of the low-density lipoprotein receptor and its ligands does not rule out a diagnosis of familial hypercholesterolemia. In 20-40 % of cases, molecular genetic testing fails to detect changes in the above genes. The aim of this work was to search for new genes associated with the familial hypercholesterolemia phenotype by modern high-tech methods of sequencing and machine learning. On the basis of a group of patients with familial hypercholesterolemia (enrolled according to the Dutch Lipid Clinic Network Criteria and including cases confirmed by molecular genetic analysis), decision trees were constructed, which made it possible to identify cases in the study population that require additional molecular genetic analysis. Five probands were identified as having the severest familial hypercholesterolemia without pathogenic variants in the studied genes and were analyzed by whole-genome sequencing on the HiSeq 1500 platform (Illumina). The whole-genome sequencing revealed rare variants in three out of five analyzed patients: a heterozygous variant (rs760657350) located in a splicing acceptor site in the PLD1 gene (c.2430-1G>A), a previously undescribed single-nucleotide deletion in the SIDT1 gene [c.2426del (p.Leu809CysfsTer2)], new missense variant c.10313C>G (p.Pro3438Arg) in the LRP1B gene, and single-nucleotide deletion variant rs753876598 [c.165del (p.Ser56AlafsTer11)] in the CETP gene. All these variants were found for the first time in patients with a clinical diagnosis of familial hypercholesterolemia. Variants were identified that may influence the formation of the familial hypercholesterolemia phenotype.
Collapse
Affiliation(s)
- D E Ivanoshchuk
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A B Kolker
- Novosibirsk State Technical University, Novosibirsk, Russia
| | - O V Timoshchenko
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S E Semaev
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Shakhtshneider
- Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Mazzarotto F, Argirò A, Zampieri M, Magri C, Giotti I, Boschi B, Frusconi S, Gennarelli M, Buxbaum J, Polimanti R, Olivotto I, Perfetto F, Cappelli F. Investigation on the high recurrence of the ATTRv-causing transthyretin variant Val142Ile in central Italy. Eur J Hum Genet 2023; 31:541-547. [PMID: 36380086 PMCID: PMC10172197 DOI: 10.1038/s41431-022-01235-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
The p.Val142Ile variant in transthyretin (encoded by the TTR gene) is the most common genetic cause of transthyretin-related amyloidosis. This allele is particularly prevalent in communities ofAfrican descent compared with populations of different ancestries, where its frequency is two orders of magnitude lower. For this reason, p.Val142Ile has always been considered an "African" variant, with limited studies performed on individuals of European descent. However, recent reports of higher-than-expected prevalence in European-ancestry populations question the African specificity of this allele. Here we show that the high recurrence of p.Val142Ile in central Italy is due to a founder effect and not to recent admixture from African populations, highlighting how this may be the case in other communities. This suggests a probable underestimate of the global prevalence of p.Val142Ile, and further emphasizes the importance of routine inclusion of TTR in gene panels used for clinical genetic testing in hypertrophic cardiomyopathy (independently of the patient's geographical origin), that transthyretin-related amyloidosis can mimic.
Collapse
Affiliation(s)
- Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Alessia Argirò
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Mattia Zampieri
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Irene Giotti
- Genetics Unit, Careggi University Hospital, Florence, Italy
| | | | | | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Joel Buxbaum
- The Scripps Research Institute, La Jolla, CA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Federico Perfetto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy
| | - Francesco Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy
| |
Collapse
|
10
|
Tamura T, Yamamoto Shimojima K, Shiihara T, Sakazume S, Okamoto N, Yagasaki H, Morioka I, Kanno H, Yamamoto T. Interstitial microdeletions of 3q26.2q26.31 in two patients with neurodevelopmental delay and distinctive features. Am J Med Genet A 2023; 191:400-407. [PMID: 36345653 DOI: 10.1002/ajmg.a.63034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Interstitial microdeletions in the long arm of chromosome 3 are rare. In this study, we identified two patients with approximately 5-Mb overlapping deletions in the 3q26.2q26.31 region. Both patients showed neurodevelopmental delays, congenital heart defects, and distinctive facial features. One of them showed growth deficiency and brain abnormalities, as shown on a magnetic resonance imaging scan. Haploinsufficiency of NLGN1 and FNDC3B present in the common deletion region was considered to be responsible for neurodevelopmental delay and the distinctive features, respectively. The possibility of unmasked variants in PLD1 was considered and analyzed, but no possible pathogenic variant was found, and the mechanism of the congenital heart defects observed in the patients is unknown. Because 3q26.2q26.31 deletions are rare, more information is required to establish genotype-phenotype correlations associated with microdeletions in this region.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Yamamoto Shimojima
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Shiihara
- Department of Neurology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Satoru Sakazume
- Department of Pediatrics, Japanese Red Cross Haramachi Hospital, Gunma, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Ranganath P, Vs V, Rungsung I, Dalal A, Aggarwal S. Next Generation Sequencing in a Case of Early Onset Hydrops: Closing the Loop on the Diagnostic Odyssey! Fetal Pediatr Pathol 2023; 42:103-109. [PMID: 35380090 DOI: 10.1080/15513815.2022.2058660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-immune fetal hydrops (NIFH) is an etiologically heterogeneous condition. Cardiac anomalies are one of the common causes of NIFH. Cardiac anomalies can be isolated, multifactorial malformations or have a genetic basis. PLD1 variants have been associated with developmental defects involving the right heart. We present a NIFH with a PLD1 associated right heart malformation. We describe a spontaneously aborted 14 weeks old NIFH fetus with a rudimentary right ventricle, pulmonary valve atresia and pulmonary artery stenosis found at fetopsy. After a normal microarray, whole exome sequencing revealed a homozygous missense variant c.2023 C > T (p. Arg675Trp) in the PLD1 gene. Conclusion: Detailed fetopsy and genetic evaluation in this NIFH allowed an etiological explanation, further corroborated the association of PLD1 gene variants and developmental right heart defects, and that this defect can be associated with NIHF.
Collapse
Affiliation(s)
- Priya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Vineeth Vs
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Ikromi Rungsung
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Cai R, Tan Y, Wang M, Yu H, Wang J, Ren Z, Dong Z, He Y, Li Z, Lin L, Gu Y. Detection of Novel Pathogenic Variants in Two Families with Recurrent Fetal Congenital Heart Defects. Pharmgenomics Pers Med 2023; 16:173-181. [PMID: 36923242 PMCID: PMC10008912 DOI: 10.2147/pgpm.s394120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect with strong genetic heterogeneity. To date, about 400 genes have been linked to CHD, including cell signaling molecules, transcription factors, and structural proteins that are important for heart development. Genetic analysis of CHD cases is crucial for clinical management and etiological analysis. Methods Whole-exome sequencing (WES) was performed to identify the genetic variants in two independent CHD cases with DNA samples from fetuses and their parents, followed by the exclusion of aneuploidy and large copy number variations (CNVs). The WES results were verified by Sanger sequencing. Results In family A, a compound heterozygous variation in PLD1 gene consisting of c.1132dupA (p.I378fs) and c.1171C>T (p.R391C) was identified in the fetus. The two variants were inherited from the father (c.1132dupA) and the mother (c.1171C>T), respectively. In family B, a hemizygous variant ZIC3: c.861delG (p.G289Afs*119) was identified in the fetus, which was inherited from the heterozygous mother. We further confirmed that these variants PLD1: c.1132dupA and ZIC3: c.861delG were novel. Conclusion The findings in our study identified novel variants to the mutation spectrum of CHD and provided reliable evidence for the recurrent risk and reproductive care options to the affected families. Our study also demonstrates that WES has considerable prospects of clinical application in prenatal diagnosis.
Collapse
Affiliation(s)
- Rongqin Cai
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Mingming Wang
- Be Creative Lab (Beijing) Co. Ltd, Beijing, 101111, People's Republic of China
| | - Huijun Yu
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Zhuo Ren
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Zhe Dong
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Yiwen He
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Zhi Li
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, 102206, People's Republic of China.,Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Xu YJ, Yang CX, Huang RT, Xue S, Yuan F, Yang YQ. SMAD4 loss-of-function mutation predisposes to congenital heart disease. Eur J Med Genet 2022; 66:104677. [PMID: 36496093 DOI: 10.1016/j.ejmg.2022.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) represents the most frequent developmental deformity in human beings and accounts for substantial morbidity and mortality worldwide. Accumulating investigations underscore the strong inherited basis of CHD, and pathogenic variations in >100 genes have been related to CHD. Nevertheless, the heritable defects underpinning CHD remain elusive in most cases, mainly because of the pronounced genetic heterogeneity. In this investigation, a four-generation family with CHD was recruited and clinically investigated. Via whole-exome sequencing and Sanger sequencing assays in selected family members, a heterozygous variation in the SMAD4 gene (coding for a transcription factor essential for cardiovascular morphogenesis), NM_005359.6: c.285T > A; p.(Tyr95*), was identified to be in co-segregation with autosomal-dominant CHD in the entire family. The truncating variation was not observed in 460 unrelated non-CHD volunteers employed as control subjects. Functional exploration by dual-reporter gene analysis demonstrated that Tyr95*-mutant SMAD4 lost transactivation of its two key downstream target genes NKX2.5 and ID2, which were both implicated with CHD. Additionally, the variation nullified the synergistic transcriptional activation between SMAD4 and GATA4, another transcription factor involved in CHD. These data strongly indicate SMAD4 may be associated with CHD and shed more light on the molecular pathogenesis underlying CHD, implying potential implications for antenatal precise prevention and prognostic risk stratification of the patients affected with CHD.
Collapse
Affiliation(s)
- Yin Wang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fang Yuan
- Department of Cardiac Intensive Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Li F, Wu Z, Gao Y, Bowling FZ, Franklin JM, Hu C, Suhandynata RT, Frohman MA, Airola MV, Zhou H, Guan K. Defining the proximal interaction networks of Arf GTPases reveals a mechanism for the regulation of PLD1 and PI4KB. EMBO J 2022; 41:e110698. [PMID: 35844135 PMCID: PMC9433938 DOI: 10.15252/embj.2022110698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 12/16/2022] Open
Abstract
The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.
Collapse
Affiliation(s)
- Fu‐Long Li
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Yong‐Qi Gao
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Forrest Z Bowling
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
| | - J Matthew Franklin
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Chongze Hu
- Department of Nanoengineering, Program of Materials Science and EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Raymond T Suhandynata
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Michael A Frohman
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNYUSA
| | - Michael V Airola
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookNYUSA
| | - Huilin Zhou
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Kun‐Liang Guan
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
15
|
Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ, Yang YQ. Identification of SOX18 as a New Gene Predisposing to Congenital Heart Disease. Diagnostics (Basel) 2022; 12:diagnostics12081917. [PMID: 36010266 PMCID: PMC9406965 DOI: 10.3390/diagnostics12081917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is the most frequent kind of birth deformity in human beings and the leading cause of neonatal mortality worldwide. Although genetic etiologies encompassing aneuploidy, copy number variations, and mutations in over 100 genes have been uncovered to be involved in the pathogenesis of CHD, the genetic components predisposing to CHD in most cases remain unclear. We recruited a family with CHD from the Chinese Han population in the present investigation. Through whole-exome sequencing analysis of selected family members, a new SOX18 variation, namely NM_018419.3:c.349A>T; p.(Lys117*), was identified and confirmed to co-segregate with the CHD phenotype in the entire family by Sanger sequencing analysis. The heterozygous variant was absent from the 384 healthy volunteers enlisted as control individuals. Functional exploration via luciferase reporter analysis in cultivated HeLa cells revealed that Lys117*-mutant SOX18 lost transactivation on its target genes NR2F2 and GATA4, two genes responsible for CHD. Moreover, the genetic variation terminated the synergistic activation between SOX18 and NKX2.5, another gene accountable for CHD. The findings strongly indicate SOX18 as a novel gene contributing to CHD, which helps address challenges in the clinical genetic diagnosis and prenatal prophylaxis of CHD.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
16
|
Saini N, Venkatapuram VS, Vineeth VS, Kulkarni A, Tandon A, Koppolu G, Patil SJ, Dalal A, Aggarwal S. Fetal phenotypes of Mendelian disorders: A descriptive study from India. Prenat Diagn 2022; 42:911-926. [PMID: 35587316 DOI: 10.1002/pd.6172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Exome sequencing(ES) based diagnosis of Mendelian diseases in the fetus is limited by paucity of phenotypic information. This study reports the comprehensive phenotypes of some fetuses with Mendelian disorders. METHODS Next generation technology based sequencing of all coding regions of the genome(Exome sequencing) or targeted gene sequencing using Sanger or next generation platforms was performed in a cohort of deeply phenotyped, cytogenetically normal fetuses with morphological defects. Prenatal ultrasonographic phenotypes and Postmortem details including dysmorphology, histopathology, radiography were ascertained. Novel candidate genes, novel/ unusual findings and unusual genotypes in cases with confirmed Mendelian disorders are described. RESULTS Of the 102 fetuses sequenced, 45 (44%) achieved definitive diagnosis of a Mendelian disorder with 50 pathogenic/likely pathogenic variants. The majority (87%) were autosomal recessive, 69% families were consanguineous and 54% variants were novel. Dysmorphic syndromes, skeletal dysplasias and metabolic disorders were the commonest disease categories, ciliopathies and dystroglycanopathies commonest molecular categories. We describe the first fetal description of six monogenic diseases, and nine cases with novel histological findings. Nineteen cases had novel/ unusual findings. CONCLUSION This cohort demonstrates how deep fetal phenotypes of some Mendelian disorders can show novel/unusual findings which have important implications for prenatal diagnosis of these conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neelam Saini
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | | - Ashwani Tandon
- Department of Pathology, All India Institute of Medical Sciences, Bhopal, India
| | | | - Siddaramappa Jagdish Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| |
Collapse
|
17
|
Abhinav P, Zhang GF, Zhao CM, Xu YJ, Wang J, Yang YQ. A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Exp Ther Med 2022; 23:311. [PMID: 35369534 PMCID: PMC8943534 DOI: 10.3892/etm.2022.11240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Gao-Feng Zhang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
18
|
Bowling FZ, Frohman MA, Airola MV. Structure and regulation of human phospholipase D. Adv Biol Regul 2021; 79:100783. [PMID: 33495125 DOI: 10.1016/j.jbior.2020.100783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Mammalian phospholipase D (PLD) generates phosphatidic acid, a dynamic lipid secondary messenger involved with a broad spectrum of cellular functions including but not limited to metabolism, migration, and exocytosis. As a promising pharmaceutical target, the biochemical properties of PLD have been well characterized. This has led to the recent crystal structures of human PLD1 and PLD2, the development of PLD specific pharmacological inhibitors, and the identification of cellular regulators of PLD. In this review, we discuss the PLD1 and PLD2 structures, PLD inhibition by small molecules, and the regulation of PLD activity by effector proteins and lipids.
Collapse
Affiliation(s)
- Forrest Z Bowling
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|