1
|
Li S, Yan W, Sun K, Miao J, Liu Z, Xu J, Wang X, Li B, Zhang Q. Norisoboldine, a Natural Alkaloid from Lindera aggregata (Sims) Kosterm, Promotes Osteogenic Differentiation via S6K1 Signaling Pathway and Prevents Bone Loss in OVX Mice. Mol Nutr Food Res 2024; 68:e2400193. [PMID: 38813717 DOI: 10.1002/mnfr.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
SCOPE Norisoboldine (NOR) is a major isoquinoline alkaloid component in the traditional Chinese herbal plant Lindera aggregata (Sims) Kosterm, with previously reported anti-osteoclast differentiation and antiarthritis properties. However, the roles of NOR on osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoporosis in vivo have never been well established. METHODS AND RESULTS This study investigates the ability of NOR to improve bone formation in vitro and in vivo. Osteoblasts and BMSCs are used to study the effect of NOR on osteogenic and adipogenic differentiation. It finds that NOR promotes osteogenic differentiation of osteoblasts and BMSCs, while inhibiting adipogenic differentiation of BMSCs by reducing the relative expression of peroxisome proliferator-activated receptor γ (Ppar-γ) and adiponectin, C1Q and collagen domain containing (Adipoq). Mechanistic studies show that NOR increases osteoblast differentiation through the mechanistic target of rapamycin kinase (mTOR)/ribosomal protein S6 kinase; polypeptide 1 (S6K1) pathway, and treatment with an mTOR inhibitor rapamycin blocked the NOR-induced increase in mineral accumulation. Finally, the study evaluates the therapeutic potential of NOR in a mouse model of ovariectomy (OVX)-induced bone loss. NOR prevents bone loss in both trabecular and cortical bone by increasing osteoblast number and phospho-S6K1 (p-S6K1) expression in osteoblasts. CONCLUSION NOR effects in enhancing osteoblast-induced bone formation via S6K1 pathway, suggesting the potential of NOR in osteoporosis treatment by increasing bone formation.
Collapse
Affiliation(s)
- Shiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wenliang Yan
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Kainong Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingyuan Miao
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Dillard LJ, Calabrese GM, Mesner LD, Farber CR. Cell type-specific network analysis in Diversity Outbred mice identifies genes potentially responsible for human bone mineral density GWAS associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594981. [PMID: 38826475 PMCID: PMC11142079 DOI: 10.1101/2024.05.20.594981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Genome-wide association studies (GWASs) have identified many sources of genetic variation associated with bone mineral density (BMD), a clinical predictor of fracture risk and osteoporosis. Aside from the identification of causal genes, other difficult challenges to informing GWAS include characterizing the roles of predicted causal genes in disease and providing additional functional context, such as the cell type predictions or biological pathways in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in informing BMD GWAS by linking disease-associated variants to genes and providing a cell type context for which these causal genes drive disease. Here, we use large-scale scRNA-seq data from bone marrow-derived stromal cells cultured under osteogenic conditions (BMSC-OBs) from Diversity Outbred (DO) mice to generate cell type-specific networks and contextualize BMD GWAS-implicated genes. Using trajectories inferred from the scRNA-seq data, we identify networks enriched with genes that exhibit the most dynamic changes in expression across trajectories. We discover 21 network driver genes, which are likely to be causal for human BMD GWAS associations that colocalize with expression/splicing quantitative trait loci (eQTL/sQTL). These driver genes, including Fgfrl1 and Tpx2, along with their associated networks, are predicted to be novel regulators of BMD via their roles in the differentiation of mesenchymal lineage cells. In this work, we showcase the use of single-cell transcriptomics from mouse bone-relevant cells to inform human BMD GWAS and prioritize genetic targets with potential causal roles in the development of osteoporosis.
Collapse
Affiliation(s)
- Luke J Dillard
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Gina M Calabrese
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Larry D Mesner
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
3
|
Aparicio-Bautista DI, Jiménez-Ortega RF, Becerra-Cervera A, Aquino-Gálvez A, de León-Suárez VP, Casas-Ávila L, Salmerón J, Hidalgo-Bravo A, Rivera-Paredez B, Velázquez-Cruz R. Interaction between MARK3 (rs11623869), PLCB4 (rs6086746) and GEMIN2 (rs2277458) variants with bone mineral density and serum 25-hidroxivitamin D levels in Mexican Mestizo women. Front Endocrinol (Lausanne) 2024; 15:1392063. [PMID: 38715801 PMCID: PMC11074919 DOI: 10.3389/fendo.2024.1392063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Understanding the genetic factors contributing to variations in bone mineral density (BMD) and vitamin D could provide valuable insights into the pathogenesis of osteoporosis. This study aimed to evaluate the association of single nucleotide variants in MARK3 (rs11623869), PLCB4 (rs6086746), and GEMIN2 (rs2277458) with BMD in Mexican women. Methods The gene-gene interaction was evaluated in these variants in serum 25(OH)D levels and BMD. A genetic risk score (GRS) was created on the basis of the three genetic variants. Genotyping was performed using predesigned TaqMan assays. Results A significant association was found between the rs6086746-A variant and BMD at the total hip, femoral neck, and lumbar spine, in women aged 45 years or older. However, no association was observed between the variants rs11623869 and rs2277458. The rs11623869 × rs2277458 interaction was associated with total hip (p=0.002) and femoral neck BMD (p=0.013). Similarly, for vitamin D levels, we observed an interaction between the variants rs6086746 × rs2277458 (p=0.021). GRS revealed a significant association with total hip BMD (p trend=0.003) and femoral neck BMD (p trend=0.006), as well as increased vitamin D levels (p trend=0.0003). These findings provide evidence of the individual and joint effect of the MARK3, PLCB4, and GEMIN2 variants on BMD and serum vitamin D levels in Mexican women. Discussion This knowledge could help to elucidate the interaction mechanism between BMD-related genetic variants and 25OHD, contributing to the determination of the pathogenesis of osteoporosis and its potential implications during early interventions.
Collapse
Affiliation(s)
- Diana I. Aparicio-Bautista
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Departamento de Ciencias de la Acupuntura. Universidad Estatal del Valle de Ecatepec. Ecatepec de Morelos, Estado de Mexico, Mexico
| | - Adriana Becerra-Cervera
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - Leonora Casas-Ávila
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Jorge Salmerón
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
4
|
Allayee H, Farber CR, Seldin MM, Williams EG, James DE, Lusis AJ. Systems genetics approaches for understanding complex traits with relevance for human disease. eLife 2023; 12:e91004. [PMID: 37962168 PMCID: PMC10645424 DOI: 10.7554/elife.91004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Quantitative traits are often complex because of the contribution of many loci, with further complexity added by environmental factors. In medical research, systems genetics is a powerful approach for the study of complex traits, as it integrates intermediate phenotypes, such as RNA, protein, and metabolite levels, to understand molecular and physiological phenotypes linking discrete DNA sequence variation to complex clinical and physiological traits. The primary purpose of this review is to describe some of the resources and tools of systems genetics in humans and rodent models, so that researchers in many areas of biology and medicine can make use of the data.
Collapse
Affiliation(s)
- Hooman Allayee
- Departments of Population & Public Health Sciences, University of Southern CaliforniaLos AngelesUnited States
- Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Departments of Biochemistry & Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Public Health Sciences, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Evan Graehl Williams
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgLuxembourgLuxembourg
| | - David E James
- School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
- Faculty of Medicine and Health, University of SydneyCamperdownAustralia
- Charles Perkins Centre, University of SydneyCamperdownAustralia
| | - Aldons J Lusis
- Departments of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Medicine, University of California, Los AngelesLos AngelesUnited States
- Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLALos AngelesUnited States
| |
Collapse
|
5
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Moran MM, Ko FC, Mesner LD, Calabrese GM, Al-Barghouthi BM, Farber CR, Sumner DR. Intramembranous bone regeneration in diversity outbred mice is heritable. Bone 2022; 164:116524. [PMID: 36028119 PMCID: PMC9798271 DOI: 10.1016/j.bone.2022.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/31/2022]
Abstract
There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Larry D Mesner
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gina M Calabrese
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Basel M Al-Barghouthi
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|