1
|
Hu Y, Peng Z, Qiu M, Xue L, Ren H, Wu X, Zhu X, Ding Y. Developing biotechnologies in organoids for liver cancer. BIOMEDICAL TECHNOLOGY 2025; 9:100067. [DOI: 10.1016/j.bmt.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Fukumoto M, Miyamoto D, Soyama A, Hara T, Maruya Y, Li P, Matsushima H, Migita K, Enjoji T, Tetsuo H, Fujita T, Yamashita M, Imamura H, Adachi T, Kanetaka K, Ochiya T, Eguchi S. Characteristics of chemically induced liver progenitors derived from a pig model of metabolic dysfunction-associated steatotic liver disease. PLoS One 2024; 19:e0313312. [PMID: 39636897 PMCID: PMC11620392 DOI: 10.1371/journal.pone.0313312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
We previously reported the efficacy of chemically induced liver progenitors (CLiP) as a source of cells for transplantation in patients with liver disease. This study aimed to characterize CLiP derived from steatotic livers using a pig model for future clinical applications. Livers were removed from miniature pigs with diet-induced steatosis and normal livers by laparoscopic hepatectomy. Mature hepatocytes (MH) isolated from the livers of each group were cultured in differentiation medium composed of Y-27632, A-83-01, and CHIR99021 (YAC medium). The characteristics of CLiP, including liver-specific function, proliferative capacity in vivo, and extracellular vesicles (EVs) production, were evaluated. Although CLiP in both groups expressed hepatic progenitor cell markers (Epithelial cell adhesion molecule and Trophoblast cell surface antigen 2), the proliferative potential was higher for the disease group than the healthy group. In contrast, markers of functional MH after re-differentiation were only detected in the healthy group. Both groups showed high cell viability and the ability to differentiate into albumin-positive cells in vivo. EVs counts were lower in disease-derived CLiP than in the normal group; however, there were no differences in microRNA expression within EVs. Using a pig model, CLiP was successfully produced from a liver that reproduced steatotic liver disease. Although there were slightly fewer EVs from CLiP in the disease group than in the normal liver group, the in vivo proliferative capacity of CLiP was high. Therefore, CLiP induced in the steatotic liver are a promising source for cell therapy in patients with liver disease.
Collapse
Affiliation(s)
- Masayuki Fukumoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuhiro Maruya
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Peilin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazushige Migita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Enjoji
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hanako Tetsuo
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuro Fujita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mampei Yamashita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
4
|
Zhang HS, Zhao YW, Tao XY, Cong X, Wu LL, Yu GY, Zhang Y. Identification and culture of functional salivary gland ductal epithelial cells. Histochem Cell Biol 2024; 162:511-521. [PMID: 39207519 DOI: 10.1007/s00418-024-02324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Sialadenitis is a prevalent salivary gland disease resulting in decreased salivary flow rate. To date, little is known about the exact changes and mechanism of ductal cells in sialadenitis. This study aims to establish an efficient method to identify and isolate ductal cells, thereby facilitating further research on this specific cell type. Immunofluorescence for cytokeratin 13 and cytokeratin 19 was conducted in salivary glands to confirm their specificity as ductal cell markers. The dissected ducts were assessed through PCR and Western blot of cytokeratin 19 and digested by dispase and collagenase. The functionality of the isolated ductal cells was determined by measuring intracellular calcium. Cytokeratin 19 and cytokeratin 13 were expressed in all segments of human ducts. Cytokeratin 19 was limited to ducts excluding granular convoluted tubules in rat and mouse. The purities of the obtained ductal cells were approximately 98% in humans and 93% in rats. Furthermore, intracellular free calcium increased with time and concentration of carbachol treatment. Cytokeratin 19 serves as a dependable marker for identifying ductal cells in salivary glands, except for granular convoluted tubules. Moreover, we have successfully developed an efficient method for isolating ductal cells from salivary glands.
Collapse
Affiliation(s)
- Han-Shu Zhang
- Department of Oral and Maxillofacial Surgery, Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral, 22 Zhong Guan Cun South Street, Haidian District, Beijing, 100081, China
| | - You-Wei Zhao
- Department of Oral and Maxillofacial Surgery, Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral, 22 Zhong Guan Cun South Street, Haidian District, Beijing, 100081, China
| | - Xin-Yi Tao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral, 22 Zhong Guan Cun South Street, Haidian District, Beijing, 100081, China.
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
5
|
Fang T, Xie X, Lu W, Hong Z, Peng W, Zhou J, Wang M, Yao B. Patient-Derived Organoids on a Microarray for Drug Resistance Study in Breast Cancer. Anal Chem 2024; 96:18384-18391. [PMID: 39499082 DOI: 10.1021/acs.analchem.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Drug resistance is always a challenge in cancer treatment, whether for chemotherapy, targeting, or immunotherapy. Although tumor cell lines are derived from cancer patients, they gradually lost the original characteristics, including heterogeneity and tumor microenvironment (TME), during the long period of in vitro culturing. Therefore, it is urgent to use patient-derived tumor models instead of cancer cell lines to study tumor drug resistance. Herein, we developed a microarray device that serves as a platform for high-throughput and three-dimensional culture of breast cancer patient-derived organoids (BCOs) and investigated their resistance to adriamycin (ADM). Coupled with fluorescence microscopy, this system enabled on-chip drug response monitoring and cell viability assessment without the consumption of a large number of tumor cells. The organoids were divided into a resistant BCO group (RBCO) and a sensitive BCO group (SBCO) according to their half-inhibitory concentration (IC50). Different from cancer cell lines, BCOs demonstrated obvious heterogeneity in drug treatment. Ivermectin (IVM), a broad-spectrum antiparasitic agent approved by the Food and Drug Administration (FDA), was observed to synergistically augment ADM-induced cytotoxicity in organoids. The BCO chip provides a promising platform for investigation of drug resistance and preclinical drug screening based on clinical samples.
Collapse
Affiliation(s)
- Tianyuan Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinlun Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wei Lu
- GeneX (Zhejiang) Precision Medicine Co., Ltd, Hangzhou 311100, China
| | - Zichen Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wenbo Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jun Zhou
- Department of Breast surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Min Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Beutel AK, Ekizce M, Ettrich TJ, Seufferlein T, Lindenmayer J, Gout J, Kleger A. Organoid-based precision medicine in pancreatic cancer. United European Gastroenterol J 2024. [PMID: 39540683 DOI: 10.1002/ueg2.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks among the leading causes of cancer-related deaths worldwide. Despite advances in precision oncology in other malignancies, treatment of PDAC still largely relies on conventional chemotherapy. Given the dismal prognosis and heterogeneity in PDAC, there is an urgent need for personalized therapeutic strategies to improve treatment response. Organoids, generated from patients' tumor tissue, have emerged as a powerful tool in cancer research. These three-dimensional models faithfully recapitulate the morphological and genetic features of the parental tumor and retain patient-specific heterogeneity. This review summarizes existing precision oncology approaches in PDAC, explores current applications and limitations of organoid cultures in personalized medicine, details preclinical studies correlating in vitro organoid prediction and patient treatment response, and provides an overview of ongoing organoid-based clinical trials.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Menar Ekizce
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Thomas J Ettrich
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Johann Gout
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Core Facility Organoids, Medical Faculty of Ulm University, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
7
|
Lencioni G, Gregori A, Toledo B, Rebelo R, Immordino B, Amrutkar M, Xavier CPR, Kocijančič A, Pandey DP, Perán M, Castaño JP, Walsh N, Giovannetti E. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems. Semin Cancer Biol 2024; 106-107:217-233. [PMID: 39299411 DOI: 10.1016/j.semcancer.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Giulia Lencioni
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Belén Toledo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain
| | - Rita Rebelo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
| | - Anja Kocijančič
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Naomi Walsh
- Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Elisa Giovannetti
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
An SC, Jun HH, Kim KM, Kim I, Choi S, Yeo H, Lee S, An HJ. Auranofin as a Novel Anticancer Drug for Anaplastic Thyroid Cancer. Pharmaceuticals (Basel) 2024; 17:1394. [PMID: 39459033 PMCID: PMC11510098 DOI: 10.3390/ph17101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Anaplastic thyroid cancer (ATC) is an aggressive and rare cancer with a poor prognosis, and traditional therapies have limited efficacy. This study investigates drug repositioning, focusing on auranofin, a gold-based drug originally used for rheumatoid arthritis, as a potential treatment for ATC. Methods: Auranofin was identified from an FDA-approved drug library and tested on two thyroid cancer cell lines, 8505C and FRO. Antitumor efficacy was evaluated through gene and protein expression analysis using Western blot, FACS, and mRNA sequencing. In vivo experiments were conducted using subcutaneous injections in nude mice to confirm the anticancer effects of auranofin. Results: Auranofin induced reactive oxygen species (ROS) production and apoptosis, leading to a dose-dependent reduction in cell viability, G1/S phase cell cycle arrest, and altered expression of regulatory proteins. It also inhibited cancer stem cell activity and suppressed epithelial-mesenchymal transition. mRNA sequencing revealed significant changes in the extracellular matrix-receptor interaction pathway, supported by Western blot results. In vivo xenograft models demonstrated strong antitumor activity. Conclusions: Auranofin shows promise as a repurposed therapeutic agent for ATC, effectively inhibiting cell proliferation, reducing metastasis, and promoting apoptosis. These findings suggest that auranofin could play a key role in future ATC treatment strategies.
Collapse
Affiliation(s)
- Seung-Chan An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
| | - Hak Hoon Jun
- Department of General Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (H.H.J.); (I.K.)
| | - Kyeong Mi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, School of Medicine, CHA University, 100, Ilsan-ro, Ilsandong-gu, Goyang-si 10444, Republic of Korea;
| | - Issac Kim
- Department of General Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (H.H.J.); (I.K.)
| | - Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
| | - Hyunjeong Yeo
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea; (S.-C.A.); (S.C.); (H.Y.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Republic of Korea
| |
Collapse
|
9
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Khorsandi D, Yang JW, Foster S, Khosravi S, Hoseinzadeh N, Zarei F, Lee YB, Runa F, Gangrade A, Voskanian L, Adnan D, Zhu Y, Wang Z, Jucaud V, Dokmeci MR, Shen X, Bishehsari F, Kelber JA, Khademhosseini A, de Barros NR. Patient-Derived Organoids as Therapy Screening Platforms in Cancer Patients. Adv Healthc Mater 2024; 13:e2302331. [PMID: 38359321 PMCID: PMC11324859 DOI: 10.1002/adhm.202302331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Samuel Foster
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Negar Hoseinzadeh
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fahimeh Zarei
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Yun Bin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Farhana Runa
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jonathan A. Kelber
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
- Baylor University, 101 Bagby Ave, Waco, Texas, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
11
|
Geyer SH, Ceci Ginistrelli L, Ilmer T, Schwendt KM, Mendjan S, Weninger WJ. Three-dimensional structural and metric characterisation of cardioids. Front Cell Dev Biol 2024; 12:1426043. [PMID: 39119041 PMCID: PMC11306051 DOI: 10.3389/fcell.2024.1426043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Exact three-dimensional (3D) structural information of developing organoids is key for optimising organoid generation and for studying experimental outcomes in organoid models. We set up a 3D imaging technique and studied complexly arranged native and experimentally challenged cardioids of two stages of remodelling. The imaging technique we employed is S-HREM (Scanning High Resolution Episcopic Microscopy), a variant of HREM, which captures multiple images of subsequently exposed surfaces of resin blocks and automatically combines them to large sized digital volume data of voxels sizes below 1 μm3. We provide precise volumetric information of the examined specimens and their single components and comparisons between stages in terms of volume and micro- and macroanatomic structure. We describe the 3D arrangement and lining of different types of cavities and their changes between day 10 and day 14 and map the various cell types to their precise spatial and structural environment. Exemplarily, we conducted semiautomatic counts of nuclei. In cryo-injured cardioids, we examined the extension and composition of the injured areas. Our results demonstrate the high quality and the great potential of digital volume data produced with S-HREM. It also provides sound metric and structural information, which assists production of native and experimentally challenged left ventricle cardioids and interpretation of their structural remodelling.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Karoline M. Schwendt
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Lei X, Gui L, Liu H. A Convexity-Preserving Level-Set Method for the Segmentation of Tumor Organoids. Bioengineering (Basel) 2024; 11:601. [PMID: 38927837 PMCID: PMC11200484 DOI: 10.3390/bioengineering11060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor organoid cultures play a crucial role in clinical practice, particularly in guiding medication by accurately determining the morphology and size of the organoids. However, segmenting individual tumor organoids is challenging due to their inhomogeneous internal intensity and overlapping structures. This paper proposes a convexity-preserving level-set segmentation 4 model based on the characteristics of tumor organoid images to segment individual tumor organoids precisely. Considering the predominant spherical shape exhibited by organoid growth, we propose a level-set model that includes a data-driven term, a curvature term, and a regularization term. The data-driven term pulls the contour to the vicinity of the boundary; the curvature term ensures the maintenance of convexity in the targeted segmentation, and the regularization term controls the smoothness and propagation of the contour. The proposed model aids in overcoming interference from factors such as overlap and noise, enabling the evolving curve to converge to the actual boundary of the target accurately. Furthermore, we propose a selectable and targeted initialization method that guarantees precise segmentation of specific regions of interest. Experiments on 51 pancreatic ductal adenocarcinoma organoid images show that our model achieved excellent segmentation results. The average Dice value and computation time are 98.81±0.48% and 20.67 s. Compared with the C-V and CPLSE models, it is more accurate and takes less time.
Collapse
Affiliation(s)
- Xiaoyi Lei
- School of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Luying Gui
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hairong Liu
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
14
|
Lv J, Du X, Wang M, Su J, Wei Y, Xu C. Construction of tumor organoids and their application to cancer research and therapy. Theranostics 2024; 14:1101-1125. [PMID: 38250041 PMCID: PMC10797287 DOI: 10.7150/thno.91362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer remains a severe public health burden worldwide. One of the challenges hampering effective cancer therapy is that the existing cancer models hardly recapitulate the tumor microenvironment of human patients. Over the past decade, tumor organoids have emerged as an in vitro 3D tumor model to mimic the pathophysiological characteristics of parental tumors. Various techniques have been developed to construct tumor organoids, such as matrix-based methods, hanging drop, spinner or rotating flask, nonadhesive surface, organ-on-a-chip, 3D bioprinting, and genetic engineering. This review elaborated on cell components and fabrication methods for establishing tumor organoid models. Furthermore, we discussed the application of tumor organoids to cancer modeling, basic cancer research, and anticancer therapy. Finally, we discussed current limitations and future directions in employing tumor organoids for more extensive applications.
Collapse
Affiliation(s)
- Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Xuan Du
- Biopharma Industry Promotion Center Shanghai, Shanghai 201203, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Song T, Kong B, Liu R, Luo Y, Wang Y, Zhao Y. Bioengineering Approaches for the Pancreatic Tumor Organoids Research and Application. Adv Healthc Mater 2024; 13:e2300984. [PMID: 37694339 DOI: 10.1002/adhm.202300984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
16
|
Song F, Chen Z. Preclinical liver cancer models in the context of immunoprecision therapy: Application and perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:989-1000. [DOI: 10.11569/wcjd.v31.i24.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality globally, continues to pose challenges in achieving optimal treatment outcomes. The complex nature of HCC, characterized by high spatiotemporal heterogeneity, invasive potential, and drug resistance, presents difficulties in its research. Consequently, an in-depth understanding and accurate simulation of the immune microenvironment of HCC are of paramount importance. This article comprehensively explores the application of preclinical models in HCC research, encompassing cell line models, patient-derived xenograft mouse models, genetically engineered mouse models, chemically induced models, humanized mouse models, organoid models, and microfluidic chip-based patient derived organotypic spheroids models. Each model possesses its distinct advantages and limitations in replicating the biological behavior and immune microenvironment of HCC. By scrutinizing the limitations of existing models, this paper aims to propel the development of next-generation cancer models, enabling more precise emulation of HCC characteristics. This will, in turn, facilitate the optimization of treatment strategies, drug efficacy prediction, and safety assessments, ultimately contributing to the realization of personalized and precision therapies. Additionally, this article also provides insights into future trends and challenges in the fields of tumor biology and preclinical research.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
17
|
Abstract
This commentary highlights the key recent advances made in the field of pancreatic cancer. Although there has yet to be a major breakthrough in clinical care for the majority of patients, significant strides have been made in understanding the complex biology of this malignancy and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Emilie A.K. Warren
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Gregory B. Lesinski
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shishir K. Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
18
|
Huffman BM, Feng H, Parmar K, Wang J, Kapner KS, Kochupurakkal B, Martignetti DB, Sadatrezaei G, Abrams TA, Biller LH, Giannakis M, Ng K, Patel AK, Perez KJ, Singh H, Rubinson DA, Schlechter BL, Andrews E, Hannigan AM, Dunwell S, Getchell Z, Raghavan S, Wolpin BM, Fortier C, D’Andrea AD, Aguirre AJ, Shapiro GI, Cleary JM. A Phase I Expansion Cohort Study Evaluating the Safety and Efficacy of the CHK1 Inhibitor LY2880070 with Low-dose Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. Clin Cancer Res 2023; 29:5047-5056. [PMID: 37819936 PMCID: PMC10842136 DOI: 10.1158/1078-0432.ccr-23-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.
Collapse
Affiliation(s)
- Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Hanrong Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Anuj K. Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Alison M. Hannigan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Stanley Dunwell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Zoe Getchell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | | | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
19
|
Kang CC, Lee TY, Lim WF, Yeo WWY. Opportunities and challenges of 5G network technology toward precision medicine. Clin Transl Sci 2023; 16:2078-2094. [PMID: 37702288 PMCID: PMC10651640 DOI: 10.1111/cts.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Moving away from traditional "one-size-fits-all" treatment to precision-based medicine has tremendously improved disease prognosis, accuracy of diagnosis, disease progression prediction, and targeted-treatment. The current cutting-edge of 5G network technology is enabling a growing trend in precision medicine to extend its utility and value to the smart healthcare system. The 5G network technology will bring together big data, artificial intelligence, and machine learning to provide essential levels of connectivity to enable a new health ecosystem toward precision medicine. In the 5G-enabled health ecosystem, its applications involve predictive and preventative measurements which enable advances in patient personalization. This review aims to discuss the opportunities, challenges, and prospects posed to 5G network technology in moving forward to deliver personalized treatments and patient-centric care via a precision medicine approach.
Collapse
Affiliation(s)
- Chia Chao Kang
- School of Electrical Engineering and Artificial IntelligenceXiamen University MalaysiaSepangSelangorMalaysia
| | - Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST)Perdana UniversityKuala LumpurMalaysia
| | - Wai Feng Lim
- Sunway Medical CentreSubang JayaSelangor Darul EhsanMalaysia
| | - Wendy Wai Yeng Yeo
- School of PharmacyMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
20
|
Van Hemelryk A, Erkens-Schulze S, Lim L, de Ridder CMA, Stuurman DC, Jenster GW, van Royen ME, van Weerden WM. Viability Analysis and High-Content Live-Cell Imaging for Drug Testing in Prostate Cancer Xenograft-Derived Organoids. Cells 2023; 12:1377. [PMID: 37408211 DOI: 10.3390/cells12101377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Tumor organoids have been pushed forward as advanced model systems for in vitro oncology drug testing, with the eventual goal to direct personalized cancer treatments. However, drug testing efforts suffer from a large variation in experimental conditions for organoid culturing and organoid treatment. Moreover, most drug tests are restricted to whole-well viability as the sole read-out, thereby losing important information about key biological aspects that might be impacted due to the use of administered drugs. These bulk read-outs also discard potential inter-organoid heterogeneity in drug responses. To tackle these issues, we developed a systematic approach for processing organoids from prostate cancer (PCa) patient-derived xenografts (PDXs) for viability-based drug testing and identified essential conditions and quality checks for consistent results. In addition, we generated an imaging-based drug testing procedure using high-content fluorescence microscopy in living PCa organoids to detect various modalities of cell death. Individual organoids and cell nuclei in organoids were segmented and quantified using a dye combination of Hoechst 33342, propidium iodide and Caspase 3/7 Green, allowing the identification of cytostatic and cytotoxic treatment effects. Our procedures provide important insights into the mechanistic actions of tested drugs. Moreover, these methods can be adapted for tumor organoids originating from other cancer types to increase organoid-based drug test validity, and ultimately, accelerate clinical implementation.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lifani Lim
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Debra C Stuurman
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
21
|
Melzer MK, Resheq Y, Navaee F, Kleger A. The application of pancreatic cancer organoids for novel drug discovery. Expert Opin Drug Discov 2023; 18:429-444. [PMID: 36945198 DOI: 10.1080/17460441.2023.2194627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma presents with a dismal prognosis. Personalized therapy is urgently warranted to overcome the treatment limitations of the "one-size-fits-all" scheme. Organoids have emerged as fundamental novel tools to study tumor biology and heterogeneity, hence overcoming limitations of other model systems by better-reflecting tissue heterogeneity and recapitulating in-vivo processes. Besides their crucial role in basic research, they have evolved as tools for translational drug discovery and patient stratification. AREAS COVERED This review highlights the achievements of an organoid-based drug investigation and discovery. The authors present an overview of studies using organoids for drug testing. Further, they pinpoint studies correlating the in vitro prediction of organoids to the actual patient`s response. Furthermore, the authors describe novel model systems and take a thorough overlook of microfluidic chips, synthetic matrices, multicellular systems, bioprinting, and stem cell-derived pancreatic organoid systems. EXPERT OPINION Organoid systems promise great potential for future clinical applications. Indeed, they may be implemented into informed decision-making for guiding therapies. However, validation by randomized trials is mandatory. Additionally, organoids in combination with other cellular compartments may be exploited for drug discovery by studying niche-tumor interaction. Yet, several precautions must be kept in mind, such as standardization and reproducibility.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Yazid Resheq
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Fatemeh Navaee
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
- Core Facility Organoids, Ulm University, Ulm, Germany
| |
Collapse
|
22
|
Bao D, Wang L, Zhou X, Yang S, He K, Xu M. Automated detection and growth tracking of 3D bio-printed organoid clusters using optical coherence tomography with deep convolutional neural networks. Front Bioeng Biotechnol 2023; 11:1133090. [PMID: 37122853 PMCID: PMC10130530 DOI: 10.3389/fbioe.2023.1133090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Organoids are advancing the development of accurate prediction of drug efficacy and toxicity in vitro. These advancements are attributed to the ability of organoids to recapitulate key structural and functional features of organs and parent tumor. Specifically, organoids are self-organized assembly with a multi-scale structure of 30-800 μm, which exacerbates the difficulty of non-destructive three-dimensional (3D) imaging, tracking and classification analysis for organoid clusters by traditional microscopy techniques. Here, we devise a 3D imaging, segmentation and analysis method based on Optical coherence tomography (OCT) technology and deep convolutional neural networks (CNNs) for printed organoid clusters (Organoid Printing and optical coherence tomography-based analysis, OPO). The results demonstrate that the organoid scale influences the segmentation effect of the neural network. The multi-scale information-guided optimized EGO-Net we designed achieves the best results, especially showing better recognition workout for the biologically significant organoid with diameter ≥50 μm than other neural networks. Moreover, OPO achieves to reconstruct the multiscale structure of organoid clusters within printed microbeads and calibrate the printing errors by segmenting the printed microbeads edges. Overall, the classification, tracking and quantitative analysis based on image reveal that the growth process of organoid undergoes morphological changes such as volume growth, cavity creation and fusion, and quantitative calculation of the volume demonstrates that the growth rate of organoid is associated with the initial scale. The new method we proposed enable the study of growth, structural evolution and heterogeneity for the organoid cluster, which is valuable for drug screening and tumor drug sensitivity detection based on organoids.
Collapse
Affiliation(s)
- Di Bao
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Ling Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou, China
- *Correspondence: Ling Wang, ; Mingen Xu,
| | - Xiaofei Zhou
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou, China
| | - Shanshan Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou, China
| | - Kangxin He
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou, China
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou, China
- *Correspondence: Ling Wang, ; Mingen Xu,
| |
Collapse
|