1
|
Toloza MJ, Lincango M, Camacho MF, Ledesma MM, Enrico A, Moiraghi B, Tosin F, Mariano R, Pérez M, Aranguren PN, Riva ME, Larripa IB, Belli CB. Immune checkpoints PD1/PDL1, TIM3/GAL9 and key immune mediators landscape reveal differential expression dynamics on imatinib response in chronic myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-06074-3. [PMID: 39505795 DOI: 10.1007/s00277-024-06074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
The immune system of chronic myeloid leukemia (CML) patients is severely impaired, hampering anti-tumor responses, and maximal immune recovery occurs after achieving deep molecular responses to tyrosine kinase inhibitors. This study aimed to discern the expression patterns of NCR2, IL2, IL4, EOMES, FOXP3, GATA3, RORGT, PD1/PDL1 and TIM3/GAL9, expanding our previous dataset up to 19 key immune mediators, during the initial year on imatinib. Gene expression dynamics were evaluated in 171 peripheral blood samples from 89 CML patients, including 43 longitudinally monitored individuals, and 52 healthy donors. Univariate and unsupervised analyses confirmed diminished expression of most studied immune mediators, except for TNF, ARG1 and IL4, differentiating between baseline and 3-month samples. Most of the studied mediators normalized along treatment, with a transient increase of TNF and IL6 levels at 3-months, especially in optimal responders (BCR::ABL1 < 0.1%). Univariate and multivariate analyses showed heightened ARG1 levels and a transition from PD1/PDL1 dominance at 3 months to TIM3/GAL9 at 12 months in non-optimal responders (BCR::ABL1 ≥ 0.1%). Our longitudinal design offers a deeper exploration of immune gene expression dynamics in CML patients on imatinib, highlighting its potential implications for therapy outcomes.
Collapse
Affiliation(s)
- María Jazmín Toloza
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/ Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad Autónoma de Buenos Aires, C1425AUM, Argentina
| | - Marco Lincango
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/ Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad Autónoma de Buenos Aires, C1425AUM, Argentina
| | - María Fernanda Camacho
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/ Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad Autónoma de Buenos Aires, C1425AUM, Argentina
| | - Martin Manuel Ledesma
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/ Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad Autónoma de Buenos Aires, C1425AUM, Argentina
- Hospital de Alta Complejidad en Red El Cruce "Dr. Néstor C. Kirchner", Florencio Varela, Buenos Aires, Argentina
| | - Alicia Enrico
- Servicio de Hematología, Hospital Italiano de La Plata, La Plata, Buenos Aires, Argentina
| | - Beatriz Moiraghi
- Hospital General de Agudos José María Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernanda Tosin
- Hospital de Alta Complejidad en Red El Cruce "Dr. Néstor C. Kirchner", Florencio Varela, Buenos Aires, Argentina
| | - Romina Mariano
- Servicio de Hematología, Hospital "San Martín de Paraná", Paraná, Entre Rios, Argentina
| | - Mariel Pérez
- Servicio de Hematología, Hospital Interzonal General de Agudos "Prof. Dr. Rodolfo Rossi", La Plata, Buenos Aires, Argentina
| | | | - María Elisa Riva
- Servicio de Hematología, Hospital Interzonal General de Agudos "San Martín", La Plata, Argentina
| | - Irene B Larripa
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/ Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad Autónoma de Buenos Aires, C1425AUM, Argentina
| | - Carolina B Belli
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/ Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad Autónoma de Buenos Aires, C1425AUM, Argentina.
| |
Collapse
|
2
|
Li H, Liu J, Ji X. Interferon-alpha 1 expression indicates the disease activity and response of patients with ankylosing spondylitis to anti-TNF-α treatment. Mod Rheumatol 2024; 34:592-598. [PMID: 37022149 DOI: 10.1093/mr/road039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVES This study aimed to investigate whether interferon-alpha 1 (IFNA1) is predictive of Ankylosing spondylitis (AS) progression and treatment response to Tumour necrosis factor inhibitors (TNFis). METHODS Data of 50 AS patients receiving TNFi for 24 weeks were retrospectively analysed. AS patients who reached the Assessment of Spondyloarthritis International Society 40 response at the W24 were classified as responders to TNFi treatment; otherwise, they were classified as nonresponders. Human fibroblast-like synoviocytes (HFLS) isolated from AS patients (AS-HFLS) were used for in vitro validation. RESULTS When the IFNA1 expression level was used to diagnose AS patients, an area under the curve of 0.895 was yielded (P < .001). Pearson correlation analysis showed negative correlations between IFNA1 expression, C-reactive protein (CRP) level, Bath AS Disease Activity Index scores, AS Disease Activity Score with CRP, and the production of inflammatory cytokines. An increased IFNA1 expression level was found to be associated with a better treatment response to TNFi. IFNA1 overexpression could protect HFLS against inflammatory response in the setting of AS. CONCLUSIONS Blood IFNA1 deficiency is correlated with inflammatory cytokine production and disease activity and is indicative of unsatisfied response to TNFi treatment in AS patients.
Collapse
Affiliation(s)
- Haibo Li
- Department of Rheumatology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, China
| | - Jingjing Liu
- Department of Rheumatology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xueping Ji
- Department of Nephrology, Liaocheng Third People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
3
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024:AD.2024.0219. [PMID: 38502582 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
|
4
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Huuhtanen J, Adnan-Awad S, Theodoropoulos J, Forstén S, Warfvinge R, Dufva O, Bouhlal J, Dhapola P, Duàn H, Laajala E, Kasanen T, Klievink J, Ilander M, Jaatinen T, Olsson-Strömberg U, Hjorth-Hansen H, Burchert A, Karlsson G, Kreutzman A, Lähdesmäki H, Mustjoki S. Single-cell analysis of immune recognition in chronic myeloid leukemia patients following tyrosine kinase inhibitor discontinuation. Leukemia 2024; 38:109-125. [PMID: 37919606 PMCID: PMC10776410 DOI: 10.1038/s41375-023-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Immunological control of residual leukemia cells is thought to occur in patients with chronic myeloid leukemia (CML) that maintain treatment-free remission (TFR) following tyrosine kinase inhibitor (TKI) discontinuation. To study this, we analyzed 55 single-cell RNA and T cell receptor (TCR) sequenced samples (scRNA+TCRαβ-seq) from patients with CML (n = 13, N = 25), other cancers (n = 28), and healthy (n = 7). The high number and active phenotype of natural killer (NK) cells in CML separated them from healthy and other cancers. Most NK cells in CML belonged to the active CD56dim cluster with high expression of GZMA/B, PRF1, CCL3/4, and IFNG, with interactions with leukemic cells via inhibitory LGALS9-TIM3 and PVR-TIGIT interactions. Accordingly, upregulation of LGALS9 was observed in CML target cells and TIM3 in NK cells when co-cultured together. Additionally, we created a classifier to identify TCRs targeting leukemia-associated antigen PR1 and quantified anti-PR1 T cells in 90 CML and 786 healthy TCRβ-sequenced samples. Anti-PR1 T cells were more prevalent in CML, enriched in bone marrow samples, and enriched in the mature, cytotoxic CD8 + TEMRA cluster, especially in a patient maintaining TFR. Our results highlight the role of NK cells and anti-PR1 T cells in anti-leukemic immune responses in CML.
Collapse
Affiliation(s)
- Jani Huuhtanen
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- Department of Computer Science, Aalto University, Espoo, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Shady Adnan-Awad
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Jason Theodoropoulos
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Sofia Forstén
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olli Dufva
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jonas Bouhlal
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hanna Duàn
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Essi Laajala
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Kasanen
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jay Klievink
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mette Ilander
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Taina Jaatinen
- Histocompatibility Testing Laboratory, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University and Hematology Section, Uppsala University Hospital, Uppsala, Sweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St. Olavs Hospital, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, and University Medical Center Giessen and Marburg, Marburg, Germany
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Kreutzman
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Satu Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
6
|
Zhang W, Yu B, Meng Q, Pu L, Liu B, Li F. Novaferon gene modification promotes NK92 cell anti-tumor activity. Int Immunopharmacol 2023; 122:110613. [PMID: 37421776 DOI: 10.1016/j.intimp.2023.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
With significant developments in chimeric antigen receptor T-cell therapy, adoptive immunotherapy has unlocked new levels of treatment for malignancies. Natural killer (NK) cells are promising alternative immune effector cells for this strategy. Multiple anti-tumor therapies are largely dependent on type I interferon (IFN) signaling. Type I IFNs enhance NK cell cytotoxicity. Novaferon (nova) is an unnatural, novel IFN-like protein produced by gene shuffling of IFN-α with strong biological activity. To augment the antitumor activity of NK cells, we generated NK92-nova cells that stably express nova. We found that NK92-nova cells mediated enhanced pan-cancer antitumor activity compared to NK92-vec cells. The increased antitumor activity was associated with the enhanced secretion of cytokines, such as IFN-γ, perforin, and granzyme B. Meanwhile, most of the activating receptors were upregulated in the NK92-nova cells. After co-culture with NK92-nova cells, the expression of NKG2D ligands on the HepG2 cells increased, resulting in an enhanced susceptibility of HepG2 cells to NK92 cell-mediated cytolysis. NK92-nova cells significantly inhibited HepG2 tumor growth in a xenograft model without systemic toxicity. Therefore, NK92-nova cells are a novel and safe strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wanze Zhang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, Jilin, PR China
| | - Bingxin Yu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130032, Jilin, PR China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, Jilin, PR China
| | - Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, Jilin, PR China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130021, Jilin, PR China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun 130021, Jilin, PR China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun 130021, Jilin, PR China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830000, Xinjiang, PR China.
| |
Collapse
|
7
|
Irani YD, Hughes A, Kok CH, Clarson J, Yeung DT, Ross DM, Branford S, Hughes TP, Yong ASM. Immune modulation in chronic myeloid leukaemia patients treated with nilotinib and interferon-alpha. Br J Haematol 2023; 202:1127-1136. [PMID: 37482935 DOI: 10.1111/bjh.18984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The addition of interferon to tyrosine kinase inhibitors (TKIs), to improve deep molecular response (DMR) and potentially treatment-free remission (TFR) rates in chronic-phase chronic myeloid leukaemia (CP-CML) patients is under active investigation. However, the immunobiology of this combination is poorly understood. We performed a comprehensive longitudinal assessment of immunological changes in CML patients treated with nilotinib and interferon-alpha (IFN-α) within the ALLG CML11 trial (n = 12) or nilotinib alone (n = 17). We demonstrate that nilotinib+IFN transiently reduced absolute counts of natural killer (NK) cells, compared with nilotinib alone. Furthermore, CD16+ -cytolytic and CD57+ CD62L- -mature NK cells were transiently reduced during IFN therapy, without affecting NK-cell function. IFN transiently increased cytotoxic T-lymphocyte (CTL) responses to leukaemia-associated antigens (LAAs) proteinase-3, BMI-1 and PRAME; and had no effect on regulatory T cells, or myeloid-derived suppressor cells. Patients on nilotinib+IFN who achieved MR4.5 by 12 months had a significantly higher proportion of NK cells expressing NKp46, NKp30 and NKG2D compared with patients not achieving this milestone. This difference was not observed in the nilotinib-alone group. The addition of IFN to nilotinib drives an increase in NK-activating receptors, CTLs responding to LAAs and results in transient immune modulation, which may influence earlier DMR, and its effect on long-term outcomes warrants further investigation.
Collapse
Affiliation(s)
- Yazad D Irani
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
| | - Amy Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chung H Kok
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
| | - Jade Clarson
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - David T Yeung
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
| | - David M Ross
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, South Australia, Australia
| | - Susan Branford
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy P Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
| | - Agnes S M Yong
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- The University of Adelaide, School of Medicine, Adelaide, South Australia, Australia
- The Australasian Leukaemia and Lymphoma Group, Melbourne, Victoria, Australia
- Department of Haematology, Royal Perth Hospital, Perth, Western Australia, Australia
- The University of Western Australia Medical School, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Ai LL, Lai AL, Qin XH, Liu BC, Li J, Wang JX, Zhu P. [Application and clinical significance of intercellular proximity labeling technique in chronic myelogenous leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:543-549. [PMID: 37749032 PMCID: PMC10509616 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 09/27/2023]
Abstract
Objective: This study aimed to explore the application of interaction-dependent fucosyl-biotinylation (FucoID), a chemical biology-based proximity labeling technique, in capturing tumor antigen-specific T cells and its clinical value in chronic myelogenous leukemia (CML) . Methods: Flow cytometry and fluorescence microscopy were employed to evaluate the experimental parameters for FucoID in CML. Peripheral blood samples were obtained from 14 newly diagnosed CML patients in the chronic phase. These samples underwent flow cytometry-based sorting and were subsequently labeled with FucoID to facilitate the isolation of tumor cells and T cells, followed by the immunophenotypic identification of tumor antigen-specific T cells. Finally, the diagnostic and therapeutic potential of FucoID in CML was assessed. Results: Initially, the experimental parameters for FucoID in CML were established. The proportion of CD3(+) T cells in patients was (8.96±6.47) %, exhibiting a marked decrease compared with that in healthy individuals at (38.89±22.62) %. The proportion of tumor-specific antigen-reactive T cells was (3.34±4.49) %, which demonstrated interpatient variability. In addition, the proportion of tumor-specific antigen-active T cells in CD4(+) T cells was (3.95±1.72) %, which was generally lower than the proportion in CD8(+) T cells at (5.68±2.18) %. Compared with those in tumor-specific antigen-nonreactive T cells, CCR7(-)CD45RA(-) effector memory T cells and CCR7(-)CD45RA(+) effector T cells were highly enriched in tumor-specific antigen-reactive T cells. Moreover, the intensity of tumor immune reactivity in patients exhibited a significant correlation with white blood cell count (WBC) and hemoglobin (HGB) levels in peripheral blood, while no such correlation was observed with other clinical baseline characteristics. Conclusion: The combination of FucoID and flow cytometry enables the rapid identification and isolation of tumor antigen-specific T cells in CML. The successful application of this method in CML and the implications of our findings suggest its potential clinical value in the field of hematologic malignancies.
Collapse
Affiliation(s)
- L L Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - A L Lai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - X H Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - B C Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - J Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - J X Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - P Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|