1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Underwood AP, Gupta M, Wu BR, Eltahla AA, Boo I, Wang JJ, Agapiou D, Abayasingam A, Reynaldi A, Keoshkerian E, Zhao Y, Brasher N, Walker MR, Bukh J, Maher L, Gordon T, Davenport MP, Luciani F, Drummer HE, Lloyd AR, Bull RA. B-cell characteristics define HCV reinfection outcome. J Hepatol 2024; 81:415-428. [PMID: 38604387 DOI: 10.1016/j.jhep.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND & AIMS In individuals highly exposed to HCV, reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection. METHODS Broad neutralising antibodies (nAbs) and Envelope 2 (E2)-specific memory B cell (MBC) responses were examined longitudinally in 15 individuals with varied reinfection outcomes. RESULTS Broad nAb responses were associated with MBC recall, but not with clearance of reinfection. Strong evidence of antigen imprinting was found, and the B-cell receptor repertoire showed a high level of clonality with ongoing somatic hypermutation of many clones over subsequent reinfection events. Single-cell transcriptomic analyses showed that cleared reinfections featured an activated transcriptomic profile in HCV-specific B cells that rapidly expanded upon reinfection. CONCLUSIONS MBC quality, but not necessarily breadth of nAb responses, is important for protection against antigenically diverse variants, which is encouraging for HCV vaccine development. IMPACT AND IMPLICATIONS HCV continues to have a major health burden globally. Limitations in the health infrastructure for diagnosis and treatment, as well as high rates of reinfection, indicate that a vaccine that can protect against chronic HCV infection will greatly complement current efforts to eliminate HCV-related disease. With alternative approaches to testing vaccines, such as controlled human inoculation trials under consideration, we desperately need to identify the correlates of immune protection. In this study, in a small but rare cohort of high-risk injecting drug users who were reinfected multiple times, breadth of neutralisation was not associated with ultimate clearance of the reinfection event. Alternatively, characteristics of the HCV-specific B-cell response associated with B-cell proliferation were. This study indicates that humoral responses are important for protection and suggests that for genetically very diverse viruses, such as HCV, it may be beneficial to look beyond just antibodies as correlates of protection.
Collapse
Affiliation(s)
- Alexander P Underwood
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Money Gupta
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Bing-Ru Wu
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Auda A Eltahla
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Irene Boo
- Burnet Institute, Melbourne, VIC, Australia
| | - Jing Jing Wang
- Department of Immunology Flinders Medical Centre and Flinders University, SA Pathology Bedford Park, SA, Australia
| | - David Agapiou
- The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Arunasingam Abayasingam
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Arnold Reynaldi
- The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | | | - Yanran Zhao
- The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Nicholas Brasher
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Melanie R Walker
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Maher
- The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Tom Gordon
- Department of Immunology Flinders Medical Centre and Flinders University, SA Pathology Bedford Park, SA, Australia
| | - Miles P Davenport
- The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Fabio Luciani
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Heidi E Drummer
- Burnet Institute, Melbourne, VIC, Australia; Department of Microbiology, Monash University, Clayton, VIC, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew R Lloyd
- The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Rowena A Bull
- School of Biomedical Science, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia; The Kirby Institute, Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Eisa M, Gomez-Escobar E, Bédard N, Abdeltawab NF, Flores N, Mazouz S, Fieffé-Bédard A, Sakayan P, Gridley J, Abdel-Hakeem MS, Bruneau J, Grakoui A, Shoukry NH. Coordinated expansion of memory T follicular helper and B cells mediates spontaneous clearance of HCV reinfection. Front Immunol 2024; 15:1403769. [PMID: 38947319 PMCID: PMC11211980 DOI: 10.3389/fimmu.2024.1403769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Alizée Fieffé-Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Patrick Sakayan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - John Gridley
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine familiale et département d’urgence, Université de Montréal, Montréal, QC, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Pierce BG, Felbinger N, Metcalf M, Toth EA, Ofek G, Fuerst TR. Hepatitis C Virus E1E2 Structure, Diversity, and Implications for Vaccine Development. Viruses 2024; 16:803. [PMID: 38793684 PMCID: PMC11125608 DOI: 10.3390/v16050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.
Collapse
Affiliation(s)
- Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathaniel Felbinger
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew Metcalf
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
| | - Gilad Ofek
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Frumento N, Sinnis-Bourozikas A, Paul HT, Stavrakis G, Zahid MN, Wang S, Ray SC, Flyak AI, Shaw GM, Cox AL, Bailey JR. Neutralizing antibodies evolve to exploit vulnerable sites in the HCV envelope glycoprotein E2 and mediate spontaneous clearance of infection. Immunity 2024; 57:40-51.e5. [PMID: 38171362 PMCID: PMC10874496 DOI: 10.1016/j.immuni.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.
Collapse
Affiliation(s)
- Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ariadne Sinnis-Bourozikas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry T Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Stavrakis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad N Zahid
- University of Bahrain, Department of Biology, College of Science, Sakhir Campus, Sakhir, Bahrain
| | - Shuyi Wang
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew I Flyak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - George M Shaw
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Abstract
Recent advances aid the development of vaccines to prevent chronic liver diseases.
Collapse
Affiliation(s)
- Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- CO-HEP, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Skinner NE, Ogega CO, Frumento N, Clark KE, Paul H, Yegnasubramanian S, Schuebel K, Meyers J, Gupta A, Wheelan S, Cox AL, Crowe JE, Ray SC, Bailey JR. Convergent antibody responses are associated with broad neutralization of hepatitis C virus. Front Immunol 2023; 14:1135841. [PMID: 37033983 PMCID: PMC10080129 DOI: 10.3389/fimmu.2023.1135841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Early development of broadly neutralizing antibodies (bNAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein E2 is associated with spontaneous clearance of infection, so induction of bNAbs is a major goal of HCV vaccine development. However, the molecular antibody features important for broad neutralization are not known. Methods To identify B cell repertoire features associated with broad neutralization, we performed RNA sequencing of the B cell receptors (BCRs) of HCV E2-reactive B cells of HCV-infected individuals with either high or low plasma neutralizing breadth. We then produced a monoclonal antibody (mAb) expressed by pairing the most abundant heavy and light chains from public clonotypes identified among clearance, high neutralization subjects. Results We found distinctive BCR features associated with broad neutralization of HCV, including long heavy chain complementarity determining region 3 (CDRH3) regions, specific VH gene usage, increased frequencies of somatic hypermutation, and particular VH gene mutations. Most intriguing, we identified many E2-reactive public BCR clonotypes (heavy and light chain clones with the same V and J-genes and identical CDR3 sequences) present only in subjects who produced highly neutralizing plasma. The majority of these public clonotypes were shared by two subjects who cleared infection. A mAb expressing the most abundant public heavy and light chains from these clearance, high neutralization subjects had features enriched in high neutralization clonotypes, such as increased somatic hypermutation frequency and usage of IGHV1-69, and was cross-neutralizing. Discussion Together, these results demonstrate distinct BCR repertoires associated with high plasma neutralizing capacity. Further characterization of the molecular features and function of these antibodies can inform HCV vaccine development.
Collapse
Affiliation(s)
- Nicole E. Skinner
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Clinton O. Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaitlyn E. Clark
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harry Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Kornel Schuebel
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer Meyers
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stuart C. Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Justin R. Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Nishio A, Hasan S, Park H, Park N, Salas JH, Salinas E, Kardava L, Juneau P, Frumento N, Massaccesi G, Moir S, Bailey JR, Grakoui A, Ghany MG, Rehermann B. Serum neutralization activity declines but memory B cells persist after cure of chronic hepatitis C. Nat Commun 2022; 13:5446. [PMID: 36114169 PMCID: PMC9481596 DOI: 10.1038/s41467-022-33035-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The increasing incidence of hepatitis C virus (HCV) infections underscores the need for an effective vaccine. Successful vaccines to other viruses generally depend on a long-lasting humoral response. However, data on the half-life of HCV-specific responses are lacking. Here we study archived sera and mononuclear cells that were prospectively collected up to 18 years after cure of chronic HCV infection to determine the role of HCV antigen in maintaining neutralizing antibody and B cell responses. We show that HCV-neutralizing activity decreases rapidly in potency and breadth after curative treatment. In contrast, HCV-specific memory B cells persist, and display a restored resting phenotype, normalized chemokine receptor expression and preserved ability to differentiate into antibody-secreting cells. The short half-life of HCV-neutralizing activity is consistent with a lack of long-lived plasma cells. The persistence of HCV-specific memory B cells and the reduced inflammation after cure provide an opportunity for vaccination to induce protective immunity against re-infection.
Collapse
Affiliation(s)
- Akira Nishio
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Sharika Hasan
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Heiyoung Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Nana Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Jordan H Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eduardo Salinas
- Division of Infectious Diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Paul Juneau
- Division of Data Services, NIH Library, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
- Contractor- Zimmerman Associates, Inc, Fairfax, VA, USA
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arash Grakoui
- Division of Infectious Diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Marc G Ghany
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Sreekumar BK, Taha TY, Ott M. Taking cues from convalescence to improve vaccines against hepatitis C virus. J Clin Invest 2022; 132:161819. [PMID: 35912856 PMCID: PMC9337820 DOI: 10.1172/jci161819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a worldwide public health issue despite direct-acting antivirals. A substantial proportion of infected individuals (15%–45%) spontaneously clear repeated HCV infections with genetically different viruses by generating broadly neutralizing antibodies (bNAbs). However, translating this response into an effective vaccine strategy has been unsuccessful. In this issue of the JCI, Frumento and colleagues report on their study of bNAb evolution longitudinally in convalescent individuals with repeated infections. Using pseudotyped viruses, well-characterized monoclonal antibodies, and complex modeling, the authors show that multiple exposures to antigenically related, antibody-sensitive viral envelope proteins induced potent bNAbs. This work provides valuable insight into the best strategies for developing HCV vaccines in the future that may successfully reproduce the immunity induced during natural exposures.
Collapse
|