1
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Quinton LJ, Mizgerd JP, Hilliard KL, Jones MR, Kwon CY, Allen E. Leukemia inhibitory factor signaling is required for lung protection during pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 188:6300-8. [PMID: 22581855 DOI: 10.4049/jimmunol.1200256] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lung infections represent a tremendous disease burden and a leading cause of acute lung injury. STAT3 signaling is essential for controlling lung injury during pneumonia. We previously identified LIF as a prominent STAT3-activating cytokine expressed in the airspaces of pneumonic lungs, but its physiological significance in this setting has never been explored. To do so, Escherichia coli was intratracheally instilled into C57BL/6 mice in the presence of neutralizing anti-LIF IgG or control IgG. Anti-LIF completely eliminated lung LIF detection and markedly exacerbated lung injury compared with control mice as evidenced by airspace albumin content, lung liquid accumulation, and histological analysis. Although lung bacteriology was equivalent between groups, bacteremia was more prevalent with anti-LIF treatment, suggestive of compromised barrier function rather than impaired antibacterial defense as the cause of dissemination. Inflammatory cytokine expression was also exaggerated in anti-LIF-treated lungs, albeit after injury had ensued. Interestingly, alveolar neutrophil recruitment was modestly but significantly reduced compared with control mice despite elevated cytokine levels, indicating that inflammatory injury was not a consequence of excessive neutrophilic alveolitis. Lastly, the lung transcriptome was dramatically remodeled during pneumonia, but far more so following LIF neutralization, with gene changes implicating cell death and epithelial homeostasis among other processes relevant to tissue injury. From these findings, we conclude that endogenous LIF facilitates tissue protection during pneumonia. The LIF-STAT3 axis is identified in this study as a critical determinant of lung injury with clinical implications for pneumonia patients.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
3
|
Hoegl S, Bachmann M, Scheiermann P, Goren I, Hofstetter C, Pfeilschifter J, Zwissler B, Muhl H. Protective properties of inhaled IL-22 in a model of ventilator-induced lung injury. Am J Respir Cell Mol Biol 2011; 44:369-76. [PMID: 20463292 DOI: 10.1165/rcmb.2009-0440oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
High-pressure ventilation induces barotrauma and pulmonary inflammation, thus leading to ventilator-induced lung injury (VILI). IL-22 has both immunoregulatory and tissue-protective properties. Functional IL-22 receptor expression is restricted to nonleukocytic cells, such as alveolar epithelial cells. When applied via inhalation, IL-22 reaches the pulmonary system directly and in high concentrations, and may protect alveolar epithelial cells against cellular stress and biotrauma associated with VILI. In A549 lung epithelial cells, IL-22 was able to induce rapid signal transducer and activator of transcription (STAT)-3 phosphorylation/activation, and hereon mediated stable suppressor of cytokine signaling (SOCS) 3 expression detectable even 24 hours after onset of stimulation. In a rat model of VILI, the prophylactic inhalation of IL-22 before induction of VILI (peak airway pressure = 45 cm H(2)O) protected the lung against pulmonary disintegration and edema. IL-22 reduced VILI-associated biotrauma (i.e., pulmonary concentrations of macrophage inflammatory protein-2, IL-6, and matrix metalloproteinase 9) and mediated pulmonary STAT3/SOCS3 activation. In addition, despite a short observation period of 4 hours, inhaled IL-22 resulted in an improved survival of the rats. These data support the hypothesis that IL-22, likely via activation of STAT3 and downstream genes (e.g., SOCS3), is able to protect against cell stretch and pulmonary baro-/biotrauma by enhancing epithelial cell resistibility.
Collapse
Affiliation(s)
- Sandra Hoegl
- Clinic for Anesthesiology, University Hospital of Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Matsuzaki Y, Xu Y, Ikegami M, Besnard V, Park KS, Hull WM, Wert SE, Whitsett JA. Stat3 is required for cytoprotection of the respiratory epithelium during adenoviral infection. THE JOURNAL OF IMMUNOLOGY 2006; 177:527-37. [PMID: 16785550 DOI: 10.4049/jimmunol.177.1.527] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of Stat3 in the maintenance of pulmonary homeostasis following adenoviral-mediated lung injury was assessed in vivo. Stat3 was selectively deleted from bronchiolar and alveolar epithelial cells in Stat3(DeltaDelta) mice. Although lung histology and function were unaltered by deletion of Stat3 in vivo, Stat3(DeltaDelta) mice were highly susceptible to lung injury caused by intratracheal administration of AV1-GFP, an early (E) region 1- and E3-deleted, nonproliferative adenovirus. Severe airspace enlargement, loss of alveolar septae, and sloughing of the bronchiolar epithelium were observed in Stat3(DeltaDelta) mice as early as 1 day after exposure to the virus. Although surfactant protein A, B, and C content and surfactant protein-B mRNA expression in Stat3(DeltaDelta) mice were similar, TUNEL staining and caspase-3 were increased in alveolar type II epithelial cells of Stat3(DeltaDelta) mice after exposure to virus. RNA microarray analysis of type II epithelial cells isolated from Stat3(DeltaDelta) mice demonstrated significant changes in expression of numerous genes, including those genes regulating apoptosis, supporting the concept that the susceptibility of Stat3-deficient mice to adenovirus was related to the role of Stat3 in the regulation of cell survival. AV1-Bcl-x(L), an E1- and E3-deleted, nonproliferative adenovirus expressing the antiapoptotic protein Bcl-x(L), protected Stat3(DeltaDelta) mice from adenoviral-induced lung injury. Adenoviral infection of the lungs of Stat3-deficient mice was associated with severe injury of the alveolar and bronchiolar epithelium. Thus, Stat3 plays a critical cytoprotective role that is required for epithelial cell survival and maintenance of alveolar structures during the early phases of pulmonary adenoviral infection.
Collapse
Affiliation(s)
- Yohei Matsuzaki
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang X, Lee PJ. Response to Comment on “Cutting Edge: TLR4 Deficiency Confers Susceptibility to Lethal Oxidant Lung Injury”. THE JOURNAL OF IMMUNOLOGY 2006. [DOI: 10.4049/jimmunol.176.7.3857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Lian X, Qin Y, Hossain SA, Yang L, White A, Xu H, Shipley JM, Li T, Senior RM, Du H, Yan C. Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury. THE JOURNAL OF IMMUNOLOGY 2005; 174:7250-6. [PMID: 15905571 DOI: 10.4049/jimmunol.174.11.7250] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute lung injury is a side effect of therapy with a high concentration of inspired oxygen in patients. The molecular mechanism underlining this effect is poorly understood. In this study, we report that overexpression of Stat3C, a constitutive active form of STAT3, in respiratory epithelial cells of a doxycycline-controlled double-transgenic mouse system protects lung from inflammation and injury caused by hyperoxia. In this mouse line, >50% of transgenic mice survived exposure to 95% oxygen at day 7, compared with 0% survival of wild-type mice. Overexpression of STAT3C delays acute capillary leakage and neutrophil infiltration into the alveolar region. This protection is mediated at least partially through inhibition of hyperoxia-induced synthesis and release of matrix metalloproteinase (MMP)-9 and MMP-12 by neutrophils and alveolar resident cells. In some MMP-9(-/-) mice, prolonged survival was observed under hyperoxic condition. The finding supports a concept that activation of the Stat3 pathway plays a role to prevent hyperoxia-induced inflammation and injury in the lung.
Collapse
Affiliation(s)
- Xuemei Lian
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|