1
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
2
|
Olthof MGL, Hasler A, Valdivieso P, Flück M, Gerber C, Gehrke R, Klein K, von Rechenberg B, Snedeker JG, Wieser K. Poly(ADP-Ribose) Polymerases-Inhibitor Talazoparib Inhibits Muscle Atrophy and Fatty Infiltration in a Tendon Release Infraspinatus Sheep Model: A Pilot Study. Metabolites 2024; 14:187. [PMID: 38668315 PMCID: PMC11051840 DOI: 10.3390/metabo14040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis. PARP inhibitors have been shown to influence muscle degeneration, including mitochondrial hemostasis, oxidative stress, inflammation and metabolic activity, and reduced degenerative changes in a knockout mouse model. Tenotomized infraspinatus were assessed for muscle degeneration for 16 weeks using a Swiss Alpine sheep model (n = 6). All sheep received daily oral administration of 0.5 mg Talazoparib. Due to animal ethics, the treatment group was compared with three different controls from prior studies of our institution. To mitigate potential batch heterogeneity, PARP-I was evaluated in comparison with three distinct control groups (n = 6 per control group) using the same protocol without treatment. The control sheep were treated with an identical study protocol without Talazoparib treatment. Muscle atrophy and fatty infiltration were evaluated at 0, 6 and 16 weeks post-tenotomy using DIXON-MRI. The controls and PARP-I showed a significant (control p < 0.001, PARP-I p = 0.01) decrease in muscle volume after 6 weeks. However, significantly less (p = 0.01) atrophy was observed in PARP-I after 6 weeks (control 1: 76.6 ± 8.7%; control 2: 80.3 ± 9.3%, control 3: 73.8 ± 6.7% vs. PARP-I: 90.8 ± 5.1% of the original volume) and 16 weeks (control 1: 75.7 ± 9.9; control 2: 74.2 ± 5.6%; control 3: 75.3 ± 7.4% vs. PARP-I 93.3 ± 10.6% of the original volume). All experimental groups exhibited a statistically significant (p < 0.001) augmentation in fatty infiltration following a 16-week period when compared to the initial timepoint. However, the PARP-I showed significantly less fatty infiltration (p < 0.003) compared to all controls (control 1: 55.6 ± 6.7%, control 2: 53.4 ± 9.4%, control 3: 52.0 ± 12.8% vs. PARP-I: 33.5 ± 8.4%). Finally, a significantly (p < 0.04) higher proportion and size of fast myosin heavy chain-II fiber type was observed in the treatment group. This study shows that PARP-inhibition with Talazoparib inhibits the progression of both muscle atrophy and fatty infiltration over 16 weeks in retracted sheep musculotendinous units.
Collapse
Affiliation(s)
- Maurits G. L. Olthof
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Anita Hasler
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Christian Gerber
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Rieke Gehrke
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Karina Klein
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Jess G. Snedeker
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Karl Wieser
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| |
Collapse
|
3
|
Chen M, Wang Y, Deng S, Lian Z, Yu K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front Cell Dev Biol 2022; 10:964130. [PMID: 36111339 PMCID: PMC9470179 DOI: 10.3389/fcell.2022.964130] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 12/06/2022] Open
Abstract
With aging, the progressive loss of skeletal muscle will have negative effect on multiple physiological parameters, such as exercise, respiration, thermoregulation, and metabolic homeostasis. Accumulating evidence reveals that oxidative stress and inflammation are the main pathological characteristics of skeletal muscle during aging. Here, we focus on aging-related sarcopenia, summarize the relationship between aging and sarcopenia, and elaborate on aging-mediated oxidative stress and oxidative damage in skeletal muscle and its critical role in the occurrence and development of sarcopenia. In addition, we discuss the production of excessive reactive oxygen species in aging skeletal muscle, which reduces the ability of skeletal muscle satellite cells to participate in muscle regeneration, and analyze the potential molecular mechanism of ROS-mediated mitochondrial dysfunction in aging skeletal muscle. Furthermore, we have also paid extensive attention to the possibility and potential regulatory pathways of skeletal muscle aging and oxidative stress mediate inflammation. Finally, in response to the abnormal activity of oxidative stress and inflammation during aging, we summarize several potential antioxidant and anti-inflammatory strategies for the treatment of sarcopenia, which may provide beneficial help for improving sarcopenia during aging.
Collapse
Affiliation(s)
- Mingming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyi Wang
- Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, Lin’an, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhengxing Lian, ; Kun Yu,
| |
Collapse
|
4
|
Alcohol Induces Zebrafish Skeletal Muscle Atrophy through HMGB1/TLR4/NF-κB Signaling. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081211. [PMID: 36013390 PMCID: PMC9410481 DOI: 10.3390/life12081211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Excessive alcohol consumption can cause alcoholic myopathy, but the molecular mechanism is still unclear. In this study, zebrafish were exposed to 0.5% alcohol for eight weeks to investigate the effect of alcohol on skeletal muscle and its molecular mechanism. The results showed that the body length, body weight, cross-sectional area of the skeletal muscle fibers, Ucrit, and MO2max of the zebrafish were significantly decreased after alcohol exposure. The expression of markers of skeletal muscle atrophy and autophagy was increased, and the expression of P62 was significantly reduced. The content of ROS, the mRNA expression of sod1 and sod2, and the protein expression of Nox2 were significantly increased. In addition, we found that the inflammatory factors Il1β and Tnfα were significantly enriched in skeletal muscle, and the expression of the HMGB1/TLR4/NF-κB signaling axis was also significantly increased. In summary, in this study, we established a zebrafish model of alcohol-induced skeletal muscle atrophy and further elucidated its pathogenesis.
Collapse
|
5
|
Identification and characterization of circular RNAs in Longissimus dorsi muscle tissue from two goat breeds using RNA-Seq. Mol Genet Genomics 2022; 297:817-831. [DOI: 10.1007/s00438-022-01887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
6
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
8
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
9
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
10
|
Kang YJ, Yoo JI, Baek KW. Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat 2021; 29:10-18. [PMID: 34036042 PMCID: PMC8138673 DOI: 10.1016/j.jot.2021.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background The purpose of this study was to report the RNA sequencing profile according to the presence or absence of sarcopenia in elderly patients with osteoporotic hip fracture. Therefore, an important genetic factor candidate for sarcopenia causing hip fracture in elderly with osteoporosis has been identified. Methods The patient group involved subjects over 65 years who had undergone hip fracture surgery. Among 323 hip fracture (HF) patients identified from May 2017 to December 2019, 162 HF patients (90 non-sarcopenia and 72 sarcopenia groups), excluding subjects with high energy trauma and non-osteoporosis, were finally included in the analysis. For RNA sequencing, each patient with hand grip strength (HGS) values in the top 10% were enrolled in the control group and with the bottom 10% in the patient group. After excluding patients with poor tissue quality, 6 patients and 5 patients were selected for sarcopenia and non-sarcopenia groups, respectively. For qPCR validation, each patient with HGS values in the top 20% and bottom 20% was enrolled in the control and patient groups, respectively. After excluding patients with poor tissue quality, 12 patients and 12 patients were enrolled in the sarcopenia and non-sarcopenia groups, respectively. Sarcopenia was defined according to the Asia Working Group for Sarcopenia (AWGS) criteria for low muscle strength (hand grip strength below 18 kg in women and 28 kg in men) and low muscle mass (SMI below 5.4 kg/m2 in women and 7.0 kg/m2 in men). The libraries were prepared for 100 bp paired-end sequencing using TruSeq Stranded mRNA Sample Preparation Kit (Illumina, CA, USA). The gene expression counts were supplied to Deseq2 to extract possible gene sets as differentially expressed genes (DEG) that discriminate between sarcopenia and non-sarcopenia groups that were carefully assigned by clinical observation. For the classification of the candidate genes from DEG analysis, we used the public databases; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Quantitative real-time PCR was performed for validation. Results Samples collected were subjected to RNAseq using the Illumina platform. A total of 11 samples from both sarcopenia and non-sarcopenia groups were sequenced. Fifteen genes (RUNX 1, NGFR, CH3L1, BCL3, PLA2G2A, MYBPH, TEP1, SEMA6B, CSPG4, ACSL5, SLC25A3, NDUFB5, CYC1, ACAT1, and TCAP) were identified as differentially expressed genes (DEG) in both the groups. In the qPCR results, the expression levels of SLC25A3 and TCAP gene in the OS group were significantly lower than in the non-OS groups whereas an increase in RUNX1 mRNA level was observed in the OS samples (p < 0.05). Conclusions In summary, this study detected gene expression difference according to the presence or absence of sarcopenia in elderly osteoporosis female patients with hip fracture. We have also identified 15 important genes (RUNX 1, NGFR, CH3L1, BCL3, PLA2G2A, MYBPH, TEP1, SEMA6B, CSPG4, ACSL5, SLC25A3, NDUFB5, CYC1, ACAT1, TCAP), a few GO categories and biological pathways that may be associated with the osteosarcopenia. Our study may provide effective means for the prevention, diagnosis and treatment sarcopenia in elderly osteoporosis female patients. The Translational potential of this article These findings provide a novel insight into the effects of aging on the response in women with postmenopausal osteoporosis. Further studies are underway to identify the specific signalling pathways involved. These results reveal potential therapeutic targets that could aid the regenerative capacity of aging skeletal muscle.
Collapse
Affiliation(s)
- Yang-Jae Kang
- Division of Applied Life Science Department at Gyeongsang National University, PMBBRC, Jinju, Republic of Korea
- Division of Life Science Department at Gyeongsang National University, Jinju, Republic of Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, South Korea
- Corresponding author. Department of Orthopaedic Surgery, Gyeongsang National University Hospital, 90 Chilamdong, Jinju, Gyeongnamdo, 660-702, Republic of Korea.
| | - Kyung-Wan Baek
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, South Korea
| |
Collapse
|
11
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
12
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
13
|
Sharanya A, Ciano M, Withana S, Kemp PR, Polkey MI, Sathyapala SA. Sex differences in COPD-related quadriceps muscle dysfunction and fibre abnormalities. Chron Respir Dis 2020; 16:1479973119843650. [PMID: 31131626 PMCID: PMC6537500 DOI: 10.1177/1479973119843650] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD), lower limb dysfunction is associated with reduced exercise capacity, increased hospitalizations and mortality. We investigated sex differences in the prevalence of quadriceps dysfunction and fibre abnormalities in a large COPD cohort, controlling for the normal sex differences in health. We compared existing data from 76 male and 38 female COPD patients where each variable was expressed as a function of gender-specific normal values (obtained from 16 male and 14 female controls). Female COPD patients had lower quadriceps muscle strength and peak workload on a maximal incremental cycle ergometry protocol compared to male patients. Female patients had a smaller type II fibre cross-sectional area (CSA) compared to male patients, suggesting a greater female preponderance to fibre atrophy, although this result was largely driven by a few male patients with a large type II fibre CSA. Female patients had significantly higher concentrations of a number of plasma pro-inflammatory cytokines including tumour necrosis factor alpha and interleukin 8 (IL8), but not lower levels of physical activity or arterial oxygenation, compared to males. Our data confirm results from a previous small study and suggest that female COPD patients have a greater prevalence of muscle wasting and weakness. Larger studies investigating sex differences in COPD-related muscle atrophy and weakness are needed, as the results will have implications for monitoring in clinical practice and for design of clinical trials evaluating novel muscle anabolic agents.
Collapse
Affiliation(s)
- Adithya Sharanya
- 1 Molecular Medicine, National Heart and Lung Institute, SAF Building, South Kensington Campus, Imperial College London, London, UK
| | - Margherita Ciano
- 1 Molecular Medicine, National Heart and Lung Institute, SAF Building, South Kensington Campus, Imperial College London, London, UK
| | - Shirmila Withana
- 2 Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, Harefield Hospital, Hill End Road, Harefield, Middlesex, UK
| | - Paul Richard Kemp
- 1 Molecular Medicine, National Heart and Lung Institute, SAF Building, South Kensington Campus, Imperial College London, London, UK
| | - Michael Iain Polkey
- 3 Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, Royal Brompton Hospital, First Floor, Fulham Road, London, UK
| | - Samantha Amanda Sathyapala
- 1 Molecular Medicine, National Heart and Lung Institute, SAF Building, South Kensington Campus, Imperial College London, London, UK
| |
Collapse
|
14
|
Hahn A, Kny M, Pablo-Tortola C, Todiras M, Willenbrock M, Schmidt S, Schmoeckel K, Jorde I, Nowak M, Jarosch E, Sommer T, Bröker BM, Felix SB, Scheidereit C, Weber-Carstens S, Butter C, Luft FC, Fielitz J. Serum amyloid A1 mediates myotube atrophy via Toll-like receptors. J Cachexia Sarcopenia Muscle 2020; 11:103-119. [PMID: 31441598 PMCID: PMC7015249 DOI: 10.1002/jcsm.12491] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Critically ill patients frequently develop muscle atrophy and weakness in the intensive-care-unit setting [intensive care unit-acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute-phase response are major risk factors. We reported earlier that the acute-phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation-induced muscle atrophy. METHODS We performed cell-based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IкB kinase inhibitor Bristol-Myers Squibb (BMS)-345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation-induced muscle atrophy and the effects of BMS-345541 treatment. RESULTS The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll-like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) p65 via TLR2 and TLR4 leading to an increased binding of NF-κB to NF-κB response elements in the promoter region of its target genes resulting in an increased expression of NF-κB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF-κB signalling by BMS-345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS-345541 diminished inflammation-induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: -21.2% and BMS-345541: -10.4%; P < 0.05), tibialis anterior (vehicle: -22.7% and BMS-345541: -17.1%; P < 0.05) and soleus (vehicle: -21.1% and BMS-345541: -11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross-sectional area showed that BMS-345541 reduced inflammation-induced atrophy of slow/type I and fast/type II myofibers compared with vehicle-treated septic mice. BMS-345541 reversed the inflammation-induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. CONCLUSIONS SAA1 activates the TLR2/TLR4//NF-κB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF-κB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF-κB p65 atrophy pathway could have utility in combatting ICUAW.
Collapse
Affiliation(s)
- Alexander Hahn
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cristina Pablo-Tortola
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mihail Todiras
- Cardiovascular hormones, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Michael Willenbrock
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sibylle Schmidt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katrin Schmoeckel
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Marcel Nowak
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ernst Jarosch
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Sommer
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Biology, Humboldt-University Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg and Medical University Brandenburg (MHB), Bernau, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
15
|
Song X, Zhu M, Li H, Liu B, Yan Z, Wang W, Li H, Sun J, Li S. USF1 promotes the development of knee osteoarthritis by activating the NF-κB signaling pathway. Exp Ther Med 2018; 16:3518-3524. [PMID: 30233704 PMCID: PMC6143875 DOI: 10.3892/etm.2018.6608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/19/2018] [Indexed: 01/16/2023] Open
Abstract
The current study mainly aims to evaluate the expression pattern and underlying mechanism of upstream stimulating factor 1 (USF1) in the muscle tissues of knee osteoarthritis (KOA) patients. In accordance with previous findings, our data showed that muscle strength was significantly decreased in KOA patients compared with controls. Furthermore, several inflammatory factors, including tumor necrosis factor α (TNFα), IL-8, IL-6 and MCP-1, were associated with reduced muscle strength in KOA patients. Not surprisingly, NF-κB signaling was significantly activated in the muscle tissues of KOA patients compared with control individuals. Furthermore, we showed that USF1 was increased in the muscles of KOA patients compared with controls. More importantly, overexpression of USF1 in primary human skeletal muscle cells significantly increased the activation of NF-κB signaling as well as the levels of pro-inflammatory factors. In summary, we showed novel data that the upregulation of USF1 promoted NF-κB activation-induced inflammatory responses in muscle tissues of KOA patients.
Collapse
Affiliation(s)
- Xiandong Song
- Department of Orthopedics, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Min Zhu
- Department of Radiology, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hao Li
- Department of Radiology, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bo Liu
- Department of Orthopedics, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhaowei Yan
- Department of Orthopedics, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Weican Wang
- Department of Orthopedics, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hongyi Li
- Department of Radiology, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiping Sun
- Department of Radiology, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Shixing Li
- Department of Radiology, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
16
|
Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC. Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. Eur J Transl Myol 2018; 28:7590. [PMID: 29991992 PMCID: PMC6036305 DOI: 10.4081/ejtm.2018.7590] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
A compounding feature of greater than 50% of all cancers is the high incidence of the cachexia syndrome, a complex metabolic disorder characterized by extreme weight loss due mainly to the gross depletion of skeletal muscle tissue. Although studies into the cause of cancer cachexia has spanned over multiple decades, little is known about the effects of various cancer treatments themselves on cachexia. For example, chemotherapy agents induce side effects such as nausea and anorexia, but these symptoms do not fully account for the changes seen with cancer cachexia. In this study we examine the effects of chemotherapeutic compounds, specifically, cisplatin in the colon-26 adenocarcinoma model of cancer cachexia. We find that although cisplatin is able to reduce tumor burden as expected, muscle wasting in mice nevertheless persists. Strikingly, cisplatin alone was seen to regulate muscle atrophy, which was independent of the commonly implicated ubiquitin proteasome system. Finally, we show that cisplatin is able to induce NF-κB activity in both mouse muscles and myotube cultures, suggesting that an additional side effect of cancer treatment is the regulation of muscle wasting that may be mediated through activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jeffrey S Damrauer
- Human Cancer Genetics, Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Biomedical Research Tower, Arthur G. James Comprehensive Cancer Center, Columbus, Ohio.,Equally contributing first authors
| | - Michael E Stadler
- Department of Otolaryngology-Head & Neck Surgery, University of North Carolina School of Medicine, Neurosciences Hospital, North Carolina.,Equally contributing first authors
| | - Swarnali Acharyya
- Human Cancer Genetics, Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Biomedical Research Tower, Arthur G. James Comprehensive Cancer Center, Columbus, Ohio.,Equally contributing first authors
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Marion E Couch
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Denis C Guttridge
- Human Cancer Genetics, Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Biomedical Research Tower, Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
17
|
Belova SP, Shenkman BS, Kostrominova TY, Nemirovskaya TL. Paradoxical effect of IKKβ inhibition on the expression of E3 ubiquitin ligases and unloading-induced skeletal muscle atrophy. Physiol Rep 2018; 5:5/16/e13291. [PMID: 28839114 PMCID: PMC5582258 DOI: 10.14814/phy2.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
We tested whether NF‐κB pathway is indispensable for the increase in expression of E3‐ligases and unloading‐induced muscle atrophy using IKKβ inhibitor IMD‐0354. Three groups of rats were used: nontreated control (C), 3 days of unloading/hindlimb suspension with (HS+IMD) or without (HS) IMD‐0354. Levels of IκBα were higher in HS+IMD (1.16‐fold) and lower in HS (0.82‐fold) when compared with C group. IMD‐0354 treatment during unloading: had no effect on loss of muscle mass; increased mRNA levels of MuRF1 and MAFbx; increased levels of pFoxO3; and had no effect on levels of Bcl‐3, p105, and p50 proteins. Our study for the first time showed that inhibiting IKKβ in vivo during 3‐day unloading failed to diminish expression of ubiquitin ligases and prevent muscle atrophy.
Collapse
Affiliation(s)
| | | | - Tatiana Y Kostrominova
- Department of Anatomy and Cell Biology, Indiana University School of Medicine-Northwest, Gary, Indiana
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow, Russia .,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Zhang N, Valentine JM, Zhou Y, Li ME, Zhang Y, Bhattacharya A, Walsh ME, Fischer KE, Austad SN, Osmulski P, Gaczynska M, Shoelson SE, Van Remmen H, Chen HI, Chen Y, Liang H, Musi N. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health. Aging Cell 2017; 16:847-858. [PMID: 28556540 PMCID: PMC5506420 DOI: 10.1111/acel.12613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2017] [Indexed: 01/06/2023] Open
Abstract
Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function.
Collapse
Affiliation(s)
- Ning Zhang
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Joseph M. Valentine
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - You Zhou
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Mengyao E. Li
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
- Joslin Diabetes Center; 1 Joslin Place Boston MA 02215 USA
| | - Yiqiang Zhang
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Arunabh Bhattacharya
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Michael E. Walsh
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Katherine E. Fischer
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Steven N. Austad
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Pawel Osmulski
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Maria Gaczynska
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | | | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Hung I. Chen
- Greehey Children's Cancer Research Institute; 8403 Floyd Curl Dr San Antonio TX 78229 USA
- Department of Epidemiology and Biostatistics; University of Texas Health Science Center at San Antonio; 7703 Floyd Curl Dr San Antonio TX 78229 USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute; 8403 Floyd Curl Dr San Antonio TX 78229 USA
- Department of Epidemiology and Biostatistics; University of Texas Health Science Center at San Antonio; 7703 Floyd Curl Dr San Antonio TX 78229 USA
| | - Hanyu Liang
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; 15355 Lambda Drive San Antonio TX 78245 USA
- San Antonio Geriatric Research, Education and Clinical Center; South Texas Veterans Health Care System; 7400 Merton Minter San Antonio TX 78229 USA
| |
Collapse
|
19
|
Gene expression profiling in Pekin duck embryonic breast muscle. PLoS One 2017; 12:e0174612. [PMID: 28472139 PMCID: PMC5417483 DOI: 10.1371/journal.pone.0174612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Lean-type Pekin duck is a breed gained through long-term selection and great effort has been exerted to understand the mechanisms underlying increased muscle yields. However, the genes involved in Pekin duck embryonic breast muscle development have not been explored to date. In this study, we investigated gene expression profiles in Pekin Duck embryonic breast muscle at hatched day 13 (E13), E19, and E27 using RNA-seq. In total, we produced 519,312,178 raw reads resulting in 497,348,158 high-quality reads after filtering. The mapping, distribution of reads along annotated genes, and consistency across replicates demonstrates the high quality of the RNA-seq data used in this study, allowing us to continue with the downstream analysis. Significantly fewer differentially expressed genes (DEGs) were identified between E13 and E19 (203 DEGs) compared to E27 and E19 (2,797 DEGs). Many DEGs highly expressed in E19 are involved in metabolic processes and cell division. KEGG analysis showed many pathways associated with fat development were significantly enriched for DEGs highly expressed in E27. These results provide a basis for the further investigation of the mechanisms involved in Pekin duck embryonic breast muscle development.
Collapse
|
20
|
Shi LL, Zhang N, Xie XM, Chen YJ, Wang R, Shen L, Zhou JS, Hu JG, Lü HZ. Transcriptome profile of rat genes in injured spinal cord at different stages by RNA-sequencing. BMC Genomics 2017; 18:173. [PMID: 28201982 PMCID: PMC5312572 DOI: 10.1186/s12864-017-3532-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background Spinal cord injury (SCI) results in fatal damage and currently has no effective treatment. The pathological mechanisms of SCI remain unclear. In this study, genome-wide transcriptional profiling of spinal cord samples from injured rats at different time points after SCI was performed by RNA-Sequencing (RNA-Seq). The transcriptomes were systematically characterized to identify the critical genes and pathways that are involved in SCI pathology. Results RNA-Seq results were obtained from total RNA harvested from the spinal cords of sham control rats and rats in the acute, subacute, and chronic phases of SCI (1 day, 6 days and 28 days after injury, respectively; n = 3 in every group). Compared with the sham-control group, the number of differentially expressed genes was 1797 in the acute phase (1223 upregulated and 574 downregulated), 6590 in the subacute phase (3460 upregulated and 3130 downregulated), and 3499 in the chronic phase (1866 upregulated and 1633 downregulated), with an adjusted P-value <0.05 by DESeq. Gene ontology (GO) enrichment analysis showed that differentially expressed genes were most enriched in immune response, MHC protein complex, antigen processing and presentation, translation-related genes, structural constituent of ribosome, ion gated channel activity, small GTPase mediated signal transduction and cytokine and/or chemokine activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most enriched pathways included ribosome, antigen processing and presentation, retrograde endocannabinoid signaling, axon guidance, dopaminergic synapses, glutamatergic synapses, GABAergic synapses, TNF, HIF-1, Toll-like receptor, NF-kappa B, NOD-like receptor, cAMP, calcium, oxytocin, Rap1, B cell receptor and chemokine signaling pathway. Conclusions This study has not only characterized changes in global gene expression through various stages of SCI progression in rats, but has also systematically identified the critical genes and signaling pathways in SCI pathology. These results will expand our understanding of the complex molecular mechanisms involved in SCI and provide a foundation for future studies of spinal cord tissue damage and repair. The sequence data from this study have been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number PRJNA318311). Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3532-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling-Ling Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Xiu-Mei Xie
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Yue-Juan Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Lin Shen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Jian-Sheng Zhou
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China. .,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Anhui, 233004, People's Republic of China. .,Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China.
| |
Collapse
|
21
|
Sakuma K, Aoi W, Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch 2017; 469:573-591. [PMID: 28101649 DOI: 10.1007/s00424-016-1933-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Muscle loss occurs as a consequence of several chronic diseases (cachexia) and normal aging (sarcopenia). Although many negative regulators (atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.) have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of these mediators markedly differs within both conditions. Sarcopenia and cachectic muscles have been demonstrated to be abundant in myostatin-linked molecules. The ubiquitin-proteasome system (UPS) is activated during rapid atrophy model (cancer cachexia), but few mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Recent studies have indicated the age-related defect of autophagy signaling in skeletal muscle, whereas autophagic activation occurs in cachectic muscle. This review provides recent research advances dealing with molecular mediators modulating muscle mass in both sarcopenia and cachexia.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
22
|
Ogilvie H, Cacciani N, Akkad H, Larsson L. Targeting Heat Shock Proteins Mitigates Ventilator Induced Diaphragm Muscle Dysfunction in an Age-Dependent Manner. Front Physiol 2016; 7:417. [PMID: 27729867 PMCID: PMC5037190 DOI: 10.3389/fphys.2016.00417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/05/2016] [Indexed: 01/25/2023] Open
Abstract
Intensive care unit (ICU) patients are often overtly subjected to mechanical ventilation and immobilization, which leads to impaired limb and respiratory muscle function. The latter, termed ventilator-induced diaphragm dysfunction (VIDD) has recently been related to compromised heat shock protein (Hsp) activation. The administration of a pharmacological drug BGP-15 acting as a Hsp chaperone co-inducer has been found to partially alleviate VIDD in young rats. Considering that the mean age in the ICU is increasing, we aimed to explore whether the beneficial functional effects are also present in old rats. For that, we exposed young (7–8 months) and old (28–32 months) rats to 5-day controlled mechanical ventilation and immobilization with or without systemic BGP-15 administration. We then dissected diaphragm muscles, membrane–permeabilized bundles and evaluated the contractile function at single fiber level. Results confirmed that administration of BGP-15 restored the force-generating capacity of isolated muscle cells from young rats in conjunction with an increased expression of Hsp72. On the other hand, our results highlighted that old rats did not positively respond to the BGP-15 treatment. Therefore, it is of crucial importance to comprehend in more depth the effect of VIDD on diaphragm function and ascertain any further age-related differences.
Collapse
Affiliation(s)
- Hannah Ogilvie
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Nicola Cacciani
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Hazem Akkad
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
23
|
Kizilarslanoglu MC, Kuyumcu ME, Yesil Y, Halil M. Sarcopenia in critically ill patients. J Anesth 2016; 30:884-90. [PMID: 27376823 DOI: 10.1007/s00540-016-2211-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/26/2016] [Indexed: 12/25/2022]
Abstract
Sarcopenia occurring as a primary consequence of aging and secondary due to certain medical problems including chronic disease, malnutrition and inactivity is a progressive generalized loss of skeletal muscle mass, strength and function. The prevalence of sarcopenia increases with aging (approximately 5-13 % in the sixth and seventh decades). However, data showing the prevalence and clinical outcomes of sarcopenia in intensive care units (ICUs) are limited. A similar condition to sarcopenia in the ICU, called ICU-acquired weakness (ICU-AW), has been reported more frequently. Here, we aim to examine the importance of sarcopenia, especially ICU-AW, in ICU patients via related articles in Medline.
Collapse
Affiliation(s)
- Muhammet C Kizilarslanoglu
- Division of Geriatrics, Department of Internal Medicine, Hacettepe University School of Medicine, 06100, Ankara, Turkey.
| | - Mehmet E Kuyumcu
- Division of Geriatrics, Department of Internal Medicine, Hacettepe University School of Medicine, 06100, Ankara, Turkey
| | - Yusuf Yesil
- Division of Geriatrics, Department of Internal Medicine, Hacettepe University School of Medicine, 06100, Ankara, Turkey
| | - Meltem Halil
- Division of Geriatrics, Department of Internal Medicine, Hacettepe University School of Medicine, 06100, Ankara, Turkey
| |
Collapse
|
24
|
Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma. Sarcoma 2016; 2016:3758162. [PMID: 27378829 PMCID: PMC4917717 DOI: 10.1155/2016/3758162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia.
Collapse
|
25
|
Fielitz J. Cancer cachexia-when proteasomal inhibition is not enough. J Cachexia Sarcopenia Muscle 2016; 7:239-45. [PMID: 27386167 PMCID: PMC4929817 DOI: 10.1002/jcsm.12124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jens Fielitz
- Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC) Charité--Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association Berlin Germany; Department of Cardiology Heart Center Brandenburg and Medical School Brandenburg (MHB) Bernau Germany
| |
Collapse
|
26
|
Peddada KV, Peddada KV, Shukla SK, Mishra A, Verma V. Role of Curcumin in Common Musculoskeletal Disorders: a Review of Current Laboratory, Translational, and Clinical Data. Orthop Surg 2016; 7:222-31. [PMID: 26311096 DOI: 10.1111/os.12183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022] Open
Abstract
The Indian spice turmeric, in which the active and dominant biomolecule is curcumin, has been demonstrated to have significant medicinal properties, including anti-inflammatory and anti-neoplastic effects. This promise is potentially very applicable to musculoskeletal disorders, which are common causes of physician visits worldwide. Research at the laboratory, translational and clinical levels that supports the use of curcumin for various musculoskeletal disorders, such as osteoarthritis, osteoporosis, musculocartilaginous disorders, and sarcoma is here in comprehensively summarized. Though more phase I-III trials are clearly needed, thus far the existing data show that curcumin can indeed potentially be useful in treatment of the hundreds of millions worldwide who are afflicted by these musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anusha Mishra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
RNA-Seq Profiling of Intact and Enucleated Oocyte SCNT Embryos Reveals the Role of Pig Oocyte Nucleus in Somatic Reprogramming. PLoS One 2016; 11:e0153093. [PMID: 27070804 PMCID: PMC4829232 DOI: 10.1371/journal.pone.0153093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/20/2016] [Indexed: 12/28/2022] Open
Abstract
The specific molecular mechanisms involved in somatic reprogramming remain unidentified. Removal of the oocyte genome is one of the primary causes of developmental failure in cloned embryos, whereas intact oocyte shows stronger reprogramming capability than enucleated oocyte. To identify the reason for the low efficiency of cloning and elucidate the mechanisms involved in somatic reprogramming by the oocyte nucleus, we injected pig cumulus cells into 539 intact MII oocytes and 461 enucleated MII oocytes. Following activation, 260 polyploidy embryos developed to the blastocyst stage whereas only 93 traditionally cloned embryos (48.2% vs. 20.2%, P < 0.01) reached blastocyst stage. Blastocysts generated from intact oocytes also had more cells than those generated from enucleated oocytes (60.70 vs. 46.65, P < 0.01). To identify the genes that contribute to this phenomenon, two early embryos in 2-cell and 4-cell stages were collected for single-cell RNA sequencing. The two kinds of embryos were found to have dramatically different transcriptome profiles. Intact oocyte nuclear transfer embryos showed 1,738 transcripts that were up-regulated relative to enucleated cloned embryos at the 2-cell stage and 728 transcripts that were down-regulated (|log2Ratio| ≥ 5). They showed 2,941 transcripts that were up-regulated during the 4-cell stage and 1,682 that were down-regulated (|log2Ratio| ≥ 5). The most significantly enriched gene ontology categories were those involved in the regulation of binding, catalytic activity, and molecular transducer activity. Other genes that were notably up-regulated and expressed in intact oocyte nuclear transfer embryos were metabolic process. This study provides a comprehensive profile of the differences in gene expression between intact oocyte nuclear transfer embryos and traditional nuclear transfer embryos. This work thus paves the way for further research on the mechanisms underlying somatic reprogramming by oocytes.
Collapse
|
28
|
The Systemic Effect of Burn Injury and Trauma on Muscle and Bone Mass and Composition. Plast Reconstr Surg 2016; 136:612e-623e. [PMID: 26505718 DOI: 10.1097/prs.0000000000001723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND By understanding the global inflammatory effects on distant myopathies, surgeons can better guide the rehabilitative process for burn patients. The authors tested the systemic effect of burn injury on distant injured muscle and native bone using immunohistochemistry and validated a new morphometric analytic modality to reproducibly quantify muscle atrophy using computed tomographic imaging. METHODS In vivo studies were performed on C57/BL6 mice using an Achilles tenotomy with concurrent burn injury model. Total muscle and bone (tibia and fibula) volume/density were quantified near the site of Achilles tenotomy using micro-computed tomography at 5, 7, and 9 to 12 weeks after surgery. The impact of burn injury on the inflammatory cascade [nuclear factor (NF)-κB, p-NF-κB] and the interconnected protein catabolism signaling pathway (Atrogin-1) was assessed by immunohistochemistry. RESULTS Muscle volume and density at the site of Achilles tenotomy in burned mice were significantly diminished compared with nonburned mice at 5 weeks and 9 to 12 weeks. Similar decreases in muscle volume and density were observed when comparing tenotomy to no tenotomy. Cortical bone health remained stable in burn/tenotomy mice compared with tenotomy. Muscle atrophy was associated with up-regulation of p-NF-κB, NF-κB, and Atrogin-1 assessed by immunohistochemistry. CONCLUSIONS Burn injury significantly decreases muscle volume and density. Increased muscle atrophy using our computed tomographic morphometric analysis correlated with a significant increase in intramuscular inflammatory markers and proteolysis enzymes. This study demonstrates a unique characterization of how burn injuries may worsen local myopathy. Moreover, it provides a novel approach for quantifying muscle atrophy over an expanded period.
Collapse
|
29
|
Lee D, Goldberg AL. Muscle Wasting in Fasting Requires Activation of NF-κB and Inhibition of AKT/Mechanistic Target of Rapamycin (mTOR) by the Protein Acetylase, GCN5. J Biol Chem 2015; 290:30269-79. [PMID: 26515065 DOI: 10.1074/jbc.m115.685164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB is best known for its pro-inflammatory and anti-apoptotic actions, but in skeletal muscle, NF-κB activation is important for atrophy upon denervation or cancer. Here, we show that also upon fasting, NF-κB becomes activated in muscle and is critical for the subsequent atrophy. Following food deprivation, the expression and acetylation of the p65 of NF-κB on lysine 310 increase markedly in muscles. NF-κB inhibition in mouse muscles by overexpression of the IκBα superrepressor (IκBα-SR) or of p65 mutated at Lys-310 prevented atrophy. Knockdown of GCN5 with shRNA or a dominant-negative GCN5 or overexpression of SIRT1 decreased p65K310 acetylation and muscle wasting upon starvation. In addition to reducing atrogene expression, surprisingly inhibiting NF-κB with IκBα-SR or by GCN5 knockdown in these muscles also enhanced AKT and mechanistic target of rapamycin (mTOR) activities, which also contributed to the reduction in atrophy. These new roles of NF-κB and GCN5 in regulating muscle proteolysis and AKT/mTOR signaling suggest novel approaches to combat muscle wasting.
Collapse
Affiliation(s)
- Donghoon Lee
- From the Department of Cell Biology, Harvard Medical School, Boston, Masachusetts 02115
| | - Alfred L Goldberg
- From the Department of Cell Biology, Harvard Medical School, Boston, Masachusetts 02115
| |
Collapse
|
30
|
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015; 14:511-23. [PMID: 25866088 PMCID: PMC4531066 DOI: 10.1111/acel.12342] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/11/2022] Open
Abstract
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio-economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin-like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS-1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| | - David C. Hughes
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
- Department of Neurobiology, Physiology and Behavior; University of California; Davis California CA 95616 USA
| | - Colleen S. Deane
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research; School of Medicine; University of Nottingham; Royal Derby Hospital; Derby DE22 3DT UK
- School of Health and Social Care; Bournemouth University; Bournemouth BH12 5BB UK
| | - Amarjit Saini
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER); Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Claire E. Stewart
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| |
Collapse
|
31
|
Ohira T, Kawano F, Ohira T, Goto K, Ohira Y. Responses of skeletal muscles to gravitational unloading and/or reloading. J Physiol Sci 2015; 65:293-310. [PMID: 25850921 PMCID: PMC10717835 DOI: 10.1007/s12576-015-0375-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 02/04/2023]
Abstract
Adaptation of morphological, metabolic, and contractile properties of skeletal muscles to inhibition of antigravity activities by exposure to a microgravity environment or by simulation models, such as chronic bedrest in humans or hindlimb suspension in rodents, has been well reported. Such physiological adaptations are generally detrimental in daily life on earth. Since the development of suitable countermeasure(s) is essential to prevent or inhibit these adaptations, effects of neural, mechanical, and metabolic factors on these properties in both humans and animals were reviewed. Special attention was paid to the roles of the motoneurons (both efferent and afferent neurograms) and electromyogram activities as the neural factors, force development, and/or length of sarcomeres as the mechanical factors and mitochondrial bioenergetics as the metabolic factors.
Collapse
Affiliation(s)
- Takashi Ohira
- Space Biomedical Research Office, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505 Japan
| | - Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Tomotaka Ohira
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Miyakodani 1-3, Tatara, Kyotanabe, Kyoto 610-0394 Japan
| |
Collapse
|
32
|
Abstract
Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting.
Collapse
|
33
|
Ulanova A, Gritsyna Y, Vikhlyantsev I, Salmov N, Bobylev A, Abdusalamova Z, Rogachevsky V, Shenkman B, Podlubnaya Z. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight. BIOMED RESEARCH INTERNATIONAL 2015; 2015:104735. [PMID: 25664316 PMCID: PMC4312622 DOI: 10.1155/2015/104735] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 11/18/2022]
Abstract
Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft "BION-M" number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from "Flight" group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the "Flight" group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from "Flight" and "Control" groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness.
Collapse
Affiliation(s)
- Anna Ulanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
- Pushchino State Institute of Natural Science, Nauki Street 3, Pushchino 142290, Russia
| | - Yulia Gritsyna
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
| | - Ivan Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
| | - Nikolay Salmov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
| | - Alexander Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
| | - Zarema Abdusalamova
- Dagestan State University, Gadzhieva Street 43a, Makhachkala, Republic of Dagestan 367000, Russia
| | - Vadim Rogachevsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
| | - Boris Shenkman
- SRC, Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Street 76A, Moscow 123007, Russia
| | - Zoya Podlubnaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, Pushchino 142290, Russia
- Pushchino State Institute of Natural Science, Nauki Street 3, Pushchino 142290, Russia
| |
Collapse
|
34
|
Recent advances in mitochondrial turnover during chronic muscle disuse. Integr Med Res 2014; 3:161-171. [PMID: 28664093 PMCID: PMC5481769 DOI: 10.1016/j.imr.2014.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
Chronic muscle disuse, such as that resulting from immobilization, denervation, or prolonged physical inactivity, produces atrophy and a loss of mitochondria, yet the molecular relationship between these events is not fully understood. In this review we attempt to identify the key regulatory steps mediating the loss of muscle mass and the decline in mitochondrial content and function. An understanding of common intracellular signaling pathways may provide much-needed insight into the possible therapeutic targets for treatments that will maintain aerobic energy metabolism and preserve muscle mass during disuse conditions.
Collapse
|
35
|
Blanqué R, Lepescheux L, Auberval M, Minet D, Merciris D, Cottereaux C, Clément-Lacroix P, Delerive P, Namour F. Characterization of GLPG0492, a selective androgen receptor modulator, in a mouse model of hindlimb immobilization. BMC Musculoskelet Disord 2014; 15:291. [PMID: 25185887 PMCID: PMC4167280 DOI: 10.1186/1471-2474-15-291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Background Muscle wasting is a hallmark of many chronic conditions but also of aging and results in a progressive functional decline leading ultimately to disability. Androgens, such as testosterone were proposed as therapy to counteract muscle atrophy. However, this treatment is associated with potential cardiovascular and prostate cancer risks and therefore not acceptable for long-term treatment. Selective Androgen receptor modulators (SARM) are androgen receptor ligands that induce muscle anabolism while having reduced effects in reproductive tissues. Therefore, they represent an alternative to testosterone therapy. Our objective was to demonstrate the activity of SARM molecule (GLPG0492) on a immobilization muscle atrophy mouse model as compared to testosterone propionate (TP) and to identify putative biomarkers in the plasma compartment that might be related to muscle function and potentially translated into the clinical space. Methods GLPG0492, a non-steroidal SARM, was evaluated and compared to TP in a mouse model of hindlimb immobilization. Results GLPG0492 treatment partially prevents immobilization-induced muscle atrophy with a trend to promote muscle fiber hypertrophy in a dose-dependent manner. Interestingly, GLPG0492 was found as efficacious as TP at reducing muscle loss while sparing reproductive tissues. Furthermore, gene expression studies performed on tibialis samples revealed that both GLPG0492 and TP were slowing down muscle loss by negatively interfering with major signaling pathways controlling muscle mass homeostasis. Finally, metabolomic profiling experiments using 1H-NMR led to the identification of a plasma GLPG0492 signature linked to the modulation of cellular bioenergetic processes. Conclusions Taken together, these results unveil the potential of GLPG0492, a non-steroidal SARM, as treatment for, at least, musculo-skeletal atrophy consecutive to coma, paralysis, or limb immobilization. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-291) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch 2014; 467:213-29. [PMID: 24797147 DOI: 10.1007/s00424-014-1527-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
Abstract
The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Muscle loss has been linked with several proteolytic systems, including the ubuiquitin-proteasome, lysosome-autophagy, and tumor necrosis factor (TNF)-α/nuclear factor-kappaB (NF-κB) systems. Although many factors are considered to regulate age-dependent muscle loss, this gentle atrophy is not affected by factors known to enhance rapid atrophy (denervation, hindlimb suspension, etc.). In addition, defects in Akt-mammalian target of rapamycin (mTOR) and serum response factor (SRF)-dependent signaling have been found in sarcopenic muscle. Intriguingly, more recent studies indicated an apparent functional defect in autophagy- and myostatin-dependent signaling in sarcopenic muscle. In this review, we summarize the current understanding of the adaptation of many regulators in sarcopenia.
Collapse
|
37
|
Montilla SIR, Johnson TP, Pearce SC, Gardan-Salmon D, Gabler NK, Ross JW, Rhoads RP, Baumgard LH, Lonergan SM, Selsby JT. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature (Austin) 2014; 1:42-50. [PMID: 27583280 PMCID: PMC4972518 DOI: 10.4161/temp.28844] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5-6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress.
Collapse
Affiliation(s)
| | | | - Sarah C Pearce
- Department of Animal Science; Iowa State University; Ames, IA USA
| | | | | | - Jason W Ross
- Department of Animal Science; Iowa State University; Ames, IA USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences; Virginia Tech; Blacksburg, VA USA
| | - Lance H Baumgard
- Department of Animal Science; Iowa State University; Ames, IA USA
| | | | - Joshua T Selsby
- Department of Animal Science; Iowa State University; Ames, IA USA
| |
Collapse
|
38
|
Wu CL, Cornwell EW, Jackman RW, Kandarian SC. NF-κB but not FoxO sites in the MuRF1 promoter are required for transcriptional activation in disuse muscle atrophy. Am J Physiol Cell Physiol 2014; 306:C762-7. [PMID: 24553183 DOI: 10.1152/ajpcell.00361.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The muscle-specific ring finger protein 1 (MuRF1) gene is required for most types of skeletal muscle atrophy yet we have little understanding of its transcriptional regulation. The purpose of this study is to identify whether NF-κB and/or FoxO response elements in the MuRF1 promoter are required for MuRF1 gene activation during skeletal muscle atrophy due to the removal of hindlimb weight bearing ("unloading"). Both NF-κB -dependent and FoxO-dependent luciferase reporter activities were significantly increased at 5 days of unloading. Using a 4.4-kb MuRF1 promoter reporter construct, a fourfold increase in reporter (i.e., luciferase) activity was found in rat soleus muscles after 5 days of hindlimb unloading. This activation was abolished by mutagenesis of either of the two distal putative NF-κB sites or all three putative NF-κB sites but not by mutagenesis of all four putative FoxO sites. This work provides the first direct evidence that NF-κB sites, but not FoxO sites, are required for MuRF1 promoter activation in muscle disuse atrophy in vivo.
Collapse
Affiliation(s)
- Chia-Ling Wu
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | | | | | | |
Collapse
|
39
|
Cornwell EW, Mirbod A, Wu CL, Kandarian SC, Jackman RW. C26 cancer-induced muscle wasting is IKKβ-dependent and NF-kappaB-independent. PLoS One 2014; 9:e87776. [PMID: 24489962 PMCID: PMC3906224 DOI: 10.1371/journal.pone.0087776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/30/2013] [Indexed: 12/24/2022] Open
Abstract
Existing data suggest that NF-kappaB signaling is a key regulator of cancer-induced skeletal muscle wasting. However, identification of the components of this signaling pathway and of the NF-κB transcription factors that regulate wasting is far from complete. In muscles of C26 tumor bearing mice, overexpression of dominant negative (d.n.) IKKβ blocked muscle wasting by 69% and the IκBα-super repressor blocked wasting by 41%. In contrast, overexpression of d.n. IKKα or d.n. NIK did not block C26-induced wasting. Surprisingly, overexpression of d.n. p65 or d.n. c-Rel did not significantly affect muscle wasting. Genome-wide mRNA expression arrays showed upregulation of many genes previously implicated in muscle atrophy. To test if these upregulated genes were direct targets of NF-κB transcription factors, we compared genome-wide p65 binding to DNA in control and cachectic muscle using ChIP-sequencing. Bioinformatic analysis of ChIP-sequencing data from control and C26 muscles showed very little p65 binding to genes in cachexia and little to suggest that upregulated p65 binding influences the gene expression associated with muscle based cachexia. The p65 ChIP-seq data are consistent with our finding of no significant change in protein binding to an NF-κB oligonucleotide in a gel shift assay, no activation of a NF-κB-dependent reporter, and no effect of d.n.p65 overexpression in muscles of tumor bearing mice. Taken together, these data support the idea that although inhibition of IκBα, and particularly IKKβ, blocks cancer-induced wasting, the alternative NF-κB signaling pathway is not required. In addition, the downstream NF-κB transcription factors, p65 and c-Rel do not appear to regulate the transcriptional changes induced by the C26 tumor. These data are consistent with the growing body of literature showing that there are NF-κB-independent substrates of IKKβ and IκBα that regulate physiological processes.
Collapse
Affiliation(s)
- Evangeline W. Cornwell
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Azadeh Mirbod
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Chia-Ling Wu
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Susan C. Kandarian
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Robert W. Jackman
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Donaldson A, Natanek SA, Lewis A, Man WDC, Hopkinson NS, Polkey MI, Kemp PR. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax 2013; 68:1140-9. [PMID: 23814167 PMCID: PMC3841809 DOI: 10.1136/thoraxjnl-2012-203129] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Skeletal muscle weakness in chronic obstructive pulmonary disease (COPD) carries a poor prognosis, therefore a non-invasive marker of this process could be useful. Reduced expression of muscle-specific microRNA (myomiRs) in quadriceps muscle in patients with COPD is associated with skeletal muscle weakness and changes in muscle fibre composition. Circulating exosomal miRNAs can be measured in blood, making them candidate biomarkers of biopsy phenotype. To determine whether plasma myomiR levels were associated with fibre size or fibre proportion, we measured myomiRs in plasma from patients with COPD and healthy controls. METHODS AND RESULTS 103 patients with COPD and 25 age-matched controls were studied. Muscle-specific miRNA was elevated in the plasma of patients with COPD and showed distinct patterns. Specifically, miR-1 was inversely associated with fat-free mass in the cohort, whereas levels of miR-499 were more directly associated with strength and quadriceps type I fibre proportion. Two miRs not restricted to muscle in origin (miR-16 and miR-122) did not differ between patients and controls. Plasma miR-499 was also associated with muscle nuclear factor κB p50 but not p65 in patients with early COPD whereas plasma inflammatory cytokines were associated with miR-206 in patients with more advanced disease. CONCLUSIONS Plasma levels of individual myomiRs are altered in patients with COPD but alone do not predict muscle fibre size or proportion. Our findings are consistent with an increase in muscle wasting and turnover associated with the development of skeletal muscle dysfunction and fibre-type shift in patients with stable COPD.
Collapse
Affiliation(s)
- Anna Donaldson
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, , London, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 2013; 4:330. [PMID: 24273516 PMCID: PMC3822288 DOI: 10.3389/fphys.2013.00330] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
The stress-inducible 70-kDa heat shock protein (HSP70) is a highly conserved protein with diverse intracellular and extracellular functions. In skeletal muscle, HSP70 is rapidly induced in response to both non-damaging and damaging stress stimuli including exercise and acute muscle injuries. This upregulation of HSP70 contributes to the maintenance of muscle fiber integrity and facilitates muscle regeneration and recovery. Conversely, HSP70 expression is decreased during muscle inactivity and aging, and evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile dysfunction and reduced regenerative capacity associated with these conditions. To date, the therapeutic benefit of HSP70 upregulation in skeletal muscle has been established in rodent models of muscle injury, muscle atrophy, modified muscle use, aging, and muscular dystrophy, which highlights HSP70 as a key therapeutic target for the treatment of various conditions which negatively affect skeletal muscle mass and function. This article will review these important findings and provide perspective on the unanswered questions related to HSP70 and skeletal muscle plasticity which require further investigation.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| |
Collapse
|
42
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
43
|
Pond AL, Nedele C, Wang WH, Wang X, Walther C, Jaeger C, Bradley KS, Du H, Fujita N, Hockerman GH, Hannon KM. The mERG1a channel modulates skeletal muscle MuRF1, but not MAFbx, expression. Muscle Nerve 2013; 49:378-88. [PMID: 23761265 DOI: 10.1002/mus.23924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We investigated the mechanism by which the MERG1a K+ channel increases ubiquitin proteasome proteolysis (UPP). METHODS Hindlimb suspension and electro-transfer of Merg1a cDNA into mouse gastrocnemius muscles induced atrophy. RESULTS Atrophic gastrocnemius muscles of hindlimb-suspended mice express Merg1a, Murf1, and Mafbx genes. Electrotransfer of Merg1a significantly decreases muscle fiber size (12.6%) and increases UPP E3 ligase Murf1 mRNA (2.1-fold) and protein (23.7%), but does not affect Mafbx E3 ligase expression. Neither Merg1a-induced decreased fiber size nor Merg1a-induced increased Murf1 expression is curtailed significantly by coexpression of inactive HR-Foxo3a, a gene encoding a transcription factor known to induce Mafbx expression. CONCLUSIONS The MERG1a K+ channel significantly increases expression of Murf1, but not Mafbx. We explored this expression pattern by expressing inactive Foxo3a and showing that it is not involved in MERG1a-mediated expression of Murf1. These findings suggest that MERG1a may not modulate Murf1 expression through the AKT/FOXO pathway.
Collapse
Affiliation(s)
- Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, 2080 Life Sciences III, 1135 Lincoln Drive, Carbondale, Illinois, 62901, USA; Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bodine SC. Disuse-induced muscle wasting. Int J Biochem Cell Biol 2013; 45:2200-8. [PMID: 23800384 DOI: 10.1016/j.biocel.2013.06.011] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
Abstract
Loss of skeletal muscle mass occurs frequently in clinical settings in response to joint immobilization and bed rest, and is induced by a combination of unloading and inactivity. Disuse-induced atrophy will likely affect every person in his or her lifetime, and can be debilitating especially in the elderly. Currently there are no good therapies to treat disuse-induced muscle atrophy, in part, due to a lack of understanding of the cellular and molecular mechanisms responsible for the induction and maintenance of muscle atrophy. Our current understanding of disuse atrophy comes from the investigation of a variety of models (joint immobilization, hindlimb unloading, bed rest, spinal cord injury) in both animals and humans. Under conditions of unloading, it is widely accepted that there is a decrease in protein synthesis, however, the role of protein degradation, especially in humans, is debated. This review will examine the current understanding of the molecular and cellular mechanisms regulating muscle loss under disuse conditions, discussing the similarities and areas of dispute between the animal and human literature. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
45
|
Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 2013; 6:25-39. [PMID: 23268536 PMCID: PMC3529336 DOI: 10.1242/dmm.010389] [Citation(s) in RCA: 862] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.
Collapse
Affiliation(s)
- Paolo Bonaldo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
| | | |
Collapse
|
46
|
Song YH, Song JL, Delafontaine P, Godard MP. The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 2013; 24:310-9. [PMID: 23628587 PMCID: PMC3732824 DOI: 10.1016/j.tem.2013.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 12/30/2022]
Abstract
Skeletal muscle loss due to aging, motor-neuron degeneration, cancer, heart failure, and ischemia is a serious condition for which currently there is no effective treatment. Insulin-like growth factor 1 (IGF-I) plays an important role in muscle maintenance and repair. Preclinical studies have shown that IGF-I is involved in increasing muscle mass and strength, reducing degeneration, inhibiting the prolonged and excessive inflammatory process due to toxin injury, and increasing the proliferation potential of satellite cells. However, clinical trials have not been successful due to ineffective delivery methods. Choosing the appropriate isoforms or peptides and developing targeted delivery techniques can resolve this issue. Here we discuss the latest development in the field with special emphasis on novel therapeutic approaches.
Collapse
Affiliation(s)
- Yao-Hua Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, 199 Ren Ai Road, Suzhou 215123, China
- Corresponding authors: Yao-Hua Song, M.D. Ph.D., Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, 199 Ren Ai Road, Suzhou 215123, China, Phone: 86-512-65880899/626, Fax: 86-512-65880929,
| | - Jenny L. Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, 199 Ren Ai Road, Suzhou 215123, China
| | - Patrice Delafontaine
- Tulane University Heart and Vascular Institute, Tulane University School of Medicine
- Corresponding authors: Yao-Hua Song, M.D. Ph.D., Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, 199 Ren Ai Road, Suzhou 215123, China, Phone: 86-512-65880899/626, Fax: 86-512-65880929,
| | - Michael P. Godard
- Department of Nutrition and Kinesiology, University of Central Missouri, Warrensburg, MO
- Corresponding authors: Yao-Hua Song, M.D. Ph.D., Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, 199 Ren Ai Road, Suzhou 215123, China, Phone: 86-512-65880899/626, Fax: 86-512-65880929,
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW There are a variety of pathophysiologic conditions that are known to induce skeletal muscle atrophy. However, muscle wasting can occur through multiple distinct signaling pathways with differential sensitivity between selective skeletal muscle fiber subtypes. This review summarizes some of the underlying molecular mechanisms responsible for fiber-specific muscle mass regulation. RECENT FINDINGS Peroxisome proliferator-activated receptor gamma coactivator 1-alpha protects slow-twitch oxidative fibers from denervation/immobilization (disuse)-induced muscle atrophies. Nutrient-related muscle atrophies, such as those induced by cancer cachexia, sepsis, chronic heart failure, or diabetes, are largely restricted to fast-twitch glycolytic fibers, of which the underlying mechanism is usually related to abnormality of protein degradation, including proteasomal and lysosomal pathways. In contrast, nuclear factor kappaB activation apparently serves a dual function by inducing both fast-twitch fiber atrophy and slow-twitch fiber degeneration. SUMMARY Fast-twitch glycolytic fibers are more vulnerable than slow-twitch oxidative fibers under a variety of atrophic conditions related to signaling transduction of Forkhead box O family, autophagy inhibition, transforming growth factor beta family, and nuclear factor-kappaB. The resistance of oxidative fibers may result from the protection of peroxisome proliferator-activated receptor gamma coactivator 1-alpha.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Diabetes Research and Training Center, Bronx, New York, USA
| |
Collapse
|
48
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
49
|
Romanick M, Thompson LV, Brown-Borg HM. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1410-20. [PMID: 23523469 DOI: 10.1016/j.bbadis.2013.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Mark Romanick
- Department of Physical Therapy, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
50
|
Jackman RW, Wu CL, Kandarian SC. The ChIP-seq-defined networks of Bcl-3 gene binding support its required role in skeletal muscle atrophy. PLoS One 2012; 7:e51478. [PMID: 23251550 PMCID: PMC3519692 DOI: 10.1371/journal.pone.0051478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/11/2022] Open
Abstract
NF-kappaB transcriptional activation is required for skeletal muscle disuse atrophy. We are continuing to study how the activation of NF-kB regulates the genes that encode the protein products that cause atrophy. Using ChIP-sequencing we found that Bcl-3, an NF-kB transcriptional activator required for atrophy, binds to the promoters of a number of genes whose collective function describes two major aspects of muscle wasting. By means of bioinformatics analysis of ChIP-sequencing data we found Bcl-3 to be directing transcription networks of proteolysis and energy metabolism. The proteolytic arm of the Bcl-3 networks includes many E3 ligases associated with proteasomal protein degradation, including that of the N-end rule pathway. The metabolic arm appears to be involved in organizing the change from oxidative phosphorylation to glycolysis in atrophying muscle. For one gene, MuRF1, ChIP-sequencing data identified the location of Bcl-3 and p50 binding in the promoter region which directed the creation of deletant and base-substitution mutations of MuRF1 promoter constructs to determine the effect on gene transcription. The results provide the first direct confirmation that the NF-kB binding site is involved in the muscle unloading regulation of MuRF1. Finally, we have combined the ChIP-sequencing results with gene expression microarray data from unloaded muscle to map several direct targets of Bcl-3 that are transcription factors whose own targets describe a set of indirect targets for NF-kB in atrophy. ChIP-sequencing provides the first molecular explanation for the finding that Bcl3 knockout mice are resistant to disuse muscle atrophy. Mapping the transcriptional regulation of muscle atrophy requires an unbiased analysis of the whole genome, which we show is now possible with ChIP-sequencing.
Collapse
Affiliation(s)
- Robert W Jackman
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|