1
|
Miller A, York EM, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat Metab 2023; 5:1820-1835. [PMID: 37798473 PMCID: PMC10626993 DOI: 10.1038/s42255-023-00890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
Collapse
Affiliation(s)
- Anne Miller
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Elisa M York
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Miller A, York E, Stopka S, Martínez-François J, Hossain MA, Baquer G, Regan M, Agar N, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. RESEARCH SQUARE 2023:rs.3.rs-2276903. [PMID: 37546759 PMCID: PMC10402263 DOI: 10.21203/rs.3.rs-2276903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices coupled with fast metabolite preservation, followed by mass spectrometry imaging (MALDI-MSI) to generate spatially resolved metabolomics and isotope tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates, via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, as inhibiting PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MSI on brain slices bridges the gap between live cell physiology and the deep chemical analysis enabled by mass spectrometry.
Collapse
|
3
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
4
|
Tsui M, Biro J, Chan J, Min W, Dobbs K, Notarangelo LD, Grunebaum E. Purine nucleoside phosphorylase deficiency induces p53-mediated intrinsic apoptosis in human induced pluripotent stem cell-derived neurons. Sci Rep 2022; 12:9084. [PMID: 35641516 PMCID: PMC9156781 DOI: 10.1038/s41598-022-10935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Purine nucleoside phosphorylase (PNP) is an important enzyme in the purine degradation and salvage pathway. PNP deficiency results in marked T lineage lymphopenia and severe immunodeficiency. Additionally, PNP-deficient patients and mice suffer from diverse non-infectious neurological abnormalities of unknown etiology. To further investigate the cause for these neurologic abnormalities, induced pluripotent stem cells (iPSC) from two PNP-deficient patients were differentiated into neurons. The iPSC-derived PNP-deficient neurons had significantly reduced soma and nuclei volumes. The PNP-deficient neurons demonstrated increased spontaneous and staurosporine-induced apoptosis, measured by cleaved caspase-3 expression, together with decreased mitochondrial membrane potential and increased cleaved caspase-9 expression, indicative of enhanced intrinsic apoptosis. Greater expression of tumor protein p53 was also observed in these neurons, and inhibition of p53 using pifithrin-α prevented the apoptosis. Importantly, treatment of the iPSC-derived PNP-deficient neurons with exogenous PNP enzyme alleviated the apoptosis. Inhibition of ribonucleotide reductase (RNR) in iPSC derived from PNP-proficient neurons with hydroxyurea or with nicotinamide and trichostatin A increased the intrinsic neuronal apoptosis, implicating RNR dysfunction as the potential mechanism for the damage caused by PNP deficiency. The findings presented here establish a potential mechanism for the neurological defects observed in PNP-deficient patients and reinforce the critical role that PNP has for neuronal viability.
Collapse
Affiliation(s)
- Michael Tsui
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,The Institute of Medical Sciences, The University to Toronto, Toronto, ON, Canada
| | - Jeremy Biro
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan Chan
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Weixian Min
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada. .,The Institute of Medical Sciences, The University to Toronto, Toronto, ON, Canada. .,Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G1X8, Canada.
| |
Collapse
|
5
|
Expression, Purification, Characterization and Cellular Uptake of MeCP2 Variants. Protein J 2022; 41:345-359. [PMID: 35546650 PMCID: PMC9122891 DOI: 10.1007/s10930-022-10054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/05/2022]
Abstract
The transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2) is an intrinsically disordered protein, mutations in which, are implicated in the onset of Rett Syndrome, a severe and debilitating neurodevelopmental disorder. Delivery of this protein fused to the cell-penetrating peptide TAT could allow for the intracellular replenishment of functional MeCP2 and hence potentially serve as a prospective Rett Syndrome therapy. This work outlines the expression, purification and characterization of various TAT-MeCP2 constructs as well as their full-length and shortened eGFP fusion variants. The latter two constructs were used for intracellular uptake studies with subsequent analysis via western blotting and live-cell imaging. All purified MeCP2 samples exhibited high degree of stability and very little aggregation propensity. Full length and minimal TAT-MeCP2-eGFP were found to efficiently transduce into human dermal and murine fibroblasts and localize to cell nuclei. These findings clearly support the utility of MeCP2-based protein replacement therapy as a potential Rett Syndrome treatment option.
Collapse
|
6
|
Steinkellner H, Kempaiah P, Beribisky AV, Pferschy S, Etzler J, Huber A, Sarne V, Neuhaus W, Kuttke M, Bauer J, Arunachalam JP, Christodoulou J, Dressel R, Mildner A, Prinz M, Laccone F. TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome. Int J Biol Macromol 2022; 209:972-983. [PMID: 35460749 DOI: 10.1016/j.ijbiomac.2022.04.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by pathogenic variants leading to functional impairment of the MeCP2 protein. Here, we used purified recombinant MeCP2e1 and MeCP2e2 protein variants fused to a TAT protein transduction domain (PTD) to evaluate their transduction ability into RTT patient-derived fibroblasts and the ability to carry out their cellular function. We then assessed their transduction ability and therapeutic effects in a RTT mouse model. In vitro, TAT-MeCP2e2-eGFP reversed the pathological hyperacetylation of histones H3K9 and H4K16, a hallmark of abolition of MeCP2 function. In vivo, intraperitoneal administration of TAT-MeCP2e1 and TAT-MeCP2e2 extended the lifespan of Mecp2-/y mice by >50%. This was accompanied by rescue of hippocampal CA2 neuron size in animals treated with TAT-MeCP2e1. Taken together, these findings provide a strong indication that recombinant TAT-MeCP2 can reach mouse brains following peripheral injection and can ameliorate the phenotype of RTT mouse models. Thus, our study serves as a first step in the development of a potentially novel RTT therapy.
Collapse
Affiliation(s)
- Hannes Steinkellner
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Prakasha Kempaiah
- Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Alexander V Beribisky
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sandra Pferschy
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Etzler
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Huber
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Sarne
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Center Molecular Diagnostics, 1210 Vienna, Austria
| | - Mario Kuttke
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jayamuruga P Arunachalam
- Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
| | - John Christodoulou
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Discipline of Child & Adolescent Health, Sydney Medical School, Australia
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Alexander Mildner
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Franco Laccone
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; Institute for Human Genetics, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany; Department of Cellular and Molecular Immunology, Georg August University, Universitätsmedizin Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
7
|
Cheng J, Liu HP, Lin WY, Tsai FJ. Identification of contributing genes of Huntington's disease by machine learning. BMC Med Genomics 2020; 13:176. [PMID: 33228685 PMCID: PMC7684976 DOI: 10.1186/s12920-020-00822-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Huntington’s disease (HD) is an inherited disorder caused by the polyglutamine (poly-Q) mutations of the HTT gene results in neurodegeneration characterized by chorea, loss of coordination, cognitive decline. However, HD pathogenesis is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of HD’s mechanism from machine learning is so far unrealized, majorly due to the lack of needed data density.
Methods To harness the knowledge of the HD pathogenesis from the expression profiles of postmortem prefrontal cortex samples of 157 HD and 157 controls, we used gene profiling ranking as the criteria to reduce the dimension to the order of magnitude of the sample size, followed by machine learning using the decision tree, rule induction, random forest, and generalized linear model. Results These four Machine learning models identified 66 potential HD-contributing genes, with the cross-validated accuracy of 90.79 ± 4.57%, 89.49 ± 5.20%, 90.45 ± 4.24%, and 97.46 ± 3.26%, respectively. The identified genes enriched the gene ontology of transcriptional regulation, inflammatory response, neuron projection, and the cytoskeleton. Moreover, three genes in the cognitive, sensory, and perceptual systems were also identified. Conclusions The mutant HTT may interfere with both the expression and transport of these identified genes to promote the HD pathogenesis.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,Brain Diseases Research Center, China Medical University, Taichung, 40402, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan. .,Children's Medical Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| |
Collapse
|
8
|
Grunebaum E, Campbell N, Leon-Ponte M, Xu X, Chapdelaine H. Partial Purine Nucleoside Phosphorylase Deficiency Helps Determine Minimal Activity Required for Immune and Neurological Development. Front Immunol 2020; 11:1257. [PMID: 32695102 PMCID: PMC7338719 DOI: 10.3389/fimmu.2020.01257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Complete or near complete absence of the purine nucleoside phosphorylase (PNP) enzyme causes a profound T cell immunodeficiency and neurological abnormalities that are often lethal in infancy and early childhood. We hypothesized that patients with partial PNP deficiency, characterized by a late and mild phenotype due to residual PNP enzyme, would provide important information about the minimal PNP activity needed for normal development. Methods: Three siblings with a homozygous PNP gene mutation (c.769C>G, p.His257Asp) resulting in partial PNP deficiency were investigated. PNP activity was semi-quantitively assayed by the conversion of [14C]inosine in hemolysates, mononuclear cells, and lymphoblastoid B cells. PNP protein expression was determined by Western Blotting in lymphoblastoid B cells. DNA repair was quantified by measuring viability of lymphoblastoid B cells following ionizing irradiation. Results: A 21-year-old female was referred for recurrent sino-pulmonary infections while her older male siblings, aged 25- and 28- years, did not suffer from significant infections. Two of the siblings had moderately reduced numbers of T, B, and NK cells, while the other had near normal lymphocyte subset numbers. T cell proliferations were normal in the two siblings tested. Hypogammaglobulinemia was noted in two siblings, including one that required immunoglobulin replacement. All siblings had typical (normal) neurological development. PNP activity in various cells from two patients were 8-11% of the normal level. All siblings had normal blood uric acid and increased PNP substrates in the urine. PNP protein expression in cells from the two patients examined was similar to that observed in cells from healthy controls. The survival of lymphoblastoid B cells from 2 partial PNP-deficient patients after irradiation was similar to that of PNP-proficient cells and markedly higher than the survival of cells from a patient with absent PNP activity or a patient with ataxia telangiectasia. Conclusions: Patients with partial PNP deficiency can present in the third decade of life with mild-moderate immune abnormalities and typical development. Near-normal immunity might be achieved with relatively low PNP activity.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Nicholas Campbell
- Department of Medicine, Centre Hospitalier de I'Universite de Montreal, and Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Matilde Leon-Ponte
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaobai Xu
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Centre Hospitalier de I'Universite de Montreal, and Montreal Clinical Research Institute, Montreal, QC, Canada
| |
Collapse
|
9
|
Single enzyme nanoparticle, an effective tool for enzyme replacement therapy. Arch Pharm Res 2020; 43:1-21. [PMID: 31989476 DOI: 10.1007/s12272-020-01216-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
The term "single enzyme nanoparticle" (SEN) refers to a chemically or biologically engineered single enzyme molecule. SENs are distinguished from conventional protein nanoparticles in that they can maintain their individual structure and enzymatic activity following modification. Furthermore, SENs exhibit enhanced properties as biopharmaceuticals, such as reduced antigenicity, and increased stability and targetability, which are attributed to the introduction of specific moieties, such as poly(ethylene glycol), carbohydrates, and antibodies. Enzyme replacement therapy (ERT) is a crucial therapeutic option for controlling enzyme-deficiency-related disorders. However, the unfavorable properties of enzymes, including immunogenicity, lack of targetability, and instability, can undermine the clinical significance of ERT. As shown in the cases of Adagen®, Revcovi®, Palynziq®, and Strensiq®, SEN can be an effective technology for overcoming these obstacles. Based on these four licensed products, we expect that additional SENs will be introduced for ERT in the near future. In this article, we review the concepts and features of SENs, as well as their preparation methods. Additionally, we summarize different types of enzyme deficiency disorders and the corresponding therapeutic enzymes. Finally, we focus on the current status of SENs in ERT by reviewing FDA-approved products.
Collapse
|
10
|
Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:101-123. [PMID: 31976201 PMCID: PMC6964662 DOI: 10.3762/bjnano.11.10] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 05/19/2023]
Abstract
In today's modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.
Collapse
Affiliation(s)
- Ivana Ruseska
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Park M, Xu X, Min W, Sugiman-Marangos SN, Beilhartz GL, Adams JJ, Sidhu SS, Grunebaum E, Melnyk RA. Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Mol Pharm 2018; 15:5217-5226. [DOI: 10.1021/acs.molpharmaceut.8b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | | | - Jarret J. Adams
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | |
Collapse
|
12
|
Use of induced pluripotent stem cells to investigate the effects of purine nucleoside phosphorylase deficiency on neuronal development. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2018. [DOI: 10.14785/lymphosign-2018-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background: Inherited defects in the function of the purine nucleoside phosphorylase (PNP) enzyme can cause severe T cell immune deficiency and early death from infection, autoimmunity, or malignancy. In addition, more than 50% of patients suffer diverse non-infectious neurological complications. However the cause for the neurological abnormalities are not known. Objectives: Differentiate induced pluripotent stem cells (iPSC) from PNP-deficient patients into neuronal cells to better understand the effects of impaired purine metabolism on neuronal development. Methods: Sendai virus was used to generate pluripotent stem cells from PNP-deficient and healthy control lymphoblastoid cells. Cells were differentiated into neuronal cells through the formation of embryoid bodies. Results: After demonstration of pluripotency, normal karyotype, and retention of the PNP deficiency state, iPSC were differentiated into neuronal cells. PNP-deficient neuronal cells had reduced soma and nuclei size in comparison to cells derived from healthy controls. Spontaneous apoptosis, determined by Caspase-3 expression, was increased in PNP-deficient cells. Conclusions: iPSC from PNP-deficient patients can be differentiated into neuronal cells, thereby providing an important tool to study the effects of impaired purine metabolism on neuronal development and potential treatments. Statement of novelty: We report here the first generation and use of neuronal cells derived from induced pluripotent stem cells to model human PNP deficiency, thereby providing an important tool for better understanding and management of this condition.
Collapse
|
13
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Zhang JF, Xiong HL, Cao JL, Wang SJ, Guo XR, Lin BY, Zhang Y, Zhao JH, Wang YB, Zhang TY, Yuan Q, Zhang J, Xia NS. A cell-penetrating whole molecule antibody targeting intracellular HBx suppresses hepatitis B virus via TRIM21-dependent pathway. Am J Cancer Res 2018; 8:549-562. [PMID: 29290826 PMCID: PMC5743566 DOI: 10.7150/thno.20047] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Rationale: Monoclonal antibodies (mAbs) mostly targeting extracellular or cell surface molecules have been widely used in the treatment of various diseases. However, mAbs cannot pass through the cell membrane as efficiently as small compounds, thus limiting their use against intracellular targets. Methods to shuttle antibodies into living cells may largely expand research and application in areas based on mAbs. Hepatitis B virus X protein (HBx) is an important intracellular multi-functional viral protein in the life cycle of hepatitis B virus (HBV). HBx plays essential roles in virus infection and replication and is strongly associated with HBV-related carcinogenesis. Methods: In this study, we developed a cell-penetrating whole molecule antibody targeting HBx (9D11-Tat) by the fusion of a cell penetrating peptide (CPP) on the C-terminus of the heavy chain of a potent mAb specific to HBx (9D11). The anti-HBV effect and mechanism of 9D11-Tat were investigated in cell and mouse models mimicking chronic HBV infection. Results: Our results demonstrated that the recombinant 9D11-Tat antibody could efficiently internalize into living cells and significantly suppress viral transcription, replication, and protein production both in vitro and in vivo. Further analyses suggested the internalized 9D11-Tat antibody could greatly reduce intracellular HBx via Fc binding receptor TRIM21-mediated protein degradation. This process simultaneously stimulated the activations of NF-κB, AP-1, and IFN-β, which promoted an antiviral state of the host cell. Conclusion: In summary, our study offers a new approach to target intracellular pathogenesis-related protein by engineered cell-penetrating mAb expanding their potential for therapeutic applications. Moreover, the 9D11-Tat antibody may provide a novel therapeutic agent against human chronic HBV infection.
Collapse
|
15
|
Kim VHD, Murguia-Favela L, Grunebaum E. Adenosine deaminase deficiency: current treatments and emerging therapeutics. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1418660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vy Hong-Diep Kim
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Luis Murguia-Favela
- Section of Hematology and Immunology, Department of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
16
|
Lu J, Lin L, Dong H, Meng X, Fang F, Wang Q, Huang L, Tan J. Protein therapy using MafA fused to a polyarginine transduction domain attenuates glucose levels of streptozotocin‑induced diabetic mice. Mol Med Rep 2017; 15:4041-4048. [PMID: 28487936 PMCID: PMC5436157 DOI: 10.3892/mmr.2017.6536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/21/2017] [Indexed: 12/02/2022] Open
Abstract
Ectopic expression of musculo aponeurotic fibrosarcoma BZIP transcription factor (Maf) A, has previously been demonstrated to induce insulin expression in non-β-cell lines. Protein transduction domains acting as an alternative delivery strategy may deliver heterogeneous proteins into cells. A sequence of 11 arginine residues (11R) has been demonstrated to act as a particularly efficient vector to introduce proteins into various cell types. The present study constructed 11R-fused MafA to achieve transduction of the protein into cellular membranes and subsequently examined the therapeutic effect of the MafA-11R protein in streptozotocin-induced diabetes. A small animal imaging system was used to demonstrate that 11R introduced proteins into cells. The MafA-11R protein was then injected into the tale vein of healthy male mice, and western blot analysis and immunofluorescence staining was performed to identify the location of the recombinant protein. Ameliorated hyperglycemia in the MafA-11R-treated diabetic mice was demonstrated via the improved intraperitoneal glucose tolerance test (IPGTT) and glucose-stimulated insulin release. Furthermore, insulin producing cells were detected in the jejunum of the MafA-11R treated mice. The results of the present study indicated that MafA-11R delivery may act as a novel and potential therapeutic strategy for the future and will not present adverse effects associated with viral vector-mediated gene therapies.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Lingjing Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Xin Meng
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Fang Fang
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qinghua Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
17
|
Krautwald S, Dewitz C, Fändrich F, Kunzendorf U. Inhibition of regulated cell death by cell-penetrating peptides. Cell Mol Life Sci 2016; 73:2269-84. [PMID: 27048815 PMCID: PMC4887531 DOI: 10.1007/s00018-016-2200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death.
Collapse
Affiliation(s)
- Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| |
Collapse
|
18
|
Zheng Y, You S, Ji C, Yin M, Yang W, Shen J. Development of an Amino Acid-Functionalized Fluorescent Nanocarrier to Deliver a Toxin to Kill Insect Pests. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1375-1380. [PMID: 26640174 DOI: 10.1002/adma.201504993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/05/2015] [Indexed: 06/05/2023]
Abstract
Large-scale cultivation of Bacillus thuringiensis Berliner (Bt) crops has led to the rapid development of drug resistance. Herein, a fluorescent star poly(amino acid) is synthesized with l-isoleucine functionalization for the efficient delivery of either positively or negatively charged exogenous proteins into live cells. Poly(amino acid)s (P1)/Cry1Ab complexes greatly increase the cytotoxicity of the Bt toxin, Cry1Ab, and efficiently kill Bt-resistant pests.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Entomology, China Agricultural University, 100193, Beijing, China
| | - Shusen You
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jie Shen
- Department of Entomology, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
19
|
Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, Liu C, Jiang B, Meng L, Shou C. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci 2015; 106:1596-606. [PMID: 26300396 PMCID: PMC4714678 DOI: 10.1111/cas.12797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a prerequisite of tumor growth and metastasis and, thus, anti‐angiogenesis treatment has become an important part of cancer therapy. A 15‐amino acid peptide of the fibrinogen α chain, fibrinostatin, was previously found in serum samples of gastric cancer patients. Herein we demonstrated that fibrinostatin has anti‐angiogenesis activity in several angiogenesis models and it reduces tumor growth in mouse xenografts and allografts. Increased tumor necrosis and reduced microvessel density in tumors were observed in mouse xenograft models. Fibrinostatin inhibited proliferation and induced apoptosis in HUVEC, but not in cancer cells. In addition, fibrinostatin specifically entered HUVEC. Fibrinostatin also prevented migration, adhesion and tubule formation of HUVEC in vitro. A single‐dose acute toxicity testing and a repeated‐dose chronic toxicity study in the mouse, rat and monkey indicated that fibrinostatin had a wide margin of safety. Taken together, fibrinostatin shows promise as a potential anti‐angiogenesis therapeutic agent.
Collapse
Affiliation(s)
- Chuanke Zhao
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yahui Su
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianzhi Zhang
- Thoracic Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qin Feng
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Like Qu
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lixin Wang
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Caiyun Liu
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Beihai Jiang
- Minimally Invasive Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Meng
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chengchao Shou
- Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
20
|
Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv 2015; 12:1627-36. [PMID: 25994800 DOI: 10.1517/17425247.2015.1046431] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Macromolecular therapeutics, including enzymes, transcription factors, siRNAs, peptides and large synthetic molecules, can potentially be used to treat human diseases by targeting intracellular molecular pathways and modulating biological responses. However, large macromolecules have no ability to enter cells and require delivery vehicles. Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), are a diverse class of peptides that can deliver macromolecules into cells. AREAS COVERED In this review, we cover the uptake and usage of arginine-rich PTDs/CPPs (TAT-PTD, Penetratin/Antp and 8R). We review the endocytosis-mediated uptake of these peptides and highlight three important steps: i) cell association; ii) internalization and iii) endosomal escape. We also discuss the array of different cargos that have been delivered by cationic PTDs/CPPs as well as cellular processes and biological responses that have been modulated. EXPERT OPINION PTDs/CPPs have shown great potential to deliver otherwise undeliverable macromolecular therapeutics into cells for experimentation in cell culture and in animal disease models in vivo. Moreover, over 25 clinical trials have been performed predominantly using the TAT-PTD. However, more work is still needed. Endosomal escape and target-cell specificity remain two of the major future challenges.
Collapse
Affiliation(s)
- Peter Lönn
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA .,b 2 Uppsala University, Science for Life Laboratory, Department of Immunology, Genetics and Pathology , SE-751 08 Uppsala, Sweden
| | - Steven F Dowdy
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA
| |
Collapse
|
21
|
Kariuki SN, Ghodke-Puranik Y, Dorschner JM, Chrabot BS, Kelly JA, Tsao BP, Kimberly RP, Alarcón-Riquelme ME, Jacob CO, Criswell LA, Sivils KL, Langefeld CD, Harley JB, Skol AD, Niewold TB. Genetic analysis of the pathogenic molecular sub-phenotype interferon-alpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes Immun 2015; 16:15-23. [PMID: 25338677 PMCID: PMC4305028 DOI: 10.1038/gene.2014.57] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon-alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. About 40-50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs low IFN-α in over 1550 SLE cases, including genome-wide association study and replication cohorts. In meta-analysis, the top associations in European ancestry were protein kinase, cyclic GMP-dependent, type I (PRKG1) rs7897633 (P(Meta) = 2.75 × 10(-8)) and purine nucleoside phosphorylase (PNP) rs1049564 (P(Meta) = 1.24 × 10(-7)). We also found evidence for cross-ancestral background associations with the ankyrin repeat domain 44 (ANKRD44) and pleckstrin homology domain containing, family F member 2 gene (PLEKHF2) loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic sub-phenotypes becomes an attractive strategy for genetic discovery in complex disease.
Collapse
Affiliation(s)
| | | | - Jessica M. Dorschner
- Department of Immunology and Division of Rheumatology, Mayo Clinic, Rochester, MN
| | - Beverly S. Chrabot
- Gwen Knapp Center for Lupus Research, University of Chicago, Chicago, IL
| | - Jennifer A. Kelly
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Betty P. Tsao
- Department of Medicine, University of California, Los Angeles, CA
| | | | - Marta E. Alarcón-Riquelme
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government
| | - Chaim O. Jacob
- Department of Medicine, University of Southern California, Los Angeles, CA
| | - Lindsey A. Criswell
- Rosalind Russell / Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA
| | - Kathy L. Sivils
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest University, Winston-Salem, NC
| | - John B. Harley
- Cincinnati Children’s Hospital Medical Center and Cincinnati VA Medical Center, Cincinnati, OH
| | - Andrew D. Skol
- Department of Human Genetics, University of Chicago, Chicago, IL
| | - Timothy B. Niewold
- Department of Immunology and Division of Rheumatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
22
|
Parra-Torres NM, Cázares-Raga FE, Kouri JB. Proteomic analysis of rat cartilage: the identification of differentially expressed proteins in the early stages of osteoarthritis. Proteome Sci 2014; 12:55. [PMID: 25435813 PMCID: PMC4246440 DOI: 10.1186/s12953-014-0055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/31/2014] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is a chronic degenerative disease of the articular cartilage, and its diagnosis is based on symptoms and radiological signs that are only present in the late stages of the disease. Due to the limitations in diagnosing OA before the onset of symptoms, such as pain, little is known about the molecular mechanisms involved in the pathogenesis of OA. Experimental OA models are often used to study the kinetics of the progression of this disease. In this report, we conducted a proteomic study of osteoarthritic cartilage during the early stages of OA using an experimental rat model. Results Ten proteins that are differentially expressed under early OA conditions were identified by 2-DE and MALDI-TOF/MS. These proteins mediated many processes, such as glycolysis and energy production (Nme2 and Pnp), cartilage matrix (Col2a1), transcription and protein synthesis (Eef1a1 and DJ-1), signal transduction (CaM and Pebp1), transport (Alb and Hba1), and latexin (Lxn). In addition, changes in Lxn expression in early OA were observed and validated by western blot and immunofluorescence analysis. Conclusions The proteins that we identified indicate that energy metabolism, cartilage matrix remodelling, and protective cellular mechanisms are associated with early OA. In addition, latexin expression during the early stages of OA could be implicated in cartilage repair. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0055-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nancy Marbella Parra-Torres
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), México, DF México
| | - Febe Elena Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), México, DF México
| | - Juan Bautista Kouri
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), México, DF México
| |
Collapse
|
23
|
Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. Inborn errors of metabolism underlying primary immunodeficiencies. J Clin Immunol 2014; 34:753-71. [PMID: 25081841 DOI: 10.1007/s10875-014-0076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
Abstract
A number of inborn errors of metabolism (IEM) have been shown to result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity. These phenotypes are mostly caused by defects that affect the (i) quality or quantity of essential structural building blocks (e.g., nucleic acids, and amino acids), (ii) cellular energy economy (e.g., glucose metabolism), (iii) post-translational protein modification (e.g., glycosylation) or (iv) mitochondrial function. Presenting as multisystemic defects, they also affect innate or adaptive immunity, or both, and display various types of immune dysregulation. Specific and potentially curative therapies are available for some of these diseases, whereas targeted treatments capable of inducing clinical remission are available for others. We will herein review the pathogenesis, diagnosis, and treatment of primary immunodeficiencies (PIDs) due to underlying metabolic disorders.
Collapse
Affiliation(s)
- Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran,
| | | | | | | | | |
Collapse
|
24
|
Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol 2014; 13:630-8. [PMID: 24113229 DOI: 10.1097/aci.0000000000000006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF THE REVIEW To review the recent advances in the understanding and management of the immune and nonimmune effects of inherited adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies. RECENT FINDINGS Abnormal thymocyte development and peripheral T-cell activation in ADA-deficient and PNP-deficient patients cause increased susceptibility to infections and immune dysregulation. The impaired purine homeostasis also damages many other cell types and tissues. Animal studies suggest that defects in surfactant metabolism by alveolar macrophages cause the pulmonary alveolar proteinosis commonly seen in ADA-deficient infants, while toxicity of purine metabolites to cerebellar Purkinje cells may lead to the ataxia frequently observed in PNP deficiency. Patients' outcome with current treatments including enzyme replacement and stem cell transplantations are inferior to those achieved in most severe immunodeficiency conditions. New strategies, including intracellular enzyme replacement, gene therapy and innovative protocols for stem cell transplantations hold great promise for improved outcomes in ADA and PNP deficiency. Moreover, newborn screening and early diagnosis will allow prompt application of these novel treatment strategies, further improving survival and reducing morbidity. SUMMARY Better understanding of the complex immune and nonimmune effects of ADA and PNP deficiency holds great promise for improved patients' outcome.
Collapse
|
25
|
Molecular logistics using cytocleavable polyrotaxanes for the reactivation of enzymes delivered in living cells. Sci Rep 2014; 3:2252. [PMID: 23872688 PMCID: PMC3718191 DOI: 10.1038/srep02252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
The intracellular delivery of enzymes is an essential methodology to extend their therapeutic application. Herein, we have developed dissociable supermolecule-enzyme polyelectrolyte complexes based on reduction-cleavable cationic polyrotaxanes (PRXs) for the reactivation of delivered enzymes. These PRXs are characterized by their supramolecular frameworks of a polymeric chain threading into cyclic molecules, which can form polyelectrolyte complexes with anionic enzymes while retaining their three dimensional structure, although their enzymatic activity is reduced. Upon the addition of a reductant, the PRXs dissociate into their constituent molecules and release the enzymes, resulting in a complete recovery of enzymatic activity. Under the intracellular environment, the PRX-based enzyme complexes showed the highest intracellular enzymatic activity and efficient activation of anticancer prodrugs to induce cytotoxic effects in comparison with the non-dissociable complexes and the commercial cell-penetrating peptide-based reagents. Thus, the intracellularly dissociable supermolecules are an attractive system for delivering therapeutic enzymes into living cells.
Collapse
|
26
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
27
|
Marcus D, Lichtenstein M, Saada A, Lorberboum-Galski H. Replacement of the C6ORF66 assembly factor (NDUFAF4) restores complex I activity in patient cells. Mol Med 2013; 19:124-34. [PMID: 23670274 DOI: 10.2119/molmed.2012.00343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 05/07/2013] [Indexed: 12/21/2022] Open
Abstract
Disorders of the oxidative phosphorylation (OXPHOS) system frequently result in a severe multisystem disease with the consequence of early childhood death. Among these disorders, isolated complex I deficiency is the most frequently diagnosed, accounting for one-third of all cases of respiratory chain deficiency. We chose to focus on complex I deficiency, caused by mutation in the assembly factor chromosome 6, open reading frame 66 (C6ORF66; NADH dehydrogenase [ubiquinone] complex I assembly factor 4 [NDUFAF4]) protein. We used the approach of cell- and organelle-directed protein/enzyme replacement therapy, with the transactivator of transcription (TAT) peptide as the moiety delivery system. This step will enable us to deliver the wild-type assembly factor C6ORF66 into patient cells and their mitochondria, leading to the proper assembly and function of complex I and, as a result, to a functional OXPHOS system. We designed and constructed the TAT-ORF fusion protein by gene fusion techniques, expressed the protein in an Escherichia coli expression system and highly purified it. Our results indicate that TAT-ORF enters patients' cells and their mitochondria rapidly and efficiently. TAT-ORF is biologically active and led to an increase in complex I activity. TAT-ORF also increased the number of patient cells and improved the activity of their mitochondria. Moreover, we observed an increase in ATP production, a decrease in the content of mitochondria and a decrease in the level of reactive oxygen species. Our results suggest that this approach of protein replacement therapy for the treatment of mitochondrial disorders is a promising one.
Collapse
Affiliation(s)
- Dana Marcus
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
28
|
Sun W, Fletcher D, van Heeckeren RC, Davis PB. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J Drug Target 2012; 20:678-90. [PMID: 22845840 DOI: 10.3109/1061186x.2012.712128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DNA nanoparticles (DNA NPs), which self-assemble from DNA plasmids and poly-L-lysine (pLL)-polyethylene glycol (PEG) block copolymers, transfect several cell types in vitro and in vivo with minimal toxicity and immune response. To further enhance the gene transfer efficiency of DNA NP and control its tropism, we established a strategy to efficiently attach peptide ligands to DNA NPs. The non-covalent biotin-streptavidin (SA) interaction was used for ligand conjugation to overcome problems associated with covalent conjugation methods. A fusion protein of SA with the HIV-1 TAT peptide was cloned, expressed, purified and attached to biotinylated DNA NPs. A modified SA system with tetrameric structure but monovalent biotin binding capacity was adopted and shown to reduce the aggregation of biotinylated DNA NPs compared to neutravidin. Compared to unmodified DNA NPs, TAT modified DNA NPs significantly enhanced in vitro gene transfer, particularly at low DNA concentrations. Studies of cellular uptake and cellular distribution of the DNA NPs indicated that attaching TAT enhanced binding of DNA NPs to cell surface but not internalization at high DNA concentrations. In vivo studies showed that TAT modified DNA NPs mediated equal level of gene transfer to the mouse airways via the luminal route compared to unmodified DNA NPs.
Collapse
Affiliation(s)
- Wenchao Sun
- Department of Biochemistry, Case Western Reserve University Schoolof Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
29
|
Roncador A, Oppici E, Montioli R, Maset F, Cellini B. TAT-Mediated Delivery of Human Alanine:Glyoxylate Aminotransferase in a Cellular Model of Primary Hyperoxaluria Type I. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9333-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Sun Y, Sun Y, Lin G, Zhang R, Zhang K, Xie J, Wang L, Li J. Multicolor flow cytometry analysis of the proliferations of T-lymphocyte subsets in vitro by EdU incorporation. Cytometry A 2012; 81:901-9. [PMID: 22930591 DOI: 10.1002/cyto.a.22113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 12/31/2022]
Abstract
EdU (5-ethynyl-2'-deoxyuridine) incorporation has proved advantageous in the studies of cell kinetics, DNA synthesis, and cellular proliferation in vitro and in vivo compared to [(3) H]thymidine incorporation and BrdU (5-bromo-2'-deoxyuridine) incorporation. Here, we describe a method that combines EdU incorporation and immunostaining with flow cytometric analysis to detect the proliferations of T lymphocyte subsets in vitro and optimized the assay's conditions. We found that the number of EdU(+) cells were associated with EdU concentration, incubation time, and the volume of Click reaction solution, the best EdU concentration 10-50 μM, the optimal incubation time 8-12 h and the proper volume of Click volume 100 μl for labeling 1 × 10(6) lymphocytes. Fixation was better to be performed before permeabilization, not together with. Furthermore, the permeabilization detergent reagent, PBS with 0.05% saponin was better than Tris buffer saline (TBS) with 0.1% Triton X-100. In addition, sufficient wash with PBS with 0.05% saponin has no influence on the staining of EdU(+) cells. Also, the lymphocytes incorporating EdU could be stored at 4°C, -80°C, and in liquid nitrogen up to 21 days. The present study will aid in optimization of flow cytometry assay to detect the proliferations of T cell subsets by EdU incorporation and the labeling of cell surface antigens.
Collapse
Affiliation(s)
- Yanli Sun
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, and National Center for Clinical Laboratories, Beijing Hospital of the Ministry of Health, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mansouri A, Min W, Cole CJ, Josselyn SA, Henderson JT, van Eede M, Henkelman RM, Ackerley C, Grunebaum E, Roifman CM. Cerebellar abnormalities in purine nucleoside phosphorylase deficient mice. Neurobiol Dis 2012; 47:201-9. [DOI: 10.1016/j.nbd.2012.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022] Open
|
32
|
Poh KK, Lu P, Qin G, Silver M, Losordo DW, Mendelsohn ME, Zhu Y. Endothelial dysfunction and systemic hypertension by selective cGMP-dependent protein kinase I inhibition using novel cell-penetrating peptide delivered in vivo. Int J Cardiol 2012; 167:2114-9. [PMID: 22748498 DOI: 10.1016/j.ijcard.2012.05.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/30/2012] [Accepted: 05/27/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Nitric oxide (NO) and related nitrovasodilators regulate blood pressure by activation of soluble guanylate cyclase, elevation of cyclic guanosine monophosphate (cGMP), and activation of cGMP-dependent protein kinase (cGPK). Despite the progress of our understanding of the NO/cGMP mediated vasorelaxation, partly through conventional cGPK knock-out mice, the role of cGPK remains unclear. In particular, the downstream target(s) of the kinase are not well defined. We hypothesized that highly selective inhibitors of cGPK delivered in vivo in adult may elucidate the role of the kinase in vasorelaxation and regulation of blood pressure. METHODS AND RESULTS We have adopted a newly developed method of TAT-mediated protein transduction to study NO/cGMP signaling pathways in mice. In vitro, TAT-cGPK inhibitor peptide blocked autophosphorylation of the kinase. The effect of cGPK inhibition on murine blood pressure (BP) was investigated by continuous infusion of 100 μg of the inhibitor into the internal jugular vein over 72 hours. In 8 animals infused with the inhibitor, the mean BP increased by 38 ± 24/31 ± 30 mm Hg (from 108 ± 14/92 ± 19 to 145 ± 13/123 ± 19 mm Hg) whereas in 8 animals injected with either saline (4) or TAT-green fluorescent protein (4), the BP remained the same (from 117 ± 21/101 ± 26 to 119 ± 22/96 ± 30 mm Hg); P=0.001. Ex vivo, using vascular ring assays, NO-dependent relaxation in murine aortas harvested from animals administered with TAT-cGPK inhibitor was inhibited by 25% (sham 76 ± 11%, inhibitor 51 ± 13%). CONCLUSION We demonstrated that highly specific peptide inhibitor of cGPK induced adult murine hypertension through inhibition of nitric oxide mediated relaxation.
Collapse
Affiliation(s)
- Kian-Keong Poh
- Cardiovascular Research, Caritas St Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge St, Boston, MA 02135, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Vyas PM, Tomamichel WJ, Pride PM, Babbey CM, Wang Q, Mercier J, Martin EM, Payne RM. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich's ataxia mouse model. Hum Mol Genet 2012; 21:1230-47. [PMID: 22113996 PMCID: PMC3284115 DOI: 10.1093/hmg/ddr554] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/21/2011] [Indexed: 11/14/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most common inherited human ataxia and results from a deficiency of the mitochondrial protein, frataxin (FXN), which is encoded in the nucleus. This deficiency is associated with an iron-sulfur (Fe-S) cluster enzyme deficit leading to progressive ataxia and a frequently fatal cardiomyopathy. There is no cure. To determine whether exogenous replacement of the missing FXN protein in mitochondria would repair the defect, we used the transactivator of transcription (TAT) protein transduction domain to deliver human FXN protein to mitochondria in both cultured patient cells and a severe mouse model of FRDA. A TAT-FXN fusion protein bound iron in vitro, transduced into mitochondria of FRDA deficient fibroblasts and reduced caspase-3 activation in response to an exogenous iron-oxidant stress. Injection of TAT-FXN protein into mice with a conditional loss of FXN increased their growth velocity and mean lifespan by 53% increased their mean heart rate and cardiac output, increased activity of aconitase and reversed abnormal mitochondrial proliferation and ultrastructure in heart. These results show that a cell-penetrant peptide is capable of delivering a functional mitochondrial protein in vivo to rescue a very severe disease phenotype, and present the possibility of TAT-FXN as a protein replacement therapy.
Collapse
Affiliation(s)
- Piyush M. Vyas
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wendy J. Tomamichel
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - P. Melanie Pride
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Clifford M. Babbey
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qiujuan Wang
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jennifer Mercier
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth M. Martin
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - R. Mark Payne
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Transducible form of p47phox and p67phox compensate for defective NADPH oxidase activity in neutrophils of patients with chronic granulomatous disease. Biochem Biophys Res Commun 2011; 417:162-8. [PMID: 22138397 DOI: 10.1016/j.bbrc.2011.11.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 12/27/2022]
Abstract
Protein delivery to primary cells by protein transduction domain (PTD) serves as a novel measure for manipulation of the cells for biological study and for the treatment of various human conditions. Although the method has been employed to modulate cellular function in vitro, only limited reports are available on its application in the replacement of deficient signaling molecules into primary cells. We examined the potential of recombinant proteins to compensate for defective cytosolic components of the NADPH oxidase complex in chronic granulomatous disease (CGD) neutrophils in both p47(phox) and p67(phox) deficiency. The p47(phox) or p67(phox) protein linked to Hph-1 PTD was effectively expressed in soluble form and transduced into human neutrophils efficiently without eliciting unwanted signal transduction or apoptosis. The delivered protein was stable for more than 24h, expressed in the cytoplasm, translocated to the membrane fraction upon activation, and, most importantly able to restored reactive oxygen species (ROS) production. Although research on human primary neutrophils using the protein delivery system is still limited, our data show that the protein transduction approach for neutrophils may be applicable to the control of local infections in CGD patients by direct delivery of the protein product.
Collapse
|
35
|
Papinazath T, Min W, Sujiththa S, Cohen A, Ackerley C, Roifman CM, Grunebaum E. Effects of purine nucleoside phosphorylase deficiency on thymocyte development. J Allergy Clin Immunol 2011; 128:854-863.e1. [DOI: 10.1016/j.jaci.2011.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/27/2011] [Accepted: 07/18/2011] [Indexed: 01/16/2023]
|
36
|
Abstract
Friedreich's Ataxia is the most common inherited ataxia in man. It is a mitochondrial disease caused by severely reduced expression of the iron binding protein, frataxin. A large GAA triplet expansion in the human FRDA gene encoding this protein inhibits expression of this gene. It is inherited in an autosomal recessive pattern and typically diagnosed in childhood. The primary symptoms include severe and progressive neuropathy, and a hypertrophic cardiomyopathy that may cause death. The cardiomyopathy is difficult to treat and is frequently associated with arrhythmias, heart failure, and intolerance of cardiovascular stress, such as surgeries. Innovative approaches to therapy, such as histone deacetylase inhibitors, and enzyme replacement with cell penetrant peptide fusion proteins, hold promise for this and other similar mitochondrial disorders. This review will focus on the basic findings of this disease, and the cardiomyopathy associated with its diagnosis.
Collapse
Affiliation(s)
- R Mark Payne
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202
| |
Collapse
|
37
|
Payne RM, Pride PM, Babbey CM. Cardiomyopathy of Friedreich's ataxia: use of mouse models to understand human disease and guide therapeutic development. Pediatr Cardiol 2011; 32:366-78. [PMID: 21360265 PMCID: PMC3097037 DOI: 10.1007/s00246-011-9943-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/11/2011] [Indexed: 01/02/2023]
Abstract
Friedreich's ataxia is a multisystem disorder of mitochondrial function affecting primarily the heart and brain. Patients experience a severe cardiomyopathy that can progress to heart failure and death. Although the gene defect is known, the precise function of the deficient mitochondrial protein, frataxin, is not known and limits therapeutic development. Animal models have been valuable for understanding the basic events of this disease. A significant need exists to focus greater attention on the heart disease in Friedreich's ataxia, to understand its long-term outcome, and to develop new therapeutic strategies using existing medications and approaches. This review discusses some key features of the cardiomyopathy in Friedreich's ataxia and potential therapeutic developments.
Collapse
Affiliation(s)
- R Mark Payne
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, R4302, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
38
|
Wenz T, Williams SL, Bacman SR, Moraes CT. Emerging therapeutic approaches to mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:219-29. [PMID: 20818736 DOI: 10.1002/ddrr.109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to the therapy of mitochondrial disorders, some of which are targeted to specific conditions whereas others may be applicable to a more diverse group of patients.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Since the discovery over 15 years ago of a protein transcription factor that possessed the ability to cross the plasma membrane, cell-penetrating peptides (CPPs) have been evaluated for the ability to transport diverse cargoes into cells, tissues, and organs. Certain CPPs have been used for the intracellular delivery of information-rich molecules to modulate protein-protein interactions and thereby inhibit key cellular mechanisms of disease. The ability to introduce drugs into cells allows the conventional biodistribution of drugs to be altered in order to favorably impact toxicity, patient compliance, and other treatment factors. In this monograph, we present the current status and future prospects for the application of CPPs to the development of human therapeutics. We discuss some of the advantages and disadvantages of using CPPs in the in vivo setting, and review the current status of a number of preclinical and human clinical studies of CPP-mediated delivery of therapeutics. These include CPP-conjugated moieties directed against a growing variety of targets and disease areas, including cancer, cardiology, pain, and stroke. Our discussion focuses on those therapeutics that have been tested in humans, including a CPP conjugate for the treatment of acute myocardial infarction. The promising results obtained in a number of these studies indicate that CPPs may have an important role in the development of novel therapeutics.
Collapse
|
40
|
Johansson HJ, Andaloussi SEL, Langel U. Mimicry of protein function with cell-penetrating peptides. Methods Mol Biol 2011; 683:233-247. [PMID: 21053134 DOI: 10.1007/978-1-60761-919-2_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins are essential components of cellular processes inside cells, and their interactions between each other and with genes are important for the normal physiological functioning of cells as well as for disease states. Modulating protein interactions by different means can potentially control these interactions and restore normal function to diseased cells. The ways to do so are multiple, and such efforts often begin with knowledge of potential target proteins in order to devise mediators that retain the function of the original protein, i.e., mimic the protein functions. An alternative strategy is to utilize protein mimics to inhibit target proteins rather than restoring the activity of a protein. The vast majority of protein -mimics exploited to date have been designed to inhibit the activity of oncogenes or activate tumor suppressors for the purpose of tumor therapy. These protein mimics are usually based on small organic compounds or peptides, derived from interaction surfaces of the proteins, and in some cases, full proteins have been exploited. Although peptides and proteins are naturally highly specific and efficient inside cells, they suffer from low bioavailability resulting from their inability to enter cells. One strategy increasingly employed to facilitate the internalization of peptides and proteins has been to chemically conjugate them to cell-penetrating peptides (CPP) or to recombinantly express protein-CPP fusion constructs.This chapter provides an overview of some of the aspects of perturbing and mimicking protein interactions using peptides and proteins and CPP as transport vectors.
Collapse
Affiliation(s)
- Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
41
|
Rapoport M, Salman L, Sabag O, Patel MS, Lorberboum-Galski H. Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med (Berl) 2010; 89:161-70. [PMID: 21079907 DOI: 10.1007/s00109-010-0693-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 11/25/2022]
Abstract
Medicine today offers no cure for patients suffering from mitochondrial disorders, such as lipoamide dehydrogenase (LAD; also known as E3) deficiency, and treatment is limited to symptomatic care. LAD is one of the components of the α-ketoacid dehydrogenase complexes, which are mitochondrial multienzyme complexes crucial for the metabolism of carbohydrates and amino acids. Recently, we tested the therapeutic approach for treating mitochondrial disorders whereby the activity of multicomponent complexes in the mitochondria is restored by TAT-mediated enzyme replacement therapy (ERT). The LAD deficiency disease was used before as a proof-of-principle in vitro, in patients' cells, utilizing the TAT-LAD fusion protein. In this report, we present successful TAT-mediated ERT in an in vivo mouse model using E3-deficient mice. We demonstrate the delivery of TAT-LAD into E3-deficient mice tissues and that a single administration of TAT-LAD results in a significant increase in the enzymatic activity of the mitochondrial multienzyme complex pyruvate dehydrogenase complex within the liver, heart and, most importantly, the brain of TAT-LAD-treated E3-deficient mice. We believe that this TAT-mediated ERT approach could change the management of mitochondrial disorders and of other metabolic diseases in modern medicine.
Collapse
Affiliation(s)
- Matan Rapoport
- Department of Biochemistry and Molecular Biology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | | | | | | | | |
Collapse
|
42
|
Kim HR, Leavis PC, Graceffa P, Gallant C, Morgan KG. A new method for direct detection of the sites of actin polymerization in intact cells and its application to differentiated vascular smooth muscle. Am J Physiol Cell Physiol 2010; 299:C988-93. [PMID: 20686075 DOI: 10.1152/ajpcell.00210.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we report and validate a new method, suitable broadly, for use in differentiated cells and tissues, for the direct visualization of actin polymerization under physiological conditions. We have designed and tested different versions of fluorescently labeled actin, reversibly attached to the protein transduction tag TAT, and have introduced this novel reagent into intact differentiated vascular smooth muscle cells (dVSMCs). A thiol-reactive version of the TAT peptide was synthesized by adding the amino acids glycine and cysteine to its NH(2)-terminus and forming a thionitrobenzoate adduct: viz. TAT-Cys-S-STNB. This peptide reacts readily with G-actin, and the complex is rapidly taken up by freshly enzymatically isolated dVSMC, as indicated by the fluorescence of a FITC tag on the TAT peptide. By comparing different versions of the construct, we determined that the optimal construct for biological applications is a nonfluorescently labeled TAT peptide conjugated to rhodamine-labeled actin. When TAT-Cys-S-STNB-tagged rhodamine actin (TSSAR) was added to live, freshly enzymatically isolated cells, we observed punctae of incorporated actin at the cortex of the cell. The punctae are indistinguishable from those we have previously reported to occur in the same cell type when rhodamine G-actin is added to permeabilized cells. Thus this new method allows the delivery of labeled G-actin into intact cells without disrupting the native state and will allow its further use to study the effect of physiological intracellular Ca(2+) concentration transients and signal transduction on actin dynamics in intact cells.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
43
|
Krautwald S, Ziegler E, Rölver L, Linkermann A, Keyser KA, Steen P, Wollert KC, Korf-Klingebiel M, Kunzendorf U. Effective blockage of both the extrinsic and intrinsic pathways of apoptosis in mice by TAT-crmA. J Biol Chem 2010; 285:19997-20005. [PMID: 20427266 DOI: 10.1074/jbc.m110.122127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence accumulates that in clinically relevant cell death, both the intrinsic and extrinsic apoptotic pathway synergistically contribute to organ failure. In search for an inhibitor of apoptosis that provides effective blockage of these pathways, we analyzed viral proteins that evolved to protect the infected host cells. In particular, the cowpox virus protein crmA has been demonstrated to be capable of blocking key caspases of both pro-apoptotic pathways. To deliver crmA into eukaryotic cells, we fused the TAT protein transduction domain of HIV to the N terminus of crmA. In vitro, the TAT-crmA fusion protein was efficiently translocated into target cells and inhibited apoptosis mediated through caspase-8, caspase-9, and caspase-3 after stimulation with alpha-Fas, etoposide, doxorubicin, or staurosporine. The extrinsic apoptotic pathway was investigated following alpha-Fas stimulation. In vivo 90% of TAT-crmA-treated animals survived an otherwise lethal dose of alpha-Fas and showed protection from Fas-induced organ failure. To examine the intrinsic apoptotic pathway, we investigated the survival of mice treated with an otherwise lethal dose of doxorubicin. Whereas all control mice died within 31 days, 40% of mice that concomitantly received intraperitoneal injections of TAT-crmA survived. To test the ability to comprehensively block both the intrinsic and extrinsic apoptotic pathway in a clinically relevant setting, we employed a murine cardiac ischemia-reperfusion model. TAT-crmA reduced infarction size by 40% and preserved left ventricular function. In summary, these results provide a proof of principle for the inhibition of apoptosis with TAT-crmA, which might provide a new treatment option for ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Stefan Krautwald
- Division of Nephrology and Hypertension, University of Kiel, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kersemans V, Cornelissen B. Targeting the Tumour: Cell Penetrating Peptides for Molecular Imaging and Radiotherapy. Pharmaceuticals (Basel) 2010; 3:600-620. [PMID: 27713270 PMCID: PMC4033971 DOI: 10.3390/ph3030600] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/02/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022] Open
Abstract
Over the last couple of years, the number of original papers and reviews discussing various applications of cell penetrating peptides (CPPs) has grown exponentially. This is not remarkable since CPPs are capable of transporting the most varying cargo across cell membranes which is one of the biggest problems in drug delivery and targeted therapy. In this review, we focus on the use of CPPs and related peptides for delivery of imaging contrast agents and radionuclides to cells and tissues with the ultimate goal of in vivo molecular imaging and molecular radiotherapy of intracellular and even intranuclear targets.
Collapse
Affiliation(s)
- Veerle Kersemans
- Gray Institute for Radiation Oncology and Biology, University of Oxford/Old Road Campus Research Building, Off Roosevelt Drive, Churchill Hospital, Oxford OX3 7DQ, UK.
| | - Bart Cornelissen
- Gray Institute for Radiation Oncology and Biology, University of Oxford/Old Road Campus Research Building, Off Roosevelt Drive, Churchill Hospital, Oxford OX3 7DQ, UK.
| |
Collapse
|
45
|
Räägel H, Säälik P, Pooga M. Peptide-mediated protein delivery-which pathways are penetrable? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2240-8. [PMID: 20170627 DOI: 10.1016/j.bbamem.2010.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/13/2023]
Abstract
The growing number of reports on the effective cargo delivery by cell-penetrating peptides (CPPs) has extensively widened our knowledge about the mechanisms involved in CPP-mediated delivery. However, the data available on the internalization mode of CPP-cargo complexes are often conflicting and/or equivocal. Moreover, the intracellular trafficking of CPP-cargo complexes is, to date, relatively unexplored resulting in only minimal information about what is really happening to the complexes inside the cell. This review focuses on defining the endocytic pathways engaged in the transduction of CPP-cargo complexes and seeks to determine the extent of different endocytic routes required for effective uptake. In addition, the intracellular pathways utilized during the trafficking and sorting of CPP-cargo complexes as well as the ultimate fate of the complexes inside cells will be discussed.
Collapse
Affiliation(s)
- Helin Räägel
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | | |
Collapse
|
46
|
Yu Y, Arora A, Min W, Roifman CM, Grunebaum E. EdU incorporation is an alternative non-radioactive assay to [(3)H]thymidine uptake for in vitro measurement of mice T-cell proliferations. J Immunol Methods 2009; 350:29-35. [PMID: 19647746 DOI: 10.1016/j.jim.2009.07.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/11/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE T lymphocyte proliferations can be measured by [(3)H]thymidine incorporation. However, many labs avoid this technique because of the need to use radioactive substrates. In addition, [(3)H]thymidine incorporation method does not permit simultaneous characterization of the proliferating cells. We developed the 5-ethynyl-2'-deoxyuridine (EdU) and Cu(I)-catalyzed cycloaddition "click" reaction assay to measure T-cell responses by flow cytometry. METHODS Spleen cells from normal, immune-deficient purine nucleoside phosphorylase (PNP) defective (PNP-/-) mice or PNP-/- mice with partial immune reconstitution were stimulated with anti-CD3 antibodies. The correlation (r) between [(3)H]thymidine and EdU incorporations into stimulated T cells was measured and the stimulation index (SI), the ratio between stimulated and non-stimulated cells, was calculated. Flow cytometry was used to characterize the proliferating cells. RESULTS EdU and [(3)H]thymidine incorporation into normal spleen cells were strongly correlated (r=0.89). Following stimulation, EdU incorporation into spleen cells from normal and immune-reconstituted PNP-/- mice was significantly increased compared to PNP-/- immune-deficient mice. Immune-deficient PNP-/- mice had increased [(3)H]thymidine and EdU incorporation into non-stimulated spleen cells, indicative of spontaneous proliferation. Analysis of EdU incorporation showed that the increased proliferation was due primarily to cells expressing CD3, CD4 and IgM. CONCLUSION EdU-Click technology accurately measures proliferation of murine T lymphocyte and can be used as an alternative to [(3)H]thymidine assays. The EdU-Click technology also allows identification of proliferating cells.
Collapse
Affiliation(s)
- Yongmao Yu
- The Division of Allergy and Clinical Immunology and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
47
|
Rapoport M, Lorberboum-Galski H. TAT-based drug delivery system--new directions in protein delivery for new hopes? Expert Opin Drug Deliv 2009; 6:453-63. [PMID: 19413454 DOI: 10.1517/17425240902887029] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There has been great progress in the use of TAT-based drug delivery systems for the delivery of different macromolecules into cells in vitro and in vivo, thus circumventing the bioavailability barrier that is a problem for so many drugs. There are many advantages to using this system, such as the ability to deliver these cargoes into all types of cells in culture and into all organs in vivo. This system can even deliver cargoes into the brain across the blood-brain barrier. In addition, the ability to target specific intracellular sub-localizations such as the nuclei, the mitochondria and lysosomes further expands the possibilities of this drug delivery system to the development of sub-cellular organelle-targeted therapy. The therapeutic applications seem almost unlimited, and the use of the TAT-based delivery system has extended from proteins to a large variety of cargoes such as oligonucleotides, imaging agents, low molecular mass drugs, nanoparticles, micelles and liposomes. In this review the most recent advances in the use of the TAT-based drug delivery system will be described, mainly discussing TAT-mediated protein delivery and the use of the TAT system for enzyme replacement therapy.
Collapse
Affiliation(s)
- Matan Rapoport
- Faculty of Medicine Hebrew University, Department of Cellular Biochemistry and Human Genetics, Jerusalem, Israel
| | | |
Collapse
|
48
|
Liao P, Toro A, Min W, Lee S, Roifman CM, Grunebaum E. Lentivirus gene therapy for purine nucleoside phosphorylase deficiency. J Gene Med 2009; 10:1282-93. [PMID: 18924118 DOI: 10.1002/jgm.1261] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Purine nucleoside phosphorylase (PNP) deficiency causes the accumulation of toxic purine metabolites and lethal T cell immune defects, which might be corrected by expressing PNP by transplanting bone marrow (BM) cells transduced with lentiviral vectors containing the human PNP gene (lentiPNP). METHODS Lymphocytes from a single PNP-deficient patient as well as lymphocytes, fibroblasts and BM from PNP-deficient (PNP (-/-)) mice were transduced with lentiPNP. Female PNP (-/-) mice were transplanted with lentiPNP transduced BM cells from male PNP (-/-) mice or normal BM. RESULTS LentiPNP transduction significantly increased PNP expression in PNP-deficient human lymphocytes, murine lymphocytes, fibroblasts and BM cells. LentiPNP transduction also significantly improved the proliferation of PNP (-/-) murine lymphocyte and survival of irradiated PNP (-/-) fibroblasts. Polymerase chain reaction analysis demonstrated efficient transduction of lentiPNP into total and lineage-depleted BM cells grown ex vivo. LentiPNP transduced PNP (-/-) BM cells transplanted into PNP (-/-) mice expressed PNP in vivo, partially restored urinary uric acid secretion, improved thymocytes maturation, increased weight gain and extended survival of the mice. However, 12 weeks after transplant, the benefit of lentiPNP transduced cells and normal BM diminished and the percentage of engrafted donor cells decreased. CONCLUSIONS This short-term observational study provides the first in vivo proof that gene therapy may correct some of the abnormalities associated with PNP deficiency. Better gene transduction and expression, as well as improved cell engraftment, are required to further advance PNP gene therapy.
Collapse
Affiliation(s)
- Pu Liao
- Division of Allergy and Clinical Immunology, Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Sirsi SR, Schray RC, Guan X, Lykens NM, Williams JH, Erney ML, Lutz GJ. Functionalized PEG-PEI copolymers complexed to exon-skipping oligonucleotides improve dystrophin expression in mdx mice. Hum Gene Ther 2008; 19:795-806. [PMID: 18647087 DOI: 10.1089/hum.2007.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exon-skipping oligonucleotides (ESOs) with 2'-O-methyl modifications are promising compounds for the treatment of Duchenne muscular dystrophy (DMD). However, the usefulness of these compounds is limited by their poor delivery profile to muscle tissue in vivo. We previously established that copolymers made of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) enhanced ESO transfection in skeletal muscle of mdx mice, resulting in widespread distribution of dystrophin-positive fibers, but limited dystrophin expression by Western blot. In an attempt to improve ESO delivery and dystrophin expression, a new formulation of PEG-PEI copolymer was used, along with functionalized derivatives containing either the cell-penetrating peptide TAT (trans-activator of transcription), adsorbed colloidal gold (CG), or both TAT and CG. Tibialis anterior muscles were given three intramuscular injections of various PEG-PEI-ESO polyplexes (3 days apart; 5 microg of ESO per injection) and muscles were harvested 3 weeks after the first injection. Surface modifications of PEG-PEI copolymers with TAT showed the highest level of dystrophin recovery, with a 6-fold increase in dystrophin-positive fibers compared with ESO alone and up to 30% of normal dystrophin expression by Western blot. The adsorption of CG to either PEG-PEI or TAT-PEG-PEI copolymers showed no further improvement in dystrophin expression. Our data indicate that TAT-modified PEG-PEI copolymers are effective carriers for delivery of ESOs to skeletal muscle and are promising compounds for the therapeutic treatment of DMD.
Collapse
Affiliation(s)
- Shashank R Sirsi
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Massodi I, Raucher D. A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells. J Drug Target 2008; 15:611-22. [DOI: 10.1080/10611860701502780] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|