1
|
Jiang Z, Feng T, Lu Z, Wei Y, Meng J, Lin CP, Zhou B, Liu C, Zhang H. PDGFRb + mesenchymal cells, but not NG2 + mural cells, contribute to cardiac fat. Cell Rep 2021; 34:108697. [PMID: 33535029 DOI: 10.1016/j.celrep.2021.108697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding cellular origins of cardiac adipocytes (CAs) can offer important implications for the treatment of fat-associated cardiovascular diseases. Here, we perform lineage tracing studies by using various genetic models and find that cardiac mesenchymal cells (MCs) contribute to CAs in postnatal development and adult homeostasis. Although PDGFRa+ and PDGFRb+ MCs both give rise to intramyocardial adipocytes, PDGFRb+ MCs are demonstrated to be the major source of intramyocardial adipocytes. Moreover, we find that PDGFRb+ cells are heterogenous, as PDGFRb is expressed not only in pericytes and smooth muscle cells (SMCs) but also in some subendocardial, pericapillary, or adventitial PDGFRa+ fibroblasts. Dual-recombinase-mediated intersectional genetic lineage tracing reveals that PDGFRa+PDGFRb+ double-positive periendothelial fibroblasts contribute to intramyocardial adipocytes. In contrast, SMCs and NG2+ pericytes do not contribute to CAs. These in vivo findings demonstrate that PDGFRb+ MCs, but not NG2+ coronary vascular mural cells, are the major source of intramyocardial adipocytes.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanxin Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Sudden Cardiac Death and Copy Number Variants: What Do We Know after 10 Years of Genetic Analysis? Forensic Sci Int Genet 2020; 47:102281. [PMID: 32248082 DOI: 10.1016/j.fsigen.2020.102281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Over the last ten years, analysis of copy number variants has increasingly been applied to the study of arrhythmogenic pathologies associated with sudden death, mainly due to significant advances in the field of massive genetic sequencing. Nevertheless, few published reports have focused on the prevalence of copy number variants associated with sudden cardiac death. As a result, the frequency of these genetic alterations in arrhythmogenic diseases as well as their genetic interpretation and clinical translation has not been established. This review summarizes the current available data concerning copy number variants in sudden cardiac death-related diseases.
Collapse
|
3
|
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) in a young female athlete at 36 weeks gestation: a case report. Pathol Res Pract 2017; 213:1302-1305. [PMID: 28843747 DOI: 10.1016/j.prp.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
Abstract
A 26year old east African professional athlete presented to the obstetric clinic for a routine visit at 36 weeks gestation. She had a history of Right Ventricular Outflow Tract - Ventricular Tachycardia (RVOT-VT) with an episode of cardiac arrest in the past, and had been treated with ablation 4 years earlier. Her current visit was uneventful, her pregnancy progressing normally. Following the visit she went to a local restaurant where she suffered a cardiac arrest that was unresponsive to therapy. Chest compressions were continued from the time of her collapse until an emergency caesarian section was performed, delivering a healthy female infant. At autopsy a focal area of subtle pallor and myocardial thinning was present at the apex of the right ventricle. Histology showed myocyte degeneration and loss with focal full thickness replacement of myocardium by adipose tissue, consistent with the fatty form of arrhythmogenic right ventricular cardiomyopathy (ARVC). Molecular studies revealed a variant of unknown significance in the MYBPC3 gene, but no variant known to be associated with ARVC. In view of the subtlety of the lesion on gross examination this diagnosis could have been easily missed, emphasizing the importance of performing histologic examination of subtle gross cardiac lesions.
Collapse
|
4
|
Abstract
The nuclear lamina is a critical structural domain for the maintenance of genomic stability and whole-cell mechanics. Mutations in the LMNA gene, which encodes nuclear A-type lamins lead to the disruption of these key cellular functions, resulting in a number of devastating diseases known as laminopathies. Cardiomyopathy is a common laminopathy and is highly penetrant with poor prognosis. To date, cell mechanical instability and dysregulation of gene expression have been proposed as the main mechanisms driving cardiac dysfunction, and indeed discoveries in these areas have provided some promising leads in terms of therapeutics. However, important questions remain unanswered regarding the role of lamin A dysfunction in the heart, including a potential role for the toxicity of lamin A precursors in LMNA cardiomyopathy, which has yet to be rigorously investigated.
Collapse
Affiliation(s)
- Daniel Brayson
- a King's College London, The James Black Centre , London , United Kingdom
| | | |
Collapse
|
5
|
Martherus R, Jain R, Takagi K, Mendsaikhan U, Turdi S, Osinska H, James JF, Kramer K, Purevjav E, Towbin JA. Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/β-catenin signaling. Am J Physiol Heart Circ Physiol 2015; 310:H174-87. [PMID: 26545710 DOI: 10.1152/ajpheart.00295.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/02/2015] [Indexed: 12/13/2022]
Abstract
Arrhythmogenic ventricular cardiomyopathy (AVC) is a frequent underlying cause for arrhythmias and sudden cardiac death especially during intense exercise. The mechanisms involved remain largely unknown. The purpose of this study was to investigate how chronic endurance exercise contributes to desmoplakin (DSP) mutation-induced AVC pathogenesis. Transgenic mice with overexpression of desmoplakin, wild-type (Tg-DSP(WT)), or the R2834H mutant (Tg-DSP(R2834H)) along with control nontransgenic (NTg) littermates were kept sedentary or exposed to a daily running regimen for 12 wk. Cardiac function and morphology were analyzed using echocardiography, electrocardiography, histology, immunohistochemistry, RNA, and protein analysis. At baseline, 4-wk-old mice from all groups displayed normal cardiac function. When subjected to exercise, all mice retained normal cardiac function and left ventricular morphology; however, Tg-DSP(R2834H) mutants displayed right ventricular (RV) dilation and wall thinning, unlike NTg and Tg-DSP(WT). The Tg-DSP(R2834H) hearts demonstrated focal fat infiltrations in RV and cytoplasmic aggregations consisting of desmoplakin, plakoglobin, and connexin 43. These aggregates coincided with disruption of the intercalated disks, intermediate filaments, and microtubules. Although Tg-DSP(R2834H) mice already displayed high levels of p-GSK3-β(Ser9) and p-AKT1(Ser473) under sedentary conditions, decrease of nuclear GSK3-β and AKT1 levels with reduced p-GSK3-β(Ser9), p-AKT1(Ser473), and p-AKT1(Ser308) and loss of nuclear junctional plakoglobin was apparent after exercise. In contrast, Tg-DSP(WT) showed upregulation of p-AKT1(Ser473), p-AKT1(Ser308), and p-GSK3-β(Ser9) in response to exercise. Our data suggest that endurance exercise accelerates AVC pathogenesis in Tg-DSP(R2834H) mice and this event is associated with perturbed AKT1 and GSK3-β signaling. Our study suggests a potential mechanism-based approach to exercise management in patients with AVC.
Collapse
Affiliation(s)
- Ruben Martherus
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rahul Jain
- Department of Cardiology, Indiana University, Indianapolis, Indiana; and
| | - Ken Takagi
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Jikei University, Tokyo, Japan
| | - Uzmee Mendsaikhan
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Subat Turdi
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hanna Osinska
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeanne F James
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristen Kramer
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Enkhsaikhan Purevjav
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey A Towbin
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
6
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
7
|
Plakophilin-2 promotes tumor development by enhancing ligand-dependent and -independent epidermal growth factor receptor dimerization and activation. Mol Cell Biol 2014; 34:3843-54. [PMID: 25113560 DOI: 10.1128/mcb.00758-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epidermal growth factor (EGF) receptor (EGFR) has been implicated in tumor development and invasion. Dimerization and autophosphorylation of EGFR are the critical events for EGFR activation. However, the regulation of EGF-dependent and EGF-independent dimerization and phosphorylation of EGFR has not been fully understood. Here, we report that cytoplasmic protein plakophilin-2 (PKP2) is a novel positive regulator of EGFR signaling. PKP2 specifically interacts with EGFR via its N-terminal head domain. Increased PKP2 expression enhances EGF-dependent and EGF-independent EGFR dimerization and phosphorylation. Moreover, PKP2 knockdown reduces EGFR phosphorylation and attenuates EGFR-mediated signal activation, resulting in a significant decrease in proliferation and migration of cancer cells and tumor development. Our results indicate that PKP2 is a novel activator of the EGFR signaling pathway and a potential new drug target for inhibiting tumor growth.
Collapse
|
8
|
Kowalczyk AP, Green KJ. Structure, function, and regulation of desmosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:95-118. [PMID: 23481192 DOI: 10.1016/b978-0-12-394311-8.00005-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desmosomes are adhesive intercellular junctions that mechanically integrate adjacent cells by coupling adhesive interactions mediated by desmosomal cadherins to the intermediate filament cytoskeletal network. Desmosomal cadherins are connected to intermediate filaments by densely clustered cytoplasmic plaque proteins comprising members of the armadillo gene family, including plakoglobin and plakophilins, and members of the plakin family of cytolinkers, such as desmoplakin. The importance of desmosomes in tissue integrity is highlighted by human diseases caused by mutations in desmosomal genes, autoantibody attack of desmosomal cadherins, and bacterial toxins that selectively target desmosomal cadherins. In addition to reviewing the well-known roles of desmosomal proteins in tissue integrity, this chapter also highlights the growing appreciation for how desmosomal proteins are integrated with cell signaling pathways to contribute to vertebrate tissue organization and differentiation.
Collapse
Affiliation(s)
- Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
9
|
Paul M, Wichter T, Fabritz L, Waltenberger J, Schulze-Bahr E, Kirchhof P. Arrhythmogenic right ventricular cardiomyopathy: an update on pathophysiology, genetics, diagnosis, and risk stratification. Herzschrittmacherther Elektrophysiol 2012; 23:186-95. [PMID: 23011601 DOI: 10.1007/s00399-012-0233-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 12/17/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy accounting for life-threatening ventricular tachyarrhythmias and sudden death in young individuals and athletes. Over the past years, mutations in desmosomal genes have been identified as disease-causative. However, genetic heterogeneity and variable phenotypic expression alongside with diverse disease progression still render the evaluation of its prognostic implication difficult. ARVC was initially entered into the canon of cardiomyopathies of the World Health Organization in 1995, and international efforts have resulted in the 2010 modified diagnostic criteria for ARVC. Despite all additional insights into pathophysiology, clinical management, and modern risk stratification, under-/misdiagnosing of ARVC remains a problem and hampers reliable statements on the incidence, prevalence, and natural course of the disease.This review provides a comprehensive overview of the current literature on the pathogenesis, diagnosis, treatment, and prognosis of ARVC and sheds some light on potential new developments in these areas.
Collapse
Affiliation(s)
- M Paul
- Division of Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1 (Gebäude A1), 48149, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Rickelt S. Plakophilin-2: a cell-cell adhesion plaque molecule of selective and fundamental importance in cardiac functions and tumor cell growth. Cell Tissue Res 2012; 348:281-94. [PMID: 22281687 PMCID: PMC3349858 DOI: 10.1007/s00441-011-1314-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/16/2011] [Indexed: 01/23/2023]
Abstract
Within the characteristic ensemble of desmosomal plaque proteins, the armadillo protein plakophilin-2 (Pkp2) is known as a particularly important regulatory component in the cytoplasmic plaques of various other cell-cell junctions, such as the composite junctions (areae compositae) of the myocardiac intercalated disks and in the variously-sized and -shaped complex junctions of permanent cell culture lines derived therefrom. In addition, Pkp2 has been detected in certain protein complexes in the nucleoplasm of diverse kinds of cells. Using a novel set of highly sensitive and specific antibodies, both kinds of Pkp2, the junctional plaque-bound and the nuclear ones, can also be localized to the cytoplasmic plaques of diverse non-desmosomal cell-cell junction structures. These are not only the puncta adhaerentia and the fasciae adhaerentes connecting various types of highly proliferative non-epithelial cells growing in culture but also some very proliferative states of cardiac interstitial cells and cardiac myxomata, including tumors growing in situ as well as fetal stages of heart development and cultures of valvular interstitial cells. Possible functions and assembly mechanisms of such Pkp2-positive cell-cell junctions as well as medical consequences are discussed.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
11
|
Rickelt S, Pieperhoff S. Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases. Cell Tissue Res 2012; 348:325-33. [PMID: 22450909 PMCID: PMC3349860 DOI: 10.1007/s00441-012-1365-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 01/30/2023]
Abstract
In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-β3 (TGFβ3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Building TP4, 69120 Heidelberg, Germany
- Progen Biotechnik, Heidelberg, Germany
| | - Sebastian Pieperhoff
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH164TJ Edinburgh, Scotland UK
| |
Collapse
|
12
|
Pieperhoff S. Gene Mutations Resulting in the Development of ARVC/D Could Affect Cells of the Cardiac Conduction System. Front Physiol 2012; 3:22. [PMID: 22363295 PMCID: PMC3281278 DOI: 10.3389/fphys.2012.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/30/2012] [Indexed: 11/26/2022] Open
Abstract
In contrast to epithelial cells, cardiomyocytes are connected by complex hybrid-type adhering junctions, termed composite junctions (areae compositae). Composite junctions are found to be composed of typical desmosomal as well as adherens junction proteins. Therefore, in adult mammalian cardiomyocytes desmosomal proteins are not restricted to the relatively small desmosomes but are indirectly involved in anchoring the myofibrillar actin filaments. Subsequent investigations revealed that the formation of composite junctions is a rather late event during mammalian heart development and vertebrate heart evolution. Nascent, more round shaped cardiomyocytes of early developmental stages are connected by desmosomes and separate adherens junctions quite similar to cells of epithelial origin. During progression of development both types of adhering junctions seem to gradually fuse at the two poles of the mature mammalian cardiomyocytes to establish the hybrid-type composite junctions. Recently, we demonstrated that the specialized cardiomyocytes of the cardiac conduction system exhibit high amounts of desmosomes, not fully established composite junctions and adherens junctions. This underlines the fact that cells of the cardiac conduction system are known to resemble cardiomyocytes in their nascent state and do not undergo working myocardial differentiation. However, the astonishing high amount of desmosomal protein containing adhering junctions connecting, e.g., Purkinje fibers raises the possibility that pacemaker and conductive tissue may be affected by desmosomal gene mutations in ARVC/D patients.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh Scotland, UK
| |
Collapse
|
13
|
Gaertner A, Schwientek P, Ellinghaus P, Summer H, Golz S, Kassner A, Schulz U, Gummert J, Milting H. Myocardial transcriptome analysis of human arrhythmogenic right ventricular cardiomyopathy. Physiol Genomics 2011; 44:99-109. [PMID: 22085907 DOI: 10.1152/physiolgenomics.00094.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy primarily of the right ventricle characterized through fibrofatty replacement of cardiomyocytes. The genetic etiology in ARVC patients is most commonly caused by dominant inheritance and high genetic heterogeneity. Though histological examinations of ARVC-affected human myocardium reveals fibrolipomatous replacement, the molecular mechanisms leading to loss of cardiomyocytes are largely unknown. We therefore analyzed the transcriptomes of six ARVC hearts and compared our findings to six nonfailing donor hearts (NF). To characterize the ARVC-specific transcriptome, we compared our findings to samples from seven patients with idiopathic dilated cardiomyopathy (DCM). The myocardial DCM and ARVC samples were prepared from hearts explanted during an orthotopic heart transplantation representing myocardium from end-stage heart failure patients (NYHA IV). From each heart, left (LV) and right ventricular (RV) myocardial samples were analyzed by Affymetrix HG-U133 Plus 2.0 arrays, adding up to six sample groups. Unsupervised cluster analyses of the groups revealed a clear separation of NF and cardiomyopathy samples. However, in contrast to the other samples, the analyses revealed no distinct expression pattern in LV and RV of myocardial ARVC samples. We further identified differentially expressed transcripts using t-tests and found transcripts separating diseased and NF ventricular myocardium. Of note, in failing myocardium only ~15-16% of the genes are commonly regulated compared with NF samples. In addition both cardiomyopathies are clearly distinct on the transcriptome level. Comparison of the expression patterns between the failing RV and LV using a paired t-test revealed a lack of major differences between LV and RV gene expression in ARVC hearts. Our study is the first analysis of specific ARVC-related RV and LV gene expression patterns in terminal failing human hearts.
Collapse
Affiliation(s)
- Anna Gaertner
- Herz- und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Bad Oeynhausen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pinamonti B, Dragos AM, Pyxaras SA, Merlo M, Pivetta A, Barbati G, Di Lenarda A, Morgera T, Mestroni L, Sinagra G. Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. Eur Heart J 2011; 32:1105-13. [PMID: 21362707 DOI: 10.1093/eurheartj/ehr040] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS We sought to examine the clinical presentation and natural history and to identify long-term prognostic predictors in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) as information concerning the natural history and risk stratification of ARVC is still incomplete. METHODS AND RESULTS A cohort of 96 ARVC patients (68% males, 35 ± 15 years) was enrolled and underwent structured diagnostic protocol and follow-up. Primary study endpoints were death and heart transplantation (HTx). Clinical and echo-Doppler data were assessed as prognostic indicators. Sixty-five per cent of patients had right ventricular (RV) systolic dysfunction (RV fractional area change < 33%) and 24% had left ventricular (LV) systolic dysfunction (LV ejection fraction <50%). During a mean follow-up of 128 ± 92 months, 20 patients (21%) experienced cardiac death or underwent HTx. At multivariate analysis (Model 1), RV dysfunction [hazard ratio (HR): 4.12; 95% confidence interval (CI): 1.01-18.0; P = 0.05], significant tricuspid regurgitation (HR: 7.6; 95% CI: 2.6-22.0; P < 0.001), and amiodarone treatment (HR: 3.4; 95% CI: 1.3-8.8; P = 0.01) resulted as predictors of death/HTx. When inserting in the model, the 'ordinal dysfunction' (Model 2), which considers the presence of both RV and LV dysfunctions, this variable emerged as an independent prognostic predictor (HR: 6.3; 95% CI: 2.17-17.45; P < 0.001). At the receiver operating characteristic analysis, Model 2 was significantly more accurate in predicting long-term outcome compared with Model 1 (area under the curve 0.84 vs. 0.78, respectively; P = 0.04). CONCLUSION In our tertiary referral centre ARVC population, the presence of LV dysfunction at diagnosis has an incremental power in predicting adverse outcome compared with RV dysfunction alone.
Collapse
Affiliation(s)
- Bruno Pinamonti
- Cardiovascular Department, Azienda Ospedaliera Ospedali Riuniti and University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chan J, Mably JD. Dissection of cardiovascular development and disease pathways in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:111-53. [PMID: 21377626 DOI: 10.1016/b978-0-12-384878-9.00004-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The use of animal models in medicine has contributed significantly to the development of drug treatments and surgical procedures for the last century, in particular for cardiovascular disease. In order to model human disease in an animal, an appreciation of the strengths and limitations of the system are required to interpret results and design the logical sequence of steps toward clinical translation. As the world's population ages, cardiovascular disease will become even more prominent and further progress will be essential to stave off what seems destined to become a massive public health issue. Future treatments will require the imaginative application of current models as well as the generation of new ones. In this review, we discuss the resources available for modeling cardiovascular disease in zebrafish and the varied attributes of this system. We then discuss current zebrafish disease models and their potential that has yet to be exploited.
Collapse
Affiliation(s)
- Joanne Chan
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
16
|
Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2:a002915. [PMID: 20182623 DOI: 10.1101/cshperspect.a002915] [Citation(s) in RCA: 466] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development.
Collapse
Affiliation(s)
- Julian Heuberger
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
17
|
Abstract
Important insights into the molecular basis of hypertrophic cardiomyopathy and related diseases have been gained by studying families with inherited cardiac hypertrophy. Integrated clinical and genetic investigations have demonstrated that different genetic defects can give rise to the common phenotype of cardiac hypertrophy. Diverse pathways have been identified, implicating perturbations in force generation, force transmission, intracellular calcium homeostasis, myocardial energetics, and cardiac metabolism in causing disease. Although not fully elucidated, the fundamental mechanisms linking gene mutations to clinical disease are being characterized. Further advances will allow a better understanding of pathogenesis, diagnosis, and treatment, not just of relatively rare inherited cardiomyopathies, but potentially also of relevance to more common acquired forms of hypertrophic remodeling.
Collapse
|
18
|
Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu Rev Med 2010; 61:233-53. [PMID: 20059337 DOI: 10.1146/annurev.med.052208.130419] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) has a prevalence of at least 1 in 1000, is a leading cause of sudden cardiac death in people aged < or =35 years, and accounts for up to 10% of deaths from undiagnosed cardiac disease in the <65 age group. The classic form of the disease has an early predilection for the right ventricle, but recognition of left-dominant and biventricular subtypes has prompted proposal of the broader term arrhythmogenic cardiomyopathy. The clinical profile of the disease bridges the gap between the cardiomyopathies and inherited arrhythmia syndromes. The early "concealed" phase is characterized by propensity toward ventricular tachyarrhythmia in the setting of well-preserved morphology, histology, and ventricular function. As the disease progresses, however, myocyte loss, inflammation, and fibroadiposis become evident. Up to 40% of cases harbor rare variants in genes encoding components of the desmosome, specialized intercellular junctions that confer mechanical strength to cardiac and epithelial tissue, and may also participate in signaling networks. Phenotypic heterogeneity and the nonspecific nature of associated features complicate clinical diagnosis, which requires multipronged cardiovascular investigation rather than a single test. Development of a prospectively validated risk-stratification algorithm for the full disease spectrum remains the foremost clinical challenge.
Collapse
|
19
|
Abstract
Arrhythmogenic cardiomyopathies are a heterogeneous group of pathological conditions that give rise to myocardial dysfunction with an increased risk for atrial or ventricular arrhythmias. Inherited defects in cardiomyocyte proteins in the sarcomeric contractile apparatus, the cytoskeleton and desmosomal cell-cell contact junctions are becoming recognized increasingly as major causes of sudden cardiac death in the general population. Animal models have been developed for the systematic dissection of the genetic pathways involved in the pathogenesis of arrhythmogenic cardiomyopathies. This review presents an overview of current animal models for arrhythmogenic right ventricular cardiomyopathy (ARVC), hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) associated with cardiac arrhythmias and sudden cardiac death.
Collapse
Affiliation(s)
- Mark D McCauley
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Campuzano O, Sarquella-Brugada G, Brugada R, Brugada P, Brugada J. Cardiovascular translational medicine (IV): The genetic basis of malignant arrhythmias and cardiomyopathies. Rev Esp Cardiol 2009; 62:422-36. [PMID: 19401127 DOI: 10.1016/s1885-5857(09)71669-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The remarkable advances that have taken place in biomedicine over the past 50 years have resulted in dramatic improvements in the prevention, diagnosis and treatment of many diseases. Although cardiology has adopted these advances at a relatively slow pace, today it is fully immersed in this revolution and has become one of the most innovative medical specialties. Research is continuing to give rise to new developments in genetics and molecular biology that lead, almost daily, to innovative ways of preventing, diagnosing and treating the most severe forms of heart disease. Consequently, it is essential that clinical cardiologists have some basic knowledge of genetics and molecular biology as these disciplines are having an increasing influence on clinical practice.
Collapse
Affiliation(s)
- Oscar Campuzano
- Centre de Genètica Cardiovascular, Universitat de Girona, Girona 08036, Spain
| | | | | | | | | |
Collapse
|
21
|
Mace LC, Yermalitskaya LV, Yi Y, Yang Z, Morgan AM, Murray KT. Transcriptional remodeling of rapidly stimulated HL-1 atrial myocytes exhibits concordance with human atrial fibrillation. J Mol Cell Cardiol 2009; 47:485-92. [PMID: 19615375 DOI: 10.1016/j.yjmcc.2009.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/16/2009] [Accepted: 07/03/2009] [Indexed: 01/14/2023]
Abstract
During atrial fibrillation (AF), rapid stimulation causes atrial remodeling that increases arrhythmia susceptibility. Using an established atrial (HL-1) myocyte model, we investigated the transcriptional profile associated with early atrial myocyte remodeling. Spontaneously contracting HL-1 cells were cultured in the absence and presence of rapid stimulation for 24 h and RNA harvested for microarray analysis. We identified 758 genes that were significantly altered with rapid stimulation (626 up- and 132 down-regulated). Results were confirmed using real-time quantitative RT-PCR for selected genes based on physiological relevance in human AF and/or experimental atrial tachycardia (AT), and regulation in the microarray results. In some cases, transcriptional changes were rapid, occurring within 3 h. For a selected group of genes, results were validated for the expressed protein, with findings that correlated with observed transcriptional changes. Significantly regulated genes were classified using the Gene Ontology Database to permit direct comparison of our findings with previously published myocardial transcriptional profiles. For broad functional categories, there was strong concordance between rapidly stimulated HL-1 myocytes and human AF, but not for other remodeling paradigms (cardiomyopathy and exercise). Many individual gene changes were conserved with AF/AT, with marked up-regulation of genes encoding brain and atrial natriuretic peptide precursors, and heat shock proteins. For the conserved genes, both a cellular stress and survival response was evident. Our results demonstrate similarities with human AF/experimental AT with respect to large-scale patterns of transcriptional remodeling, as well as regulation of specific individual genes. Importantly, we identified novel pathways and molecules that were concordantly regulated in vivo.
Collapse
Affiliation(s)
- Lisa C Mace
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA
| | | | | | | | | | | |
Collapse
|
22
|
Huang H, Asimaki A, Lo D, McKenna W, Saffitz J. Disparate effects of different mutations in plakoglobin on cell mechanical behavior. ACTA ACUST UNITED AC 2009; 65:964-78. [PMID: 18937352 DOI: 10.1002/cm.20319] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in genes encoding desmosomal proteins have been implicated in the pathogenesis of heart and skin diseases. This has led to the hypothesis that defective cell-cell adhesion is the underlying cause of injury in tissues that repeatedly bear high mechanical loads. In this study, we examined the effects of two different mutations in plakoglobin on cell migration, stiffness, and adhesion. One is a C-terminal mutation causing Naxos disease, a recessive syndrome of arrhythmogenic right ventricular cardiomyopathy (ARVC) and abnormal skin and hair. The other is an N-terminal mutation causing dominant inheritance of ARVC without cutaneous abnormalities. To assess the effects of plakoglobin mutations on a broad range of cell mechanical behavior, we characterized a model system consisting of stably transfected HEK cells which are particularly well suited for analyses of cell migration and adhesion. Both mutations increased the speed of wound healing which appeared to be related to increased cell motility rather than increased cell proliferation. However, the C-terminal mutation led to dramatically decreased cell-cell adhesion, whereas the N-terminal mutation caused a decrease in cell stiffness. These results indicate that different mutations in plakoglobin have markedly disparate effects on cell mechanical behavior, suggesting complex biomechanical roles for this protein.
Collapse
Affiliation(s)
- Hayden Huang
- Department of Medicine, Brigham and Women's Hospital, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Wang YP, Hang PZ, Sun LH, Zhang Y, Zhao JL, Pan ZW, Ji HR, Wang LA, Bi H, Du ZM. M3 muscarinic acetylcholine receptor is associated with beta-catenin in ventricular myocytes during myocardial infarction in the rat. Clin Exp Pharmacol Physiol 2009; 36:995-1001. [PMID: 19473345 DOI: 10.1111/j.1440-1681.2009.05176.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. The present study was designed to investigate whether the M(3) muscarinic acetylcholine receptors (mAChR) is associated with beta-catenin in the ventricular myocardium during ischaemic myocardial injury and to determine the possible mechanism/s involved. 2. Rat hearts were subjected to coronary artery ligation for 1 and 6 h or 1 month to establish a myocardial ischaemia (MI) model. In the acute MI model, 16 rats were randomized into four groups: (i) control; (ii) ischaemia (rats were subjected to 20 min coronary occlusion); (iii) choline (10 mg/kg, i.v., choline chloride, an M(3) receptor agonist, was administered 15 min before occlusion); and (iv) 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 0.12 mg/kg 4-DAMP, an M(3) receptor antagonist, was administered 20 min before occlusion, followed 5 min later by 10 mg/kg, i.v., choline chloride). Immunochemistry, western blot analysis and immunoprecipitation were used to determine the expression and localization of beta-catenin and the M(3) mAChR. 3. Myocardial ischaemia caused a time-dependent increase in the expression of beta-catenin. Moreover, a physical association was found between beta-catenin and the M(3) mAChR in intercalated discs. This association was enhanced by prolonged ischaemia. Administration of choline before ischaemia not only increased beta-catenin expression, but also strengthened the association between beta-catenin and the M(3) mAChR. However, blockade of M(3) mAChR by 4-DAMP completely inhibited the effect of choline on the expression of beta-catenin. In addition, MI increased phosphorylation of the M(3) mAChR. 4. The results indicate that increased beta-catenin activity is associated with M(3) mAChR during MI. This association is likely to play a role in heart signal transduction during ischaemia between neighbouring ventricular myocardiocum.
Collapse
Affiliation(s)
- Yu-Ping Wang
- Institute of Clinical Pharmacology of Second Hospital, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fidler LM, Wilson GJ, Liu F, Cui X, Scherer SW, Taylor GP, Hamilton RM. Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations. J Cell Mol Med 2008; 13:4219-28. [PMID: 18662195 PMCID: PMC4496128 DOI: 10.1111/j.1582-4934.2008.00438.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disorder of cardiomyocyte intercalated disk proteins causing sudden death. Heterozygous mutations of the desmosomal protein plakophilin-2 (PKP-2) are the commonest genetic cause of ARVC. Abnormal gap junction connexin43 expression has been reported in autosomal dominant forms of ARVC (Naxos and Carvajal disease) caused by homozygous mutations of desmosomal plakoglobin and desmoplakin. In tissue culture, suppression of PKP-2 results in decreased expression of connexin43. We sought to characterize the expression and localization of connexin43 in patients with ARVC secondary to heterozygous PKP-2 mutations. Complete PKP-2 gene sequencing of 27 ARVC patients was utilized to identify mutant genotypes. Endomyocardial biopsies of identified carriers were then assessed by immunofluorescence to visualize intercalated disk proteins. N-cadherin was targeted to highlight intercalated disks, followed by counterstaining for PKP-2 or connexin43 using confocal double immunofluorescence microscopy. Immunofluorescence was quantified using an AdobeA Photoshop protocol, and colocalization coefficients were determined. PKP-2 siRNA experiments were performed in mouse cardiomyocyte (HL1) cell culture with Western blot analysis to assess connexin43 expression following PKP-2 suppression. Missense and frameshift mutations of the PKP-2 gene were found in four patients with biopsy material available for analysis. Immunofluorescent studies showed PKP-2 localization to the intercalated disk despite mutations, but associated with decreased connexin43 expression and abnormal colocalization. PKP-2 siRNA in HL1 culture confirmed decreased connexin43 expression. Reduced connexin43 expression and localization to the intercalated disk occurs in heterozygous human PKP-2 mutations, potentially explaining the delayed conduction and propensity to develop arrhythmias seen in this disease.
Collapse
Affiliation(s)
- Lee M Fidler
- Heart Centre-Cardiology Division, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Merner ND, Hodgkinson KA, Haywood AF, Connors S, French VM, Drenckhahn JD, Kupprion C, Ramadanova K, Thierfelder L, McKenna W, Gallagher B, Morris-Larkin L, Bassett AS, Parfrey PS, Young TL. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 2008; 82:809-21. [PMID: 18313022 PMCID: PMC2427209 DOI: 10.1016/j.ajhg.2008.01.010] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/11/2007] [Accepted: 01/08/2008] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) causes sudden cardiac death and is characterized by clinical and genetic heterogeneity. Fifteen unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD5) were ascertained from a genetically isolated population. Identification of key recombination events reduced the disease region to a 2.36 Mb interval containing 20 annotated genes. Bidirectional resequencing showed one rare variant in transmembrane protein 43 (TMEM43 1073C-->T, S358L), was carried on all recombinant ARVD5 ancestral haplotypes from affected subjects and not found in population controls. The mutation occurs in a highly conserved transmembrane domain of TMEM43 and is predicted to be deleterious. Clinical outcomes in 257 affected and 151 unaffected subjects were compared, and penetrance was determined. We concluded that ARVC at locus ARVD5 is a lethal, fully penetrant, sex-influenced morbid disorder. Median life expectancy was 41 years in affected males compared to 71 years in affected females (relative risk 6.8, 95% CI 1.3-10.9). Heart failure was a late manifestation in survivors. Although little is known about the function of the TMEM43 gene, it contains a response element for PPAR gamma (an adipogenic transcription factor), which may explain the fibrofatty replacement of the myocardium, a characteristic pathological finding in ARVC.
Collapse
Affiliation(s)
- Nancy D. Merner
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Kathy A. Hodgkinson
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Annika F.M. Haywood
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Sean Connors
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Vanessa M. French
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Jörg-Detlef Drenckhahn
- Max-Delbrück Centrum für Molekulare Medizin, Max-Delbruck-Zentrum, Kostenstelle 1109, Robert-Roessle-Str 10, Berlin 13122, Germany
| | - Christine Kupprion
- Max-Delbrück Centrum für Molekulare Medizin, Max-Delbruck-Zentrum, Kostenstelle 1109, Robert-Roessle-Str 10, Berlin 13122, Germany
| | - Kalina Ramadanova
- Max-Delbrück Centrum für Molekulare Medizin, Max-Delbruck-Zentrum, Kostenstelle 1109, Robert-Roessle-Str 10, Berlin 13122, Germany
| | - Ludwig Thierfelder
- Max-Delbrück Centrum für Molekulare Medizin, Max-Delbruck-Zentrum, Kostenstelle 1109, Robert-Roessle-Str 10, Berlin 13122, Germany
| | - William McKenna
- The Heart Hospital, 16-18 Westmoreland Street, London W1G 8PH, UK
| | - Barry Gallagher
- Department of Pathology, James Paton Memorial Regional Health Centre, Gander, Newfoundland and Labrador A1V 1P7, Canada
| | - Lynn Morris-Larkin
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Anne S. Bassett
- Centre for Addiction and Mental Health, Clinical Genetics Research Program, University of Toronto, 1001 Queen Street West, Unit 4, Toronto, Ontario M6J 1H4, Canada
| | - Patrick S. Parfrey
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Terry-Lynn Young
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|
27
|
Abstract
Sudden death in athletes is an extremely rare event yet no less tragic for its infrequency. Up to 90% of these deaths are due to underlying cardiovascular diseases and therefore categorized as sudden cardiac death (SCD). The causes of SCD among athletes are strongly correlated with age. In young athletes (<35 years), the leading causes are congenital cardiac diseases, particularly hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and congenital coronary artery anomalies. By contrast, most of deaths in older athletes (<35 years) are due to coronary artery disease. This review focuses on the cardiac causes of SCD and provides a brief summary of the principal noncardiac causes. Current pre-participation screening strategies are also discussed, with particular emphasis on the Italian experience.
Collapse
|
28
|
Abstract
Tight junctions, gap junctions, adherens junctions, and desmosomes represent intricate structural intercellular channels and bridges that are present in several tissues, including epidermis. Clues to the important function of these units in epithelial cell biology have been gleaned from a variety of studies including naturally occurring and engineered mutations, animal models and other in vitro experiments. In this review, we focus on mutations that have been detected in human diseases. These observations provide intriguing insight into the biological complexities of cell-cell contact and intercellular communication as well as demonstrating the spectrum of inherited human diseases that are associated with mutations in genes encoding the component proteins. Over the last decade or so, human gene mutations have been reported in four tight junction proteins (claudin 1, 14, 16, and zona occludens 2), nine gap junction proteins (connexin 26, 30, 30.3, 31, 32, 40, 43, 46, and 50), one adherens junction protein (P-cadherin) and eight components of desmosomes (plakophilin (PKP) 1 and 2, desmoplakin, plakoglobin--which is also present in adherens junctions, desmoglein (DSG) 1, 2, 4, and corneodesmosin). These discoveries have often highlighted novel or unusual phenotypes, including abnormal skin barrier function, alterations in epidermal differentiation, and developmental anomalies of various ectodermal appendages, especially hair, as well as a range of extracutaneous pathologies. However, this review focuses mainly on inherited disorders of junctions that have an abnormal skin phenotype.
Collapse
Affiliation(s)
- Joey E Lai-Cheong
- King's College London, The Guy's, King's College and St Thomas' School of Medicine, Genetic Skin Disease Group, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK
| | | | | |
Collapse
|
29
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
30
|
Ashrafian H, Watkins H. Reviews of Translational Medicine and Genomics in Cardiovascular Disease: New Disease Taxonomy and Therapeutic Implications. J Am Coll Cardiol 2007; 49:1251-64. [PMID: 17394955 DOI: 10.1016/j.jacc.2006.10.073] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/24/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
The enduring subdivision of cardiomyopathies into hypertrophic (HCM), dilated (DCM), and restrictive (RCM) categories reflects the emphasis of traditional classifications on morphology. Rapid advances in the genetic interrogation of these disorders have redefined their taxonomy and revealed potential conflicts between the old and new classifications. Hypertrophic cardiomyopathy has been redefined as a disease of perturbed sarcomere function. Dilated cardiomyopathy is a disease that results from more varied perturbations, including, but not limited to, defects of the cytoskeleton. Positional cloning and candidate gene approaches have been successful in identifying >40 disease loci, many of which have led to disease genes in HCM, DCM, RCM, and arrhythmogenic right ventricular cardiomyopathy. These findings provide mechanistic insights, permit genetic screening, and to a limited extent, facilitate prognostication. Although single gene analyses rapidly focus down to the underlying mechanistic pathways, they do not take account of all relevant variation in the human genome. Correspondingly, advances in genomics, through microarrays, have facilitated characterization of these broader downstream elements. As well as refining the taxonomic reclassification of cardiomyopathies, these genomic approaches, coupled with functional studies, have identified novel potential therapeutic targets, such as cardiac energetics, calcium handling, and apoptosis. We review the successes and pitfalls of genetic and genomic approaches to cardiomyopathy and their impact on current and future clinical care.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | |
Collapse
|
31
|
|
32
|
George CH, Jundi H, Thomas NL, Fry DL, Lai FA. Ryanodine receptors and ventricular arrhythmias: emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 2006; 42:34-50. [PMID: 17081562 DOI: 10.1016/j.yjmcc.2006.08.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 08/30/2006] [Indexed: 11/25/2022]
Abstract
It has been six years since the first reported link between mutations in the cardiac ryanodine receptor Ca(2+) release channel (RyR2) and catecholaminergic polymorphic ventricular tachycardia (CPVT), a malignant stress-induced arrhythmia. In this time, rapid advances have been made in identifying new mutations, and in understanding how these mutations disrupt normal channel function to cause VT that frequently degenerates into ventricular fibrillation (VF) and sudden death. Functional characterisation of these RyR2 Ca(2+) channelopathies suggests that mutations alter the ability of RyR2 to sense its intracellular environment, and that channel modulation via covalent modification, Ca(2+)- and Mg(2+)-dependent regulation and structural feedback mechanisms are catastrophically disturbed. This review reconciles the current status of RyR2 mutation-linked etiopathology, the significance of mutational clustering within the RyR2 polypeptide and the mechanisms underlying channel dysfunction. We will also review new data that explores the link between abnormal Ca(2+) release and the resultant cardiac electrical instability in VT and VF, and how these recent developments impact on novel anti-arrhythmic therapies. Finally, we evaluate the concept that mechanistic differences between CPVT and other arrhythmogenic disorders may preclude a common therapeutic strategy to normalise RyR2 function in cardiac disease.
Collapse
Affiliation(s)
- Christopher H George
- Department of Cardiology, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|