1
|
Fusco R, Saedi Z, Capriello I, Lubskyy A, Dömling A. CBL-B - An upcoming immune-oncology target. Expert Opin Ther Pat 2025; 35:47-64. [PMID: 39582379 DOI: 10.1080/13543776.2024.2412567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors. AREAS COVERED We reviewed the small molecules, and antibody-drug conjugates targeting Cbl-b from 2018 to 2024. The patents were gathered through publicly available databases and analyzed with in-house developed cheminformatic workflow, described within the manuscript. EXPERT OPINION Targeting Cbl-b presents a promising approach in immuno-oncology, offering a novel pathway to potentiate the immune system's ability to combat cancer beyond PDL1/PD1 inhibition. The development and clinical advancement of Cbl-b inhibitors, as evidenced by the ongoing trials, mark a significant step toward harnessing this target for therapeutic benefits. Overall, the strategic inhibition of Cbl-b holds substantial promise for improving cancer immunotherapy outcomes, heralding a new era in the fight against cancer.
Collapse
Affiliation(s)
- Riccardo Fusco
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Zeinab Saedi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Imma Capriello
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Andriy Lubskyy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Alexander Dömling
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| |
Collapse
|
2
|
Nath PR, Isakov N. Mechanisms of Cbl-Mediated Ubiquitination of Proteins in T and Natural Killer Cells and Effects on Immune Cell Functions. Life (Basel) 2024; 14:1592. [PMID: 39768300 PMCID: PMC11677474 DOI: 10.3390/life14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational ubiquitination is an essential mechanism for the regulation of protein stability and function, which contributes to the regulation of the immune system. Cbl, an E3 ubiquitin ligase, is particularly well-characterized in the context of T and NK cell signaling, where it serves as a key regulator of receptor downstream signaling events and as a modulator of cell activation. Cbl promotes the proteasomal degradation of TCR/CD3 subunits as well as the protein kinases Fyn and Lck in T cells. Additionally, the scaffold protein linker for activation of T cells (LAT) is a universal target for Cbl-mediated ubiquitination and degradation in both T and NK cells. Recent findings suggest that CrkII-mediated ubiquitination and degradation of C3G by Cbl during early T cell activation may also be relevant to NK cell signaling. Given its role in modulating immune responses and its manageable impact on autoimmunity, Cbl is being investigated as a target for cancer immunotherapy. This review explores the ubiquitin ligase activity of Cbl and its implications for CAR T and NK cell immunotherapies.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Lentigen Technology Inc., A Miltenyi Biotec Company, 910 Clopper Road, Gaithersburg, MD 20878, USA;
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
3
|
Hu X, Li E, Zhou Y, You Q, Jiang Z. Casitas b cell lymphoma‑B (Cbl-b): A new therapeutic avenue for small-molecule immunotherapy. Bioorg Med Chem 2024; 102:117677. [PMID: 38457911 DOI: 10.1016/j.bmc.2024.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma‑b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.
Collapse
Affiliation(s)
- Xiuqi Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Erdong Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yangguo Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Mfuh AM, Boerth JA, Bommakanti G, Chan C, Chinn AJ, Code E, Fricke PJ, Giblin KA, Gohlke A, Hansel C, Hariparsad N, Hughes SJ, Jin M, Kantae V, Kavanagh SL, Lamb ML, Lane J, Moore R, Puri T, Quinn TR, Reddy I, Robb GR, Robbins KJ, Gancedo Rodrigo M, Schimpl M, Singh B, Singh M, Tang H, Thomson C, Walsh JJ, Ware J, Watson IDG, Ye MW, Wrigley GL, Zhang AX, Zhang Y, Grimster NP. Discovery, Optimization, and Biological Evaluation of Arylpyridones as Cbl-b Inhibitors. J Med Chem 2024; 67:1500-1512. [PMID: 38227216 DOI: 10.1021/acs.jmedchem.3c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.
Collapse
Affiliation(s)
- Adelphe M Mfuh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Gayathri Bommakanti
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Alex J Chinn
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Erin Code
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Patrick J Fricke
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Andrea Gohlke
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Niresh Hariparsad
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Meizhong Jin
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Vasudev Kantae
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Michelle L Lamb
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jordan Lane
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Rachel Moore
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Taranee Puri
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Taylor R Quinn
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Iswarya Reddy
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Kevin J Robbins
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Miguel Gancedo Rodrigo
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Isomorphic Laboratories, 280 Bishopsgate, London EC2M 4RB, U.K
| | | | - Baljinder Singh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Meha Singh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Haoran Tang
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Jarrod J Walsh
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Jamie Ware
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Iain D G Watson
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Min-Wei Ye
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Andrew X Zhang
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Yun Zhang
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Neil P Grimster
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
5
|
Zhou L, Yang J, Zhang K, Wang T, Jiang S, Zhang X. Rising Star in Immunotherapy: Development and Therapeutic Potential of Small-Molecule Inhibitors Targeting Casitas B Cell Lymphoma-b (Cbl-b). J Med Chem 2024; 67:816-837. [PMID: 38181380 DOI: 10.1021/acs.jmedchem.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Casitas B cell lymphoma-b (Cbl-b) is a vital negative regulator of TCR and BCR signaling pathways, playing a significant role in setting an appropriate threshold for the activation of T cells and controlling the tolerance of peripheral T cells via a variety of mechanisms. Overexpression of Cbl-b leads to immune hyporesponsiveness of T cells. Conversely, the deficiency of Cbl-b in T cells results in markedly increased production of IL-2, even in the lack of CD28 costimulation in vitro. And Cbl-b-/- mice spontaneously reject multifarious cancers. Therefore, Cbl-b may be associated with immune-mediated diseases, and blocking Cbl-b could be considered as a new antitumor immunotherapy strategy. In this review, the possible regulatory mechanisms and biological potential of Cbl-b for antitumor immunotherapy are summarized. Besides, the potential roles of Cbl-b in immune-mediated diseases are comprehensively discussed, with emphasis on Cbl-b immune-oncology agents in the preclinical stage and clinical trials.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Jin L. Ubiquitin Signaling in the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:113-122. [PMID: 39546139 DOI: 10.1007/978-981-97-7288-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a post-translational modification of proteins that is widespread in eukaryotic cells. It was identified initially while investigating the mechanisms of intracellular protein degradation. There is mounting evidence that ubiquitination and its reverse process, deubiquitination, play a critical regulatory role in the process of intrinsic and adaptive immune responses by regulating the function of various immune cell types, thereby influencing the development of a variety of major human diseases such as autoimmune diseases, infectious diseases, and malignancies. This article will discuss current advances in protein ubiquitination-mediated control of several immune cell functions and its significance in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Tsai YL, Arias-Badia M, Kadlecek TA, Lwin YM, Srinath A, Shah NH, Wang ZE, Barber D, Kuriyan J, Fong L, Weiss A. TCR signaling promotes formation of an STS1-Cbl-b complex with pH-sensitive phosphatase activity that suppresses T cell function in acidic environments. Immunity 2023; 56:2682-2698.e9. [PMID: 38091950 PMCID: PMC10785950 DOI: 10.1016/j.immuni.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.
Collapse
Affiliation(s)
- Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marcel Arias-Badia
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yee May Lwin
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aahir Srinath
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zhi-En Wang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diane Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
9
|
Khong QT, Li D, Wilson BAP, Ranguelova K, Dalilian M, Smith EA, Wamiru A, Goncharova EI, Grkovic T, Voeller D, Lipkowitz S, Schnermann MJ, O'Keefe BR, Du L. Photochemical Dimerization of Plakinidine B Leads to Potent Inhibition of the E3 Ubiquitin-Protein Ligase CBL-B. Org Lett 2022; 24:9468-9472. [PMID: 36516994 PMCID: PMC10681237 DOI: 10.1021/acs.orglett.2c03922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new dimeric alkaloid plakoramine A [(±)-1] was identified from a marine sponge Plakortis sp. Chiral-phase HPLC separation of (±)-1 led to the purified enantiomers (+)-1 and (-)-1 which both potently inhibited CBL-B E3 ubiquitin ligase activities. The absolute configurations of the enantiomers were determined by quantum chemical calculations. Scrutinization of the purification conditions revealed a previously undescribed, nonenzymatic route to form (±)-1 via photochemical conversion of its naturally occurring monomeric counterpart, plakinidine B (2).
Collapse
Affiliation(s)
- Quan T Khong
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Donghao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | | | - Masoumeh Dalilian
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Emily A Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Ekaterina I Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Tanja Grkovic
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21701-1201, United States
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1578, United States
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1578, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21701-1201, United States
| | - Lin Du
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
10
|
Song J, Anderson W, Hu A, Obata-Ninomiya K, Ziegler SF, Rawlings DJ, Buckner JH. CBLBDeficiency in Human CD4 +T Cells Results in Resistance to T Regulatory Suppression through Multiple Mechanisms. THE JOURNAL OF IMMUNOLOGY 2022; 209:1260-1271. [DOI: 10.4049/jimmunol.2200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/16/2022] [Indexed: 11/06/2022]
|
11
|
Monticone G, Huang Z, Csibi F, Leit S, Ciccone D, Champhekar AS, Austin JE, Ucar DA, Hossain F, Ibba SV, Boulares AH, Carpino N, Xu K, Majumder S, Osborne BA, Loh C, Miele L. Targeting the Cbl-b-Notch1 axis as a novel immunotherapeutic strategy to boost CD8+ T-cell responses. Front Immunol 2022; 13:987298. [PMID: 36090975 PMCID: PMC9459147 DOI: 10.3389/fimmu.2022.987298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
A critical feature of cancer is the ability to induce immunosuppression and evade immune responses. Tumor-induced immunosuppression diminishes the effectiveness of endogenous immune responses and decreases the efficacy of cancer immunotherapy. In this study, we describe a new immunosuppressive pathway in which adenosine promotes Casitas B-lineage lymphoma b (Cbl-b)-mediated Notch1 degradation, causing suppression of CD8+ T-cells effector functions. Genetic knockout and pharmacological inhibition of Cbl-b prevents Notch1 degradation in response to adenosine and reactivates its signaling. Reactivation of Notch1 results in enhanced CD8+ T-cell effector functions, anti-cancer response and resistance to immunosuppression. Our work provides evidence that targeting the Cbl-b-Notch1 axis is a novel promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Zhi Huang
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Fred Csibi
- Nimbus Therapeutics, Cambridge, MA, United States
| | - Silvana Leit
- Nimbus Therapeutics, Cambridge, MA, United States
| | | | - Ameya S. Champhekar
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Jermaine E. Austin
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Salome V. Ibba
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - A. Hamid Boulares
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nicholas Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
12
|
Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov 2022; 21:821-840. [PMID: 35982333 DOI: 10.1038/s41573-022-00538-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs. Combinations with small molecules targeting cancer metabolism, cytokine/chemokine and innate immune pathways, and T cell checkpoints are now under investigation. This Review discusses the recent milestones and hurdles encountered in this area of drug development, as well as our views on the best path forward.
Collapse
Affiliation(s)
- Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany. .,DKFZ-Bayer Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Lisa Kötzner
- Merck Healthcare KGaA, Healthcare R&D, Discovery and Development Technologies, Darmstadt, Germany
| | - Bayard Huck
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA
| | - Klaus Urbahns
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA.
| |
Collapse
|
13
|
Han S, Liu ZQ, Chung DC, Paul MS, Garcia-Batres CR, Sayad A, Elford AR, Gold MJ, Grimshaw N, Ohashi PS. Overproduction of IFNγ by Cbl-b-Deficient CD8+ T Cells Provides Resistance against Regulatory T Cells and Induces Potent Antitumor Immunity. Cancer Immunol Res 2022; 10:437-452. [PMID: 35181779 PMCID: PMC9662906 DOI: 10.1158/2326-6066.cir-20-0973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Treg) are an integral component of the adaptive immune system that negatively affect antitumor immunity. Here, we investigated the role of the E3 ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) in establishing CD8+ T-cell resistance to Treg-mediated suppression to enhance antitumor immunity. Transcriptomic analyses suggested that Cbl-b regulates pathways associated with cytokine signaling and cellular proliferation. We showed that the hypersecretion of IFNγ by Cbl-b-deficient CD8+ T cells selectively attenuated CD8+ T-cell suppression by Tregs. Although IFNγ production by Cbl-b-deficient T cells contributed to phenotypic alterations in Tregs, the cytokine did not attenuate the suppressive function of Tregs. Instead, IFNγ had a profound effect on CD8+ T cells by directly upregulating interferon-stimulated genes and modulating T-cell activation. In murine models of adoptive T-cell therapy, Cbl-b-deficient T cells elicited superior antitumor immune response. Furthermore, Cbl-b-deficient CD8+ T cells were less susceptible to suppression by Tregs in the tumor through the effects of IFNγ. Collectively, this study demonstrates that the hypersecretion of IFNγ serves as a key mechanism by which Cbl-b-deficient CD8+ T cells are rendered resistant to Tregs. See related Spotlight by Wolf and Baier, p. 370.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Michael St. Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | | | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew J. Gold
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Natasha Grimshaw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada.,Corresponding Author: Pamela S. Ohashi, Princess Margaret Cancer Centre, 610 University Avenue, 9-406, Toronto ON M5G 2M9, Canada. Phone: 416-946-4501 ×3689; E-mail:
| |
Collapse
|
14
|
Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 2022; 77:103941. [PMID: 35301179 PMCID: PMC8927848 DOI: 10.1016/j.ebiom.2022.103941] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment with enormous potential, demonstrating impressive antitumor activity in the treatment of hematological malignancies. However, CAR T cell exhaustion is a major limitation to their efficacy, particularly in the application of CAR T cells to solid tumors. CAR T cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive tumor microenvironment, and mitigating exhaustion to maintain CAR T cell effector function and persistence and achieve clinical potency remains a central challenge. Here, we review the underlying mechanisms of exhaustion and discuss emerging strategies to prevent or reverse exhaustion through modifications of the CAR receptor or CAR independent pathways. Additionally, we discuss the potential of these strategies for improving clinical outcomes of CAR T cell therapy.
Collapse
Affiliation(s)
- Diana Gumber
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States
| | - Leo D Wang
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States; Department of Pediatrics, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
15
|
Wang H, Song X, Shen L, Wang X, Xu C. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 2021; 8:123-134. [PMID: 34810156 DOI: 10.1016/j.trecan.2021.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022]
Abstract
Engineered T cell therapies, mainly chimeric antigen receptor (CAR)-T and T cell receptor (TCR)-T, have become the new frontier of cancer treatment. CAR-T and TCR-T therapies differ in many aspects, including cell persistence and toxicity, leading to different therapeutic outcomes. Both TCR and CAR recognize antigens and trigger T cell mediated antitumor response, but they have distinct molecular structures and signaling properties. TCR represents one of the most complex receptors, while CAR is a single-chain chimera integrating modules from multiple immune receptors. Understanding the mechanisms underlying the strengths and limitations of both systems can pave the way for the development of next-generation T cell therapy. This review synthesizes recent findings on TCR and CAR signaling and highlights the potential strategies of T cell engineering by signaling refinement.
Collapse
Affiliation(s)
- Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Xianming Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
17
|
Mori D, Grégoire C, Voisinne G, Celis-Gutierrez J, Aussel R, Girard L, Camus M, Marcellin M, Argenty J, Burlet-Schiltz O, Fiore F, Gonzalez de Peredo A, Malissen M, Roncagalli R, Malissen B. The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. J Exp Med 2021; 218:211516. [PMID: 33125054 PMCID: PMC7608068 DOI: 10.1084/jem.20201011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation. Moreover, CD6 associated independently of TCR engagement to proteins that support its implication in inflammatory pathologies necessitating T cell transendothelial migration. The multifaceted role of CD6 unveiled here accounts for past difficulties in classifying it as a coinhibitor or costimulator. Congruent with our identification of UBASH3A within the CD6 signalosome and the view that CD6 constitutes a promising target for autoimmune disease treatment, single-nucleotide polymorphisms associated with human autoimmune diseases have been found in the Cd6 and Ubash3a genes.
Collapse
Affiliation(s)
- Daiki Mori
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Rudy Aussel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
18
|
Wilson BAP, Voeller D, Smith EA, Wamiru A, Goncharova EI, Liu G, Lipkowitz S, O’Keefe BR. In Vitro Ubiquitination Platform Identifies Methyl Ellipticiniums as Ubiquitin Ligase Inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:870-884. [PMID: 33882749 PMCID: PMC9907454 DOI: 10.1177/24725552211000675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transfer of the small protein ubiquitin to a target protein is an intricately orchestrated process called ubiquitination that results in modulation of protein function or stability. Proper regulation of ubiquitination is essential, and dysregulation of this process is implicated in several human diseases. An example of a ubiquitination cascade that is a central signaling node in important disease-associated pathways is that of CBLB [a human homolog of a viral oncogene Casitas B-lineage lymphoma (CBL) from the Cas NS-1 murine retrovirus], a RING finger ubiquitin ligase (E3) whose substrates include a number of important cell-signaling kinases. These include kinases important in immune function that act in the T cell receptor and costimulatory pathways, the Tyro/Axl/MerTK (TAM) receptor family in natural killer (NK) cells, as well as growth factor receptor kinases like epidermal growth factor receptor (EGFR). Loss of CBLB has been shown to increase innate and adaptive antitumor immunity. This suggests that small-molecule modulation of CBLB E3 activity could enhance antitumor immunity in patients. To explore the hypothesis that enzymatic inhibition of E3s may result in modulation of disease-related signaling pathways, we established a high-throughput screen of >70,000 chemical entities for inhibition of CBLB activity. Although CBLB was chosen as a proof-of-principle target for inhibitor discovery, we demonstrate that our assay is generalizable to monitoring the activity of other ubiquitin ligases. We further extended our observed in vitro inhibition with additional cell-based models of CBLB activity. From these studies, we demonstrate that a class of natural product-based alkaloids, known as methyl ellipticiniums (MEs), is capable of inhibiting ubiquitin ligases intracellularly.
Collapse
Affiliation(s)
- Brice A. P. Wilson
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
| | - Donna Voeller
- Women’s Malignancies Branch, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,
USA
| | - Emily A. Smith
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research,
Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research,
Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ekaterina I. Goncharova
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gang Liu
- Department of Pharmacology and Pharmaceutical Sciences,
School of Medicine, Institute of Materia Medica, Chinese Academy of Medical
Sciences, Peking Union Medical College, Tsinghua-Peking Center for Life Sciences,
Tsinghua University, Beijing, China
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,
USA
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research,
National Cancer Institute, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics
Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute,
Frederick, MD, USA
| |
Collapse
|
19
|
Schanz O, Cornez I, Yajnanarayana SP, David FS, Peer S, Gruber T, Krawitz P, Brossart P, Heine A, Landsberg J, Baier G, Wolf D. Tumor rejection in Cblb -/- mice depends on IL-9 and Th9 cells. J Immunother Cancer 2021; 9:jitc-2021-002889. [PMID: 34272310 PMCID: PMC8287598 DOI: 10.1136/jitc-2021-002889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS Using Cblb -/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb -/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb -/- mice to investigate the role of IL-9 in tumor immunity. RESULTS Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb -/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb -/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb -/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION We established IL-9 and Th9 cells as key antitumor executers in Cblb -/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.
Collapse
Affiliation(s)
- Oliver Schanz
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Cornez
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Friederike Sophie David
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Sebastian Peer
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Gottfried Baier
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany .,Department of Internal Medicine V, Hematology and Oncology, and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Jiang W, Wang D, Wilson BAP, Voeller D, Bokesch HR, Smith EA, Lipkowitz S, O'Keefe BR, Gustafson KR. Sinularamides A-G, Terpenoid-Derived Spermidine and Spermine Conjugates with Casitas B-Lineage Lymphoma Proto-Oncogene B (Cbl-b) Inhibitory Activities from a Sinularia sp. Soft Coral. JOURNAL OF NATURAL PRODUCTS 2021; 84:1831-1837. [PMID: 34038132 PMCID: PMC9341130 DOI: 10.1021/acs.jnatprod.1c00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An extract of a Sinularia sp. soft coral showed inhibitory activity against the E3-ubiquitin ligase casitas B-lineage lymphoma proto-oncogene B (Cbl-b). Subsequent bioassay-guided separation of the extract provided a series of terpenoid-derived spermidine and spermine amides that were named sinularamides A-G (1-7). Compounds 1-7 represent new natural products; however, sinularamide A (1) was previously reported as a synthetic end product. The structures of sinularamides A-G (1-7) were elucidated by analysis of spectroscopic and spectrometric data from NMR, IR, and HRESIMS experiments and by comparison with literature data. All of the isolated compounds showed Cbl-b inhibitory activities with IC50 values that ranged from approximately 6.5 to 33 μM.
Collapse
Affiliation(s)
- Wei Jiang
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Donna Voeller
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Heidi R Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Emily A Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Stanley Lipkowitz
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21701-1201, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
21
|
Jiang W, Wang D, Wilson BAP, Kang U, Bokesch HR, Smith EA, Wamiru A, Goncharova EI, Voeller D, Lipkowitz S, O’Keefe BR, Gustafson KR. Agelasine Diterpenoids and Cbl-b Inhibitory Ageliferins from the Coralline Demosponge Astrosclera willeyana. Mar Drugs 2021; 19:361. [PMID: 34202500 PMCID: PMC8307156 DOI: 10.3390/md19070361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new N-methyladenine-containing diterpenoids, agelasines W-Y (1-3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known ageliferin derivatives (5-10). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory activities, ageliferins (4-10) were the most potent metabolites, with IC50 values that ranged from 18 to 35 μM.
Collapse
Affiliation(s)
- Wei Jiang
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou 225127, China;
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Brice A. P. Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Unwoo Kang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Heidi R. Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Emily A. Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Ekaterina I. Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Donna Voeller
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA; (D.V.); (S.L.)
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA; (D.V.); (S.L.)
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| |
Collapse
|
22
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
23
|
Braun M, Aguilera AR, Sundarrajan A, Corvino D, Stannard K, Krumeich S, Das I, Lima LG, Meza Guzman LG, Li K, Li R, Salim N, Jorge MV, Ham S, Kelly G, Vari F, Lepletier A, Raghavendra A, Pearson S, Madore J, Jacquelin S, Effern M, Quine B, Koufariotis LT, Casey M, Nakamura K, Seo EY, Hölzel M, Geyer M, Kristiansen G, Taheri T, Ahern E, Hughes BGM, Wilmott JS, Long GV, Scolyer RA, Batstone MD, Landsberg J, Dietrich D, Pop OT, Flatz L, Dougall WC, Veillette A, Nicholson SE, Möller A, Johnston RJ, Martinet L, Smyth MJ, Bald T. CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8 + T Cells. Immunity 2021; 53:805-823.e15. [PMID: 33053330 DOI: 10.1016/j.immuni.2020.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.
Collapse
Affiliation(s)
- Matthias Braun
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashmitha Sundarrajan
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Dillon Corvino
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sophie Krumeich
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Indrajit Das
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Luize G Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rui Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC, Canada
| | - Nazhifah Salim
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Maria Villancanas Jorge
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabrielle Kelly
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Frank Vari
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ailin Lepletier
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashwini Raghavendra
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sally Pearson
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jason Madore
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Sebastien Jacquelin
- Gordon and Jessie Gilmour Leukemia Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Maike Effern
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, Australia
| | - Brodie Quine
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lambros T Koufariotis
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Eun Y Seo
- Immuno-Oncology Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Touraj Taheri
- Pathology Queensland, Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - Elizabeth Ahern
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - Brett G M Hughes
- Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; The University of Sydney, Central Clinical School, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; The University of Sydney, Central Clinical School, Sydney, NSW, Australia; Royal North Shore Hospital, Sydney, NSW, Australia; Mater Hospital, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Martin D Batstone
- Royal Brisbane and Women's Hospital, University of Queensland Herston, Herston, QLD, Australia
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Oltin T Pop
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - William C Dougall
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC, Canada; Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Robert J Johnston
- Immuno-Oncology Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Ludovic Martinet
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse F-31000, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
24
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
25
|
Kumar J, Kumar R, Kumar Singh A, Tsakem EL, Kathania M, Riese MJ, Theiss AL, Davila ML, Venuprasad K. Deletion of Cbl-b inhibits CD8 + T-cell exhaustion and promotes CAR T-cell function. J Immunother Cancer 2021; 9:jitc-2020-001688. [PMID: 33462140 PMCID: PMC7813298 DOI: 10.1136/jitc-2020-001688] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T-cell therapy is an emerging option for cancer treatment, but its efficacy is limited, especially in solid tumors. This is partly because the CAR T cells become dysfunctional and exhausted in the tumor microenvironment. However, the key pathways responsible for impaired function of exhausted cells remain unclear, which is essential to overcome CAR T-cell exhaustion. Methods Analysis of RNA-sequencing data from CD8+ tumor-infiltrating lymphocytes (TILs) led to identification of Cbl-b as a potential target. The sequencing data were validated using a syngeneic MC38 colon cancer model. To analyze the in vivo role of Cbl-b in T-cell exhaustion, tumor growth, % PD1+Tim3+ cells, and expression of effector cytokines were analyzed in cbl-b+/+ and cbl-b–/– mice. To evaluate the therapeutic potential of Cbl-b depletion, we generated a new CAR construct, hCEAscFv-CD28-CD3ζ.GFP, that recognizes human carcinoembryonic antigen (CEA). cbl-b+/+ and cbl-b–/– CEA-CAR T cells were generated by retroviral transduction. Rag–/– mice bearing MC38-CEA cells were injected with cbl-b+/+ and cbl-b–/–; CEA-CAR T cells, tumor growth, % PD1+Tim3+ cells and expression of effector cytokines were analyzed. Results Our results show that the E3 ubiquitin ligase Cbl-b is upregulated in exhausted (PD1+Tim3+) CD8+ TILs. CRISPR-Cas9-mediated inhibition of Cbl-b restores the effector function of exhausted CD8+ TILs. Importantly, the reduced growth of syngeneic MC38 tumors in cbl-b–/– mice was associated with a marked reduction of PD1+Tim3+ CD8+ TILs. Depletion of Cbl-b inhibited CAR T-cell exhaustion, resulting in reduced MC38-CEA tumor growth, reduced PD1+Tim3+ cells and increased expression of interferon gamma, tumor necrosis factor alpha, and increased tumor cell killing. Conclusion Our studies demonstrate that deficiency of Cbl-b overcomes endogenous CD8+ T-cell exhaustion, and deletion of Cbl-b in CAR T cells renders them resistant to exhaustion. Our results could facilitate the development of efficient CAR T-cell therapy for solid tumors by targeting Cbl-b.
Collapse
Affiliation(s)
- Jitendra Kumar
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ritesh Kumar
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Amir Kumar Singh
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Elviche L Tsakem
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mahesh Kathania
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew J Riese
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marco L Davila
- Blood & Marrow Transplantation and Cellular Immunotherapy, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - K Venuprasad
- Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA .,Immunology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther 2021; 6:16. [PMID: 33436547 PMCID: PMC7804490 DOI: 10.1038/s41392-020-00421-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has become an attractive approach of cancer treatment with tremendous success in treating various advanced malignancies. The development and clinical application of immune checkpoint inhibitors represent one of the most extraordinary accomplishments in cancer immunotherapy. In addition, considerable progress is being made in understanding the mechanism of antitumor immunity and characterizing novel targets for developing additional therapeutic approaches. One active area of investigation is protein ubiquitination, a post-translational mechanism of protein modification that regulates the function of diverse immune cells in antitumor immunity. Accumulating studies suggest that E3 ubiquitin ligases and deubiquitinases form a family of potential targets to be exploited for enhancing antitumor immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J, Esmaeilzadeh A. E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Clin Exp Immunol 2021; 204:14-31. [PMID: 33306199 DOI: 10.1111/cei.13560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
The distinction of self from non-self is crucial to prevent autoreactivity and ensure protection from infectious agents and tumors. Maintaining the balance between immunity and tolerance of immune cells is strongly controlled by several sophisticated regulatory mechanisms of the immune system. Among these, the E3 ligase ubiquitin Casitas B cell lymphoma-b (Cbl-b) is a newly identified component in the ubiquitin-dependent protein degradation system, which is thought to be an important negative regulator of immune cells. An update on the current knowledge and new concepts of the relevant immune homeostasis program co-ordinated by Cbl-b in different cell populations could pave the way for future immunomodulatory therapies of various diseases, such as autoimmune and allergic diseases, infections, cancers and other immunopathological conditions. In the present review, the latest findings are comprehensively summarized on the molecular structural basis of Cbl-b and the suppressive signaling mechanisms of Cbl-b in physiological and pathological immune responses, as well as its emerging potential therapeutic implications for immunotherapy in animal models and human diseases.
Collapse
Affiliation(s)
- D Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M J Mousavi
- Department of Hematology, Faculty of Allied medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Jafarzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Tahmasebi
- Department of Immunology, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - J Spoor
- Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - A Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Adv 2020; 3:2317-2322. [PMID: 31387880 DOI: 10.1182/bloodadvances.2019000219] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Key Points
Reexpansion of CAR T cells led to further investigations which confirmed the clonal nature of this expansion.
Collapse
|
29
|
Poels K, Vos WG, Lutgens E, Seijkens TTP. E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease. Front Cardiovasc Med 2020; 7:106. [PMID: 32582770 PMCID: PMC7292335 DOI: 10.3389/fcvm.2020.00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic low-grade inflammation drives atherosclerosis and despite optimal pharmacological treatment of classical cardiovascular risk factors, one third of the patients with atherosclerotic cardiovascular disease has elevated inflammatory biomarkers. Additional anti-inflammatory strategies to target this residual inflammatory cardiovascular risk are therefore required. T-cells are a dominant cell type in human atherosclerotic lesions. Modulation of T-cell activation is therefore a potential strategy to target inflammation in atherosclerosis. Ubiquitination is an important regulatory mechanism of T-cell activation and several E3 ubiquitin ligases, including casitas B-lineage lymphoma proto-oncogene B (Cbl-B), itchy homolog (Itch), and gene related to anergy in lymphocytes (GRAIL), function as a natural brake on T-cell activation. In this review we discuss recent insights on the role of Cbl-B, Itch, and GRAIL in atherosclerosis and explore the therapeutic potential of these E3 ubiquitin ligases in cardiovascular medicine.
Collapse
Affiliation(s)
- Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Winnie G Vos
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Internal Medicine, Amsterdam UMC, Location VUmc, VU University, Amsterdam, Netherlands.,Department of Hematology, Amsterdam UMC, Location VUmc, VU University, Amsterdam, Netherlands
| |
Collapse
|
30
|
Zhou Y, Yao Y, Deng Y, Shao A. Regulation of efferocytosis as a novel cancer therapy. Cell Commun Signal 2020; 18:71. [PMID: 32370748 PMCID: PMC7199874 DOI: 10.1186/s12964-020-00542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor development and progression. Efferocytosis is an equilibrium formed by perfect coordination among “find-me”, “eat-me” and “don’t-eat-me” signals. These signaling pathways not only affect the proliferation, invasion, metastasis, and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies. Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides, supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome. Video abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Han S, Chung DC, St Paul M, Liu ZQ, Garcia-Batres C, Elford AR, Tran CW, Chapatte L, Ohashi PS. Overproduction of IL-2 by Cbl-b deficient CD4 + T cells provides resistance against regulatory T cells. Oncoimmunology 2020; 9:1737368. [PMID: 32313719 PMCID: PMC7153846 DOI: 10.1080/2162402x.2020.1737368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells are integral to the regulation of autoimmune and anti-tumor immune responses. However, several studies have suggested that changes in T cell signaling networks can result in T cells that are resistant to the suppressive effects of regulatory T cells. Here, we investigated the role of Cbl-b, an E3 ubiquitin ligase, in establishing resistance to Treg-mediated suppression. We found that the absence of Cbl-b, a negative regulator of multiple TCR signaling pathways, rendered T cells impartial to Treg suppression by regulating cytokine networks leading to improved anti-tumor immunity despite the presence of Treg cells in the tumor. Specifically, Cbl-b KO CD4+FoxP3− T cells hyper-produced IL-2 and together with IL-2 Rα upregulation served as an essential mechanism to escape suppression by Treg cells. Furthermore, we report that IL-2 serves as the central molecule required for cytokine-induced Treg resistance. Collectively our data emphasize the role of IL-2 as a key mechanism that renders CD4+ T cells resistant to the inhibitory effects of Treg cells.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Douglas C Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Garcia-Batres
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles W Tran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Li X, Gong L, Gu H. Regulation of immune system development and function by Cbl-mediated ubiquitination. Immunol Rev 2020; 291:123-133. [PMID: 31402498 DOI: 10.1111/imr.12789] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Ubiquitination is a form of posttranslational protein modification that affects the activity of target proteins by regulating their intracellular degradation, trafficking, localization, and association with other regulators. Recent studies have placed protein ubiquitination as an important regulatory mode to control immune system development, function, and pathogenesis. In this review, we will mainly update the research progress from our laboratory on the roles of the Cbl family of E3 ubiquitin ligases in the development and function of lymphocytes and non-lymphoid cells. In addition, we will highlight our current understanding of the mechanisms used by this family of proteins, especially Cbl and Cbl-b, to co-ordinately regulate the function of various receptors and transcription factors in the context of immune regulation and diseases.
Collapse
Affiliation(s)
- Xin Li
- Kisoji Biotechnologies, Laval, Quebec, Canada
| | - Liying Gong
- Institut de Recherches Cliniques de Montreàl, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hua Gu
- Institut de Recherches Cliniques de Montreàl, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
34
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin Ligases in Cancer Immunotherapy - Balancing Antitumor and Autoimmunity. Trends Mol Med 2019; 25:428-443. [PMID: 30898473 DOI: 10.1016/j.molmed.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert exquisite spatial and temporal control over protein stability and function, and are thus crucial for the regulation of both innate and adaptive immunity. Given that immune responses can be both detrimental (autoimmunity) and beneficial (antitumor immunity), it is vital to understand how ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel mechanisms underlying immune regulation and identify new therapeutic approaches to enhance antitumor immunity and safeguard against autoimmunity.
Collapse
Affiliation(s)
- Yu Fujita
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Present address: Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yan Li
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ze'ev A Ronai
- National Cancer Institute (NCI) Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, Li PJ, Diolaiti ME, Ashworth A, Marson A. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell 2018; 175:1958-1971.e15. [PMID: 30449619 DOI: 10.1016/j.cell.2018.10.024] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Human T cells are central effectors of immunity and cancer immunotherapy. CRISPR-based functional studies in T cells could prioritize novel targets for drug development and improve the design of genetically reprogrammed cell-based therapies. However, large-scale CRISPR screens have been challenging in primary human cells. We developed a new method, single guide RNA (sgRNA) lentiviral infection with Cas9 protein electroporation (SLICE), to identify regulators of stimulation responses in primary human T cells. Genome-wide loss-of-function screens identified essential T cell receptor signaling components and genes that negatively tune proliferation following stimulation. Targeted ablation of individual candidate genes characterized hits and identified perturbations that enhanced cancer cell killing. SLICE coupled with single-cell RNA sequencing (RNA-seq) revealed signature stimulation-response gene programs altered by key genetic perturbations. SLICE genome-wide screening was also adaptable to identify mediators of immunosuppression, revealing genes controlling responses to adenosine signaling. The SLICE platform enables unbiased discovery and characterization of functional gene targets in primary cells.
Collapse
Affiliation(s)
- Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Carnevale
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Victoria Tobin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theodore L Roth
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan M Woo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina T Bui
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - P Jonathan Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2018; 340:103878. [PMID: 30442330 DOI: 10.1016/j.cellimm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Casitas B lymphoma-b (Cbl-b), a RING finger E3 ubiquitin ligase, has been identified as a critical regulator of adaptive immune responses. Cbl-b is essential for establishing the threshold for T cell activation and regulating peripheral T cell tolerance through various mechanisms. Intriguingly, recent studies indicate that Cbl-b also modulates innate immune responses, and plays a key role in host defense to pathogens and anti-tumor immunity. These studies suggest that targeting Cbl-b may represent a potential therapeutic strategy for the management of human immune-related disorders such as autoimmune diseases, infections, tumors, and allergic airway inflammation. In this review, we summarize the latest developments regarding the roles of Cbl-b in innate and adaptive immunity, and immune-mediated diseases.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
38
|
Peer S, Cappellano G, Hermann-Kleiter N, Albrecht-Schgoer K, Hinterleitner R, Baier G, Gruber T. Regulation of Lymphatic GM-CSF Expression by the E3 Ubiquitin Ligase Cbl-b. Front Immunol 2018; 9:2311. [PMID: 30349541 PMCID: PMC6186797 DOI: 10.3389/fimmu.2018.02311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies as well as lymphatic expression analyses have linked both Cbl-b and GM-CSF to human multiple sclerosis as well as other autoimmune diseases. Both Cbl-b and GM-CSF have been shown to play a prominent role in the development of murine encephalomyelitis; however, no functional connection between the two has yet been established. In this study, we show that Cblb knockout mice demonstrated significantly exacerbated severity of experimental autoimmune encephalomyelitis (EAE), augmented T cell infiltration into the central nervous system (CNS) and strongly increased production of GM-CSF in T cells in vitro and in vivo.GM-CSF neutralization demonstrated that the increased susceptibility of Cblb−/− mice to EAE was dependent on GM-CSF. Mechanistically, p50 binding to the GM-CSF promoter and the IL-3/GM-CSF enhancer element “CNSa” was strongly increased in nuclear extracts from Cbl-b-deficient T cells. This study suggests that Cbl-b limits autoimmunity by preventing the pathogenic effects of GM-CSF overproduction in T cells.
Collapse
Affiliation(s)
- Sebastian Peer
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Hinterleitner
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gottfried Baier
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Cbl-b deficiency provides protection against UVB-induced skin damage by modulating inflammatory gene signature. Cell Death Dis 2018; 9:835. [PMID: 30082827 PMCID: PMC6079082 DOI: 10.1038/s41419-018-0858-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Exposure of skin to ultraviolet (UV) radiation induces DNA damage, inflammation, and immune suppression that ultimately lead to skin cancer. However, some of the pathways that regulate these events are poorly understood. We exposed mice to UVB to study its early effects in the absence of Cbl-b, a known suppressor of antitumor immune response in the skin. Cbl-b-/- mice were protected from UV-induced cell damage as shown by the lower number of cyclobutane pyrimidine dimers and sunburn cells in exposed skin compared to wild-type mice. Microarray data revealed that deficiency of Cbl-b resulted in differential expression of genes involved in apoptosis evasion, tumor suppression and cell survival in UV-exposed skin. After UVB, Cbl-b-/- mice upregulated gene expression pattern associated with regulation of epidermal cell proliferation linked to Wnt signaling mediators and enzymes that relate to cell removal and tissue remodeling like MMP12. Additionally, the skin of Cbl-b-/- mice was protected from chronic inflammatory responses and epidermal hyperplasia in a 4-weeks UVB treatment protocol. Overall, our results suggest a novel role for Cbl-b in regulating inflammation and physiologic clearance of damaged cells in response to UVB by modulating inflammatory gene signature.
Collapse
|
40
|
Gatzka MV. Targeted Tumor Therapy Remixed-An Update on the Use of Small-Molecule Drugs in Combination Therapies. Cancers (Basel) 2018; 10:E155. [PMID: 29794999 PMCID: PMC6025289 DOI: 10.3390/cancers10060155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted.
Collapse
Affiliation(s)
- Martina V Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
41
|
Peer S, Baier G, Gruber T. Cblb-deficient T cells are less susceptible to PD-L1-mediated inhibition. Oncotarget 2018; 8:41841-41853. [PMID: 28611299 PMCID: PMC5522032 DOI: 10.18632/oncotarget.18360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Modulation of the immune system for the treatment of primary and metastatic tumors has been a goal of cancer research for many years. The E3 ubiquitin ligase Cbl-b has been established as an intracellular checkpoint that limits T cell activation, critically contributing to the maintenance of self-tolerance. Furthermore, it has been shown that Cblb deficiency enhances T cell effector functions towards tumors. Blockade of the immune checkpoints CTLA-4 and PD-1/PD-L1 has recently emerged as a promising strategy in the development of effective cancer immune therapies. Therefore, we explored the concept of targeting different checkpoints concomitantly. Interestingly, we observed that CTLA-4 but not PD-L1 based immunotherapy selectively enhanced the anti-tumor phenotype of Cblb-deficient mice. In agreement with the in vivo results, in vitro experiments showed that Cblb−/− T cells were less susceptible to PD-L1-mediated suppression of T cell proliferation and IFNγ secretion. Taken together, our findings reveal a so far unappreciated function of Cbl-b in the regulation of PD-1 signaling in murine T cells.
Collapse
Affiliation(s)
- Sebastian Peer
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Wesley EM, Xin G, McAllister D, Malarkannan S, Newman DK, Dwinell MB, Cui W, Johnson BD, Riese MJ. Diacylglycerol kinase ζ (DGKζ) and Casitas b-lineage proto-oncogene b-deficient mice have similar functional outcomes in T cells but DGKζ-deficient mice have increased T cell activation and tumor clearance. Immunohorizons 2018; 2:107-118. [PMID: 30027154 DOI: 10.4049/immunohorizons.1700055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeting negative regulators downstream of the T cell receptor (TCR) represents a novel strategy to improve cancer immunotherapy. Two proteins that serve as critical inhibitory regulators downstream of the TCR are diacylglycerol kinase ζ (DGKζ), a regulator of Ras and PKC-θ signaling, and Casitas b-lineage proto-oncogene b (Cbl-b), an E3 ubiquitin ligase that predominantly regulates PI(3)K signaling. We sought to compare the signaling and functional effects that result from deletion of DGKζ, Cbl-b, or both (double knockout, DKO) in T cells, and to evaluate tumor responses generated in a clinically relevant orthotopic pancreatic tumor model. We found that whereas deletion of Cbl-b primarily served to enhance NF-κB signaling, deletion of DGKζ enhanced TCR-mediated signal transduction downstream of Ras/Erk and NF-κB. Deletion of DGKζ or Cbl-b comparably enhanced CD8+ T cell functional responses, such as proliferation, production of IFNγ, and generation of granzyme B when compared with WT T cells. DKO T cells demonstrated enhanced function above that observed with single knockout T cells after weak, but not strong, stimulation. Deletion of DGKζ, but not Cbl-b, however, resulted in significant increases in numbers of activated (CD44hi) CD8+ T cells in both non-treated and tumor-bearing mice. DGKζ-deficient mice also had enhanced control of pancreatic tumor cell growth compared to Cbl-b-deficient mice. This represents the first direct comparison between mice of these genotypes and suggests that T cell immunotherapies may be better improved by targeting TCR signaling molecules that are regulated by DGKζ as opposed to molecules regulated by Cbl-b.
Collapse
Affiliation(s)
- Erin M Wesley
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI
| | - Donna McAllister
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Debra K Newman
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI
| | - Bryon D Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew J Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
43
|
Li P, Liu HL, Zhang ZQ, Lv XD, Chang YX, Wang HJ, Ma J, Ma ZY, Qu XJ, Teng YE. Single nucleotide polymorphisms of casitas B-lineage lymphoma proto-oncogene-b predict outcomes of patients with advanced non-small cell lung cancer after first-line platinum based doublet chemotherapy. J Thorac Dis 2018; 10:1635-1647. [PMID: 29707316 DOI: 10.21037/jtd.2018.02.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Casitas B-lineage lymphoma proto-oncogene-b (CBLB) influences the threshold of T cell activation and controlling peripheral T cell tolerance. In the present study, we hypothesize that potentially functional single nucleotide polymorphisms (SNPs) in CBLB are associated with clinical outcomes in patients advanced non-small cell lung cancer (NSCLC) treated with the first-line chemotherapy. Methods We genotyped three SNPs (rs2305035, rs3772534 and rs9657904) at CBLB in 116 advanced NSCLC patients with progression free survival (PFS) data and 133 advanced NSCLC patients with overall survival (OS) data, and we assessed their associations, 95% confidence interval (CI), with clinical outcomes by using Cox proportional hazards regression analyses. In silico functional analysis was also performed for the SNPs under investigation. Results We found that associations between the three SNPs and PFS/OS were not significant in the overall NSCLC patients. The rs2305035 AA genotype was associated with a worse PFS in female patients and those of non-smokers or light smokers (95% CI, 1.14-11.81, P=0.030; 95% CI, 1.42-10.24, P=0.008; and 95% CI, 1.39-9.93, P=0.009; respectively), compared with the GG+AA genotypes. We also found that the rs9657904 CC genotype was significantly associated with a worse OS than TT + TC genotypes in male advanced NSCLC patients. Further in silico functional analysis revealed that the rs965704 T allele was significantly associated with lower mRNA expression levels of the CBLB gene. Conclusions Our findings identified two CBLB SNPs (rs2305035 and rs9657904) that were significantly associated with PFS and OS in several subgroups of Chinese advanced NSCLC patients after the first-line chemotherapy.
Collapse
Affiliation(s)
- Peng Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China.,Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hong-Liang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Zhi-Qiang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiao-Dong Lv
- Central Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yu-Xi Chang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hui-Juan Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jie Ma
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhi-Yong Ma
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
44
|
Goetz B, An W, Mohapatra B, Zutshi N, Iseka F, Storck MD, Meza J, Sheinin Y, Band V, Band H. A novel CBL-Bflox/flox mouse model allows tissue-selective fully conditional CBL/CBL-B double-knockout: CD4-Cre mediated CBL/CBL-B deletion occurs in both T-cells and hematopoietic stem cells. Oncotarget 2018; 7:51107-51123. [PMID: 27276677 PMCID: PMC5239462 DOI: 10.18632/oncotarget.9812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors.
Collapse
Affiliation(s)
- Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fany Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
45
|
Haymaker C, Yang Y, Wang J, Zou Q, Sahoo A, Alekseev A, Singh D, Ritthipichai K, Hailemichael Y, Hoang ON, Qin H, Schluns KS, Wang T, Overwijk WW, Sun SC, Bernatchez C, Kwak LW, Neelapu SS, Nurieva R. Absence of Grail promotes CD8 + T cell anti-tumour activity. Nat Commun 2017; 8:239. [PMID: 28798332 PMCID: PMC5552797 DOI: 10.1038/s41467-017-00252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
T-cell tolerance is a major obstacle to successful cancer immunotherapy; thus, developing strategies to break immune tolerance is a high priority. Here we show that expression of the E3 ubiquitin ligase Grail is upregulated in CD8+ T cells that have infiltrated into transplanted lymphoma tumours, and Grail deficiency confers long-term tumour control. Importantly, therapeutic transfer of Grail-deficient CD8+ T cells is sufficient to repress established tumours. Mechanistically, loss of Grail enhances anti-tumour reactivity and functionality of CD8+ T cells. In addition, Grail-deficient CD8+ T cells have increased IL-21 receptor (IL-21R) expression and hyperresponsiveness to IL-21 signalling as Grail promotes IL-21R ubiquitination and degradation. Moreover, CD8+ T cells isolated from lymphoma patients express higher levels of Grail and lower levels of IL-21R, compared with CD8+ T cells from normal donors. Our data demonstrate that Grail is a crucial factor controlling CD8+ T-cell function and is a potential target to improve cytotoxic T-cell activity.Grail is an E3 ubiquitin ligase that inhibits T-cell receptor signalling in CD4+ T cells. Here the authors show Grail also limits IL-21 receptor expression and function in CD8+ T cells, is overactive in these cells in patients with lymphoma, and promotes tumour development in a lymphoma transplant mouse model.
Collapse
Affiliation(s)
- Cara Haymaker
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yi Yang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Radiation Oncology, The Second Hospital of Jilin University, No. 218 Ziqiang St., Changchun City, Jilin Province, 130041, China
| | - Junmei Wang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Qiang Zou
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anupama Sahoo
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Andrei Alekseev
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Divyendu Singh
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Krit Ritthipichai
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Oanh N Hoang
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hong Qin
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Toni Stephenson Lymphoma Center, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Kimberly S Schluns
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, No. 218 Ziqiang St., Changchun City, Jilin Province, 130041, China
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Larry W Kwak
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Toni Stephenson Lymphoma Center, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Roza Nurieva
- Department of Immunology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Fujiwara M, Anstadt EJ, Clark RB. Cbl-b Deficiency Mediates Resistance to Programmed Death-Ligand 1/Programmed Death-1 Regulation. Front Immunol 2017; 8:42. [PMID: 28184224 PMCID: PMC5266705 DOI: 10.3389/fimmu.2017.00042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 01/22/2023] Open
Abstract
Casitas B-lineage lymphoma-b (Cbl-b) is an E3 ubiquitin ligase that negatively regulates T cell activation. Cbl-b−/− T cells are hyper-reactive and co-stimulation independent, and Cbl-b−/− mice demonstrate robust T cell and NK cell-mediated antitumor immunity. As a result of these murine studies, Cbl-b is considered a potential target for therapeutic manipulation in human cancer immunotherapy. The PD-L1/PD-1 pathway of immune regulation is presently an important therapeutic focus in tumor immunotherapy, and although Cbl-b−/− mice have been shown to be resistant to several immuno-regulatory mechanisms, the sensitivity of Cbl-b−/− mice to PD-L1-mediated suppression has not been reported. We now document that Cbl-b−/− T cells and NK cells are resistant to PD-L1/PD-1-mediated suppression. Using a PD-L1 fusion protein (PD-L1 Ig), this resistance is shown for both in vitro proliferative responses and IFN-γ production and is not associated with decreased PD-1 expression on Cbl-b−/− cells. In coculture studies, Cbl-b−/− CD8+, but not CD4+ T cells, diminish the PD-L1 Ig-mediated suppression of bystander naïve WT CD8+ T cells. Using an in vivo model of B16 melanoma in which numerous liver metastases develop in WT mice in a PD-1 dependent manner, Cbl-b−/− mice develop significantly fewer liver metastases without the administration of anti-PD-1 antibody. Overall, our findings identify a new mode of immuno-regulatory resistance associated with Cbl-b deficiency and suggest that resistance to PD-L1/PD-1-mediated suppression is a novel mechanism by which Cbl-b deficiency leads to enhanced antitumor immunity. Our results suggest that targeting Cbl-b in cancer immunotherapy offers the opportunity to simultaneously override numerous relevant “checkpoints,” including sensitivity to regulatory T cells, suppression by TGF-β, and immune regulation by both CTLA-4 and, as we now report, by the PD-L1/PD-1 pathway.
Collapse
Affiliation(s)
- Mai Fujiwara
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Emily J Anstadt
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
47
|
Zeng P, Ma J, Yang R, Liu YC. Immune Regulation by Ubiquitin Tagging as Checkpoint Code. Curr Top Microbiol Immunol 2017; 410:215-248. [PMID: 28929193 DOI: 10.1007/82_2017_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is equipped with effective machinery to mobilize its activation to defend invading microorganisms, and at the same time, to refrain from attacking its own tissues to maintain immune tolerance. The balance of activation and tolerance is tightly controlled by diverse mechanisms, since breakdown of tolerance could result in disastrous consequences such as the development of autoimmune diseases. One of the mechanisms is by the means of protein ubiquitination, which involves the process of tagging a small peptide ubiquitin to protein substrates. E3 ubiquitin ligases are responsible for catalyzing the final step of ubiquitin-substrate conjugation by specifically recognizing substrates to determine their fates of degradation or functional modification. The ubiquitination process is reversible, which is carried out by deubiquitinating enzymes to release the ubiquitin molecule from the conjugated substrates. Protein ubiquitination and deubiquitination serve as checkpoint codes in many key steps of lymphocyte regulation including the development, activation, differentiation, and tolerance induction. In this chapter, we will discuss a few E3 ligases and deubiquitinating enzymes that are important in controlling immune responses, with emphasis on their roles in T cells.
Collapse
Affiliation(s)
- Peng Zeng
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jieyu Ma
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| |
Collapse
|
48
|
Voisinne G, García-Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, Malissen M, Burlet-Schiltz O, Gonzalez de Peredo A, Malissen B, Roncagalli R. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol 2016; 12:876. [PMID: 27474268 PMCID: PMC4965873 DOI: 10.15252/msb.20166837] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell receptor (TCR) signaling is essential for the function of T cells and negatively regulated by the E3 ubiquitin-protein ligases CBL and CBLB Here, we combined mouse genetics and affinity purification coupled to quantitative mass spectrometry to monitor the dynamics of the CBL and CBLB signaling complexes that assemble in normal T cells over 600 seconds of TCR stimulation. We identify most previously known CBL and CBLB interacting partners, as well as a majority of proteins that have not yet been implicated in those signaling complexes. We exploit correlations in protein association with CBL and CBLB as a function of time of TCR stimulation for predicting the occurrence of direct physical association between them. By combining co-recruitment analysis with biochemical analysis, we demonstrated that the CD5 transmembrane receptor constitutes a key scaffold for CBL- and CBLB-mediated ubiquitylation following TCR engagement. Our results offer an integrated view of the CBL and CBLB signaling complexes induced by TCR stimulation and provide a molecular basis for their negative regulatory function in normal T cells.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Antonio García-Blesa
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
49
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
50
|
Carotta S. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches. Front Immunol 2016; 7:152. [PMID: 27148271 PMCID: PMC4838611 DOI: 10.3389/fimmu.2016.00152] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Abstract
The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. Although the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer (NK) cells are the body’s first line of defense against infected or transformed cells, as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell-based anticancer therapies, which has lead to a steady increase of NK cell-based clinical and preclinical trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.
Collapse
Affiliation(s)
- Sebastian Carotta
- Immune Modulation Department, Boehringer Ingelheim RCV, Vienna, Austria; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|