1
|
Vaghjiani VG, Cochrane CR, Jayasekara WSN, Chong WC, Szczepny A, Kumar B, Martelotto LG, McCaw A, Carey K, Kansara M, Thomas DM, Walkley C, Mudge S, Gough DJ, Downie PA, Peacock CD, Matsui W, Watkins DN, Cain JE. Ligand-dependent hedgehog signaling maintains an undifferentiated, malignant osteosarcoma phenotype. Oncogene 2023; 42:3529-3541. [PMID: 37845394 PMCID: PMC10656285 DOI: 10.1038/s41388-023-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.
Collapse
Affiliation(s)
| | - Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | | | - Wai Chin Chong
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Beena Kumar
- Department of Pathology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Luciano G Martelotto
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew McCaw
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Kirstyn Carey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St.Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 1466, Australia
| | - Carl Walkley
- St. Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Stuart Mudge
- Mayne Pharma International Pty Ltd, Salisbury Sth, SA, 5106, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Peter A Downie
- Monash Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - Craig D Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - William Matsui
- Department of Oncology and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, R3E-0V9, Canada.
- Department of Internal Medicine, Rady Faculty of Heath Sciences, University of Manitoba, Winnipeg, MB, R3A-1R9, Canada.
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
4
|
Xu R, Qi L, Ren X, Zhang W, Li C, Liu Z, Tu C, Li Z. Integrated Analysis of TME and Hypoxia Identifies a Classifier to Predict Prognosis and Therapeutic Biomarkers in Soft Tissue Sarcomas. Cancers (Basel) 2022; 14:cancers14225675. [PMID: 36428766 PMCID: PMC9688460 DOI: 10.3390/cancers14225675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Soft tissue sarcoma (STS) is one of the rarest but most aggressive cancer. It is important to note that intratumoral hypoxia and tumor microenvironment (TME) infiltration play a significant role in the growth and therapeutic resistance of STS. The goal of this study was therefore to determine whether linking hypoxia-related parameters to TME cells could provide a more accurate prediction of prognosis and therapeutic response. An analysis of 109 hypoxia-related genes and 64 TME cells was conducted in STS. Hypoxia-TME classifier was constructed based on 6 hypoxia prognostic genes and 8 TME cells. As a result, we evaluated the prognosis, tumor, and immune characteristics, as well as the effectiveness of therapies in Hypoxia-TME-defined subgroups. The Lowplus group showed a better prognosis and therapeutic response than any other subgroup. It is possible to unravel these differences based on immune-related molecules and somatic mutations in tumors. Further validation of Hypoxia-TME was done in an additional cohort of 225 STS patients. Additionally, we identified five key genes through differential analysis and RT-qPCR, namely, ACSM5, WNT7B, CA9, MMP13, and RAC3, which could be targeted for therapy. As a whole, the Hypoxia-TME classifier demonstrated a pretreatment predictive value for prognosis and therapeutic outcome, providing new approaches to therapy strategizing for patients.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Chenbei Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
- Correspondence:
| |
Collapse
|
5
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
6
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
7
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
8
|
Tan W, Xu H, Chen B, Duan T, Liu K, Zou J. Wnt inhibitory 1 ameliorates neovascularization and attenuates photoreceptor injury in an oxygen-induced retinopathy mouse model. Biofactors 2022; 48:683-698. [PMID: 35080047 DOI: 10.1002/biof.1824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023]
Abstract
Retinal neovascularization (RNV) associated diseases typically exhibit pathological neovascularization and neurodegeneration. Wnt inhibitor factor 1 (WIF1) is a secreted Wnt antagonist that regulates angiogenesis. However, the significance of WIF1 in RNV associated disease has not been explicitly tested. In our study, we found that the WIF1 expressions were strongly downregulated in the vitreous of proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP). Similarly, retinal WIF1 expression was significantly downregulated in OIR mice, relative to normal mice at P17. After injection of WIF1 overexpression lentivirus into the vitreous of OIR mice, overexpressing WIF1 in OIR mice vitreous strongly reduced avascular areas and neovascular tufts, increased vessel branches, raised a-, b-waves and oscillatory potentials amplitudes on ERG, increased retinal thickness and the number of synapses in retina, normalized the Golgi, mitochondria, and outer segments of photoreceptors. Furthermore, overexpression WIF1 suppressed expressions of β-catenin, vascular endothelial growth factor (VEGF), p-AKT and p-ERK, reduced retinal reactive oxygen species (ROS) and 4-HNE levels, improved autophagic flux, and mitigated apoptosis. In summary, WIF1 plays a key role in alleviating angiogenesis and in improving visual function in OIR mice by suppressing the Wnt/β-catenin-VEGF signaling pathway and ROS levels. WIF1 is an excellent candidate for targeted therapy against RNV associated diseases.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- Department of Ophthalmology, Central Hospital of Xiangtan, Xiangtan, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Huizhuo Xu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bolin Chen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Tianqi Duan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Kangcheng Liu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Jing Zou
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
10
|
Yang Q, Liu J, Wu B, Wang X, Jiang Y, Zhu D. Role of extracellular vesicles in osteosarcoma. Int J Med Sci 2022; 19:1216-1226. [PMID: 35928720 PMCID: PMC9346389 DOI: 10.7150/ijms.74137] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor characterized by the direct production of osteoid tissue from tumor cells. Extracellular vesicles are membranous vesicles released by cells into the extracellular matrix, which exist widely in various body fluids and cell supernatants, and stably carry some important signaling molecules. They are involved in cell communication, cell migration, angiogenesis and tumor cell growth. Increasing evidence has shown that extracellular vesicles play a significant role in osteosarcoma development, progression, and metastatic process, indicating that extracellular vesicles can be use as biomarker vehicles in the diagnosis and prognosis of osteosarcoma. This review discusses the basic biological characteristics of extracellular vesicles and focuses on their application in osteosarcoma.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Jing Liu
- The first clinical medical college of Bin Zhou Medical College, Street Huanghe 661, China
| | - Bo Wu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Xinyu Wang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Ye Jiang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Dong Zhu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| |
Collapse
|
11
|
Wnt Inhibitory Factor 1 Binds to and Inhibits the Activity of Sonic Hedgehog. Cells 2021; 10:cells10123496. [PMID: 34944004 PMCID: PMC8699845 DOI: 10.3390/cells10123496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
The hedgehog (Hh) and Wnt pathways, crucial for the embryonic development and stem cell proliferation of Metazoa, have long been known to have similarities that argue for their common evolutionary origin. A surprising additional similarity of the two pathways came with the discovery that WIF1 proteins are involved in the regulation of both the Wnt and Hh pathways. Originally, WIF1 (Wnt Inhibitory Factor 1) was identified as a Wnt antagonist of vertebrates, but subsequent studies have shown that in Drosophila, the WIF1 ortholog serves primarily to control the distribution of Hh. In the present, work we have characterized the interaction of the human WIF1 protein with human sonic hedgehog (Shh) using Surface Plasmon Resonance spectroscopy and reporter assays monitoring the signaling activity of human Shh. Our studies have shown that human WIF1 protein binds human Shh with high affinity and inhibits its signaling activity efficiently. Our observation that the human WIF1 protein is a potent antagonist of human Shh suggests that the known tumor suppressor activity of WIF1 may not be ascribed only to its role as a Wnt inhibitor.
Collapse
|
12
|
Santos A, Domingues C, Jarak I, Veiga F, Figueiras A. Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. Eur J Pharm Biopharm 2021; 170:91-111. [PMID: 34896571 DOI: 10.1016/j.ejpb.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
The most common primary malignant tumor of bone in children is osteosarcoma (OS). Nowadays, the prognosis and the introduction of chemotherapy in OS have improved survival rates of patients. Nevertheless, the results are still unsatisfactory, especially, in patients with recurrent disease or metastatic. OS chemotherapy has two main challenges related to treatment toxicity and multiple drug resistance. In this way, nanotechnology has developed nanosystems capable of releasing the drug directly at the OS cells and decreasing the drug's toxicity. Exosomes (Exo), a cell-derived nano-sized and a phospholipid vehicle, have been recognized as important drug delivery systems in several cancers. They are involved in a variety of biological processes and are an important mediator of long-distance intercellular communication. Exo can reduce inflammation and show low toxicity in healthy cells. Furthermore, the incorporation of specific proteins or peptides on the Exo surface improves their targeting capability in several clinical applications. Due to their unique structure and relevant characteristics, Exo is a promising nanocarrier for OS treatment. This review intends to describe the properties that turn Exo into an efficient, as well as safe nanovesicle for drug delivery and treatment of OS.
Collapse
Affiliation(s)
- Ana Santos
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal.
| |
Collapse
|
13
|
Ebrahimi M, Rad MTS, Zebardast A, Ayyasi M, Goodarzi G, Tehrani SS. The critical role of mesenchymal stromal/stem cell therapy in COVID-19 patients: An updated review. Cell Biochem Funct 2021; 39:945-954. [PMID: 34545605 PMCID: PMC8652792 DOI: 10.1002/cbf.3670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
New coronavirus disease 2019 (COVID-19), as a pandemic disaster, has drawn the attention of researchers in various fields to discover suitable therapeutic approaches for the management of COVID-19 patients. Currently, there are many worries about the rapid spread of COVID-19; there is no approved treatment for this infectious disease, despite many efforts to develop therapeutic procedures for COVID-19. Emerging evidence shows that mesenchymal stromal/stem cell (MSC) therapy can be a suitable option for the management of COVID-19. These cells have many biological features (including the potential of differentiation, high safety and effectiveness, secretion of trophic factors and immunoregulatory features) that make them suitable for the treatment of various diseases. However, some studies have questioned the positive role of MSC therapy in the treatment of COVID-19. Accordingly, in this paper, we will focus on the therapeutic impacts of MSCs and their critical role in cytokine storm of COVID-19 patients.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Child Health Research CenterGolestan University of Medical SciencesGorganIran
| | - Mohammad Taha Saadati Rad
- Psychiatric and Behavioral Sciences Research Center, Addiction Research InstituteMazandaran University of Medical SciencesSariIran
| | - Arghavan Zebardast
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Mitra Ayyasi
- Critical Care NursingIslamic Azad University, Sari BranchSariIran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
- Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
- Scientific Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Guo H, Peng J, Hu J, Chang S, Liu H, Luo H, Chen X, Tang H, Chen Y. BAIAP2L2 promotes the proliferation, migration and invasion of osteosarcoma associated with the Wnt/β-catenin pathway. J Bone Oncol 2021; 31:100393. [PMID: 34786330 PMCID: PMC8577457 DOI: 10.1016/j.jbo.2021.100393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone cancer that significantly affects the quality of life of patients. Studies have shown that overexpression of BAIAP2L2 elevates the proliferation and growth of some types of cancer cells. However, the role of BAIAP2L2 in osteosarcoma is unclear. This study aimed to investigate the functions of BAIAP2L2 in the development of osteosarcoma. METHODS We used immunohistochemical and Western blot analysis to determine the expression levels of endogenic BAIAP2L2 in osteosarcoma cells. Cell counting kit-8 assay and colony formation assay were performed to investigate cell proliferation of tumor cells. Transwell assay was performed to detect cell migration. Flow cytometry assay was used to analyze cell apoptosis. The role of BAIAP2L2 in tumor growth was further explored in vivo. RESULTS We found that BAIAP2L2 was significantly upregulated in human osteosarcoma, and inhibition of BAIAP2L2 suppressed the proliferation of osteosarcoma cells. In addition, down-regulation of BAIAP2L2 could lead to osteosarcoma cancer cell apoptosis, inhibit cell migration and invasion, and induce the inactivation of the Wnt/β-catenin pathway. In addition, down-regulation of BAIAP2L2 inhibited tumor growth in vivo. CONCLUSION In conclusion, down-regulation of BAIAP2L2 inhibited the proliferation, migration, and invasion of osteosarcoma associated with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hongting Guo
- Oncologe Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Jing Peng
- Blood Transfusion Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Juan Hu
- Department of Anesthesiology, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Shichuan Chang
- Oncologe Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Huawen Liu
- Oncologe Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Hao Luo
- Department of Orthopaedics, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Xiaohua Chen
- Department of Orthopaedics, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Haiping Tang
- Blood Transfusion Department, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| | - Youhao Chen
- Department of Orthopaedics, Chong Qing University Three Gorges Hospital, Chongqing City 404100, PR China
| |
Collapse
|
15
|
Antitumor Effect of Sclerostin against Osteosarcoma. Cancers (Basel) 2021; 13:cancers13236015. [PMID: 34885123 PMCID: PMC8656567 DOI: 10.3390/cancers13236015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Osteosarcoma is highly variable and heterogeneous, which is one of the reasons for its resistance to treatment. Because osteosarcoma is defined by abnormal bone formation, we hypothesize its suppression could lead to effective treatment for all types of osteosarcomas. Sclerostin is secreted by osteocytes and inhibits the canonical pathway by binding to LRP5/6, thereby suppressing bone formation. The resulting suppression of bone formation leads to bone loss and osteoporosis. Here, we investigated the antitumor effect of sclerostin against osteosarcoma and found that sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Abstract Various risk factors and causative genes of osteosarcoma have been reported in the literature; however, its etiology remains largely unknown. Bone formation is a shared phenomenon in all types of osteosarcomas, and sclerostin is an extracellular soluble factor secreted by osteocytes that prevents bone formation by inhibiting the Wnt signaling pathway. We aimed to investigate the antitumor effect of sclerostin against osteosarcoma. Osteosarcoma model mice were prepared by transplantation into the dorsal region of C3H/He and BALB/c-nu/nu mice using osteosarcoma cell lines LM8 (murine) and 143B (human), respectively. Cell proliferations were evaluated by using alamarBlue and scratch assays. The migratory ability of the cells was evaluated using a migration assay. Sclerostin was injected intraperitoneally for 7 days to examine the suppression of tumor size and extension of survival. The administration of sclerostin to osteosarcoma cells significantly inhibited the growth and migratory ability of osteosarcoma cells. Kaplan–Meier curves and survival data demonstrated that sclerostin significantly inhibited tumor growth and improved survival. Sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Osteosarcoma model mice inhibited tumor growth and prolonged survival periods by the administration of sclerostin. The effect of existing anticancer drugs such as doxorubicin should be investigated for future clinical applications.
Collapse
|
16
|
The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. JOURNAL OF ONCOLOGY 2021; 2021:3006853. [PMID: 34671398 PMCID: PMC8523229 DOI: 10.1155/2021/3006853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is a major form of malignant bone tumor that typically occurs in young adults and children. The combination of aggressive surgical strategies and chemotherapy has led to improvements in survival time, although individuals with recurrent or metastatic conditions still have an extremely poor prognosis. This disappointing situation strongly indicates that testing novel, targeted therapeutic agents is imperative to prevent the progression of osteosarcoma and enhance patient survival time. Curcumin, a naturally occurring phenolic compound found in Curcuma longa, has been shown to have a wide variety of anti-tumor, anti-oxidant, and anti-inflammatory activities in many types of cancers including osteosarcoma. Curcumin is a highly pleiotropic molecule that can modulate intracellular signaling pathways to regulate cell proliferation, inflammation, and apoptosis. These signaling pathways include RANK/RANKL, Notch, Wnt/β-catenin, apoptosis, autophagy, JAK/STAT, and HIF-1 pathways. Additionally, curcumin can regulate the expression of various types of microRNAs that are involved in osteosarcoma. Therefore, curcumin may be a potential candidate for the prevention and treatment of osteosarcoma. This comprehensive review not only covers the use of curcumin in the treatment of osteosarcoma and its anti-cancer molecular mechanisms but also reveals the novel delivery strategies and combination therapies with the aim to improve the therapeutic effect of curcumin.
Collapse
|
17
|
Torres HM, VanCleave AM, Vollmer M, Callahan DL, Smithback A, Conn JM, Rodezno-Antunes T, Gao Z, Cao Y, Afeworki Y, Tao J. Selective Targeting of Class I Histone Deacetylases in a Model of Human Osteosarcoma. Cancers (Basel) 2021; 13:4199. [PMID: 34439353 PMCID: PMC8394112 DOI: 10.3390/cancers13164199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.
Collapse
Affiliation(s)
- Haydee M. Torres
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Ashley M. VanCleave
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Mykayla Vollmer
- Medical Student Research Program, University of South Dakota, Vermillion, SD 57069, USA;
| | - Dakota L. Callahan
- Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD 57104, USA;
| | - Austyn Smithback
- Sanford PROMISE Scholar Program, Harrisburg High School, Sioux Falls, SD 57104, USA;
| | - Josephine M. Conn
- Sanford Program for Undergraduate Research, Carleton College, Northfield, MN 55057, USA;
| | - Tania Rodezno-Antunes
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Zili Gao
- Flow Cytometry Core at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Yuxia Cao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility at Sanford Research, Sioux Falls, SD 57104, USA;
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group at Sanford Research, Sioux Falls, SD 57104, USA; (H.M.T.); (A.M.V.); (T.R.-A.); (Y.C.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
18
|
Zhang XB, Zhang RH, Su X, Qi J, Hu YC, Shi JT, Zhang K, Wang KP, Zhou HY. Exosomes in osteosarcoma research and preclinical practice. Am J Transl Res 2021; 13:882-897. [PMID: 33841628 PMCID: PMC8014357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Osteosarcoma (OS) is a rare soft-tissue malignant tumor with high lung metastasis and mortality rates. Preoperative chemotherapy, surgical resection of the lesion and postoperative chemotherapy are still the main treatments for osteosarcoma. The prognosis, however, is poor for patients with nonresectable, primary metastatic or relapsed disease. Recent studies have shown that targeted therapy for OS based on the characteristics of exosomes is very attractive. Exosomes are nanosized extracellular vesicles (EVs) that participate in cell-to-cell communication by transporting biologically active cargo molecules, causing changes in OS cell function and playing important roles in OS disease progression. With the characteristics of secretory cells, exosomes transport cargo (e.g., microRNAs) that can be used to detect the progress of a disease and can serve as markers and/or therapeutic targets for clinical diagnosis of OS. In this review, the roles of exosomes in OS pathogenesis, invasion, metastasis, drug resistance, diagnosis and treatment are summarized. In addition, this article elaborates a series of challenges to overcome before exosomes are applied in clinical practice and provides suggestions based on current evidence for the direction of future research.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Xin Su
- Department of Cardiology, Gansu Province People’s HospitalLanzhou 730000, China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Lanzhou Xigu District People’s HospitalLanzhou 730000, Gansu, China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Lanzhou Xigu District People’s HospitalLanzhou 730000, Gansu, China
| |
Collapse
|
19
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
20
|
Hirozane T, Masuda M, Sugano T, Sekita T, Goto N, Aoyama T, Sakagami T, Uno Y, Moriyama H, Sawa M, Asano N, Nakamura M, Matsumoto M, Nakayama R, Kondo T, Kawai A, Kobayashi E, Yamada T. Direct conversion of osteosarcoma to adipocytes by targeting TNIK. JCI Insight 2021; 6:137245. [PMID: 33400690 PMCID: PMC7934882 DOI: 10.1172/jci.insight.137245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive mesenchymal tumor for which no molecularly targeted therapies are available. We have previously identified TRAF2- and NCK-interacting protein kinase (TNIK) as an essential factor for the transactivation of Wnt signal target genes and shown that its inhibition leads to eradication of colorectal cancer stem cells. The involvement of Wnt signaling in the pathogenesis of OS has been implicated. The aim of the present study was to examine the potential of TNIK as a therapeutic target in OS. RNA interference or pharmacological inhibition of TNIK suppressed the proliferation of OS cells. Transcriptome analysis suggested that a small-molecule inhibitor of TNIK upregulated the expression of genes involved in OS cell metabolism and downregulated transcription factors essential for maintaining the stem cell phenotype. Metabolome analysis revealed that this TNIK inhibitor redirected the metabolic network from carbon flux toward lipid accumulation in OS cells. Using in vitro and in vivo OS models, we confirmed that TNIK inhibition abrogated the OS stem cell phenotype, simultaneously driving conversion of OS cells to adipocyte-like cells through induction of PPARγ. In relation to potential therapeutic targeting in clinical practice, TNIK was confirmed to be in an active state in OS cell lines and clinical specimens. From these findings, we conclude that TNIK is applicable as a potential target for treatment of OS, affecting cell fate determination.
Collapse
Affiliation(s)
- Toru Hirozane
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Mari Masuda
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Teppei Sugano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tetsuya Sekita
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naoko Goto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toru Aoyama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Keio University School of Medicine, Tokyo, Japan
| | - Takato Sakagami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Keio University School of Medicine, Tokyo, Japan
| | - Yuko Uno
- Carna Biosciences Inc., Kobe, Japan
| | | | | | - Naofumi Asano
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Robert Nakayama
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Kawai
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tesshi Yamada
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Usefulness of β-catenin expression in the differential diagnosis of osteosarcoma, osteoblastoma, and chondroblastoma. Virchows Arch 2021; 479:529-535. [PMID: 33511430 DOI: 10.1007/s00428-020-03004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The aim of this study is to assess the usefulness of beta-catenin immunohistochemical expression in the differential diagnosis of osteoid-producing primary tumors of bone. Seventy cases of osteoid-producing tumors of bone (24 conventional osteosarcomas, 18 osteoblastomas, 13 osteoblastoma-like osteosarcomas, 10 chondroblastomas, and 5 chondroblastoma-like osteosarcomas) diagnosed at Istituto Ortopedico Rizzoli were reviewed and evaluated for the intensity, extension, and subcellular distribution of immunohistochemical expression of beta-catenin. A majority of cases (73%, 51 cases) exhibited cytoplasmic and/or membranous positivity in varied degrees of intensity and proportion of positive cells, in the absence of nuclear staining. Fifteen cases (21%) were completely negative, including two osteoblastomas, five chondroblastomas, three conventional osteosarcomas, four osteoblastoma-like osteosarcomas, and one chondroblastoma-like osteosarcoma. A minority of cases (6%) including three osteoblastoma-like osteosarcomas and one osteoblastoma showed focal nuclear beta-catenin positivity with or without concomitant cytoplasmic staining. In the current series, beta-catenin showed not to be useful in the differential diagnosis of osteoid-producing primary bone tumors.
Collapse
|
22
|
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH. Wnt Signaling in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:125-139. [PMID: 32767238 DOI: 10.1007/978-3-030-43085-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt molecules are a class of cysteine-rich secreted glycoproteins that participate in various developmental events during embryogenesis and adult tissue homeostasis. Since its discovery in 1982, the roles of Wnt signaling have been established in various key regulatory systems in biology. Wnt signals exert pleiotropic effects, including mitogenic stimulation, cell fate specification, and differentiation. The Wnt signaling pathway in humans has been shown to be involved in a wide variety of disorders including colon cancer, sarcoma, coronary artery disease, tetra-amelia, Mullerian duct regression, eye vascular defects, and abnormal bone mass. The canonical Wnt pathway functions by regulating the function of the transcriptional coactivator β-catenin, whereas noncanonical pathways function independent of β-catenin. Although the role of Wnt signaling is well established in epithelial malignancies, its role in mesenchymal tumors is more controversial. Some studies have suggested that Wnt signaling plays a pro-oncogenic role in various sarcomas by driving cell proliferation and motility; however, others have reported that Wnt signaling acts as a tumor suppressor by committing tumor cells to differentiate into a mature lineage. Wnt signaling pathway also plays an important role in regulating cancer stem cell function. In this review, we will discuss Wnt signaling pathway and its role in osteosarcoma.
Collapse
Affiliation(s)
- Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Fan J, Su YW, Hassanshahi M, Fan CM, Peymanfar Y, Piergentili A, Del Bello F, Quaglia W, Xian CJ. β-Catenin signaling is important for osteogenesis and hematopoiesis recovery following methotrexate chemotherapy in rats. J Cell Physiol 2020; 236:3740-3751. [PMID: 33078406 DOI: 10.1002/jcp.30114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the β-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without β-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of β-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+ hematopoietic progenitor cell contents. Thus, β-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.
Collapse
Affiliation(s)
- Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Cory J Xian
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China.,UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Zhu S, Liu Y, Wang X, Wang J, Xi G. lncRNA SNHG10 Promotes the Proliferation and Invasion of Osteosarcoma via Wnt/β-Catenin Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:957-970. [PMID: 33251045 PMCID: PMC7674123 DOI: 10.1016/j.omtn.2020.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Uncontrolled growth and an enforced epithelial-mesenchymal transition (EMT) process contribute to the poor survival rate of patients with osteosarcoma (OS). Long noncoding RNAs (lncRNAs) have been reported to be involved in the development of OS. However, the significant role of lncRNA SNHG1O on regulating proliferation and the EMT process of OS cells remains unclear. In this study, quantitative real-time PCR and fluorescence in situ hybridization (FISH) results suggested that SNHG10 levels were significantly increased in OS compared with healthy tissues. In vitro experiments (including colony formation, CCK-8, wound healing, and transwell assays) and in vivo experiments indicated that downregulation of SNHG10 significantly suppressed the proliferation and invasion of OS cells. Luciferase reporter assay and RNA immunoprecipitation (RIP) assay confirmed that SNHG10 could regulate FZD3 levels through sponging microRNA 182-5p (miR-182-5p). In addition, the SNHG10/miR-182-5p/FZD3 axis could further promote the β-catenin transfer into nuclear accumulation to maintain the activation of the Wnt singling pathway. Together, our results established that SNHG10 has an important role in promoting OS growth and invasion. By sponging miR-182-5p, SNHG10 can increase FZD3 expression and further maintain the activation of Wnt/β-catenin singling pathway in OS cells.
Collapse
Affiliation(s)
- Shutao Zhu
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng City, Henan, China
| | - Yang Liu
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng City, Henan, China
| | - Xiao Wang
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng City, Henan, China
| | - Junyi Wang
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng City, Henan, China
| | - Guanghui Xi
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng City, Henan, China
| |
Collapse
|
25
|
Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, Lecanda F, Hartmann C, Sibilia M, Wagner EF. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res 2020; 30:885-901. [PMID: 32686768 PMCID: PMC7608146 DOI: 10.1038/s41422-020-0370-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumor in urgent need of better therapies. Using genetically modified mouse models (GEMMs), we demonstrate that Wnt signaling promotes c-Fos-induced OS formation via the actions of the collagen-modifying enzyme Loxl2. c-Fos/AP-1 directly regulates the expression of the Wnt ligands Wnt7b and Wnt9a in OS cells through promoter binding, and Wnt7b and Wnt9a in turn promote Loxl2 expression in murine and human OS cells through the transcription factors Zeb1 and Zeb2. Concordantly, inhibition of Wnt ligand secretion by inactivating the Wnt-less (Wls) gene in osteoblasts in c-Fos GEMMs either early or in a therapeutic setting reduces Loxl2 expression and progression of OS. Wls-deficient osteosarcomas proliferate less, are less mineralized and are enriched in fibroblastic cells surrounded by collagen fibers. Importantly, Loxl2 inhibition using either the pan-Lox inhibitor BAPN or a specific inducible shRNA reduces OS cell proliferation in vitro and decreases tumor growth and lung colonization in murine and human orthotopic OS transplantation models. Finally, OS development is delayed in c-Fos GEMMs treated with BAPN or with specific Loxl2 blocking antibodies. Congruently, a strong correlation between c-FOS, LOXL2 and WNT7B/WNT9A expression is observed in human OS samples, and c-FOS/LOXL2 co-expression correlates with OS aggressiveness and decreased patient survival. Therefore, therapeutic targeting of Wnt and/or Loxl2 should be considered to potentiate the inadequate current treatments for pediatric, recurrent, and metastatic OS.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lena I Wolff
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Markus Linder
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | | | - Ana Patiño-García
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Department of Pediatrics, University Clinic of Navarra, Pamplona, 31008, Spain
| | - Fernando Lecanda
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, 31008, Spain
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Maria Sibilia
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria.
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria.
| |
Collapse
|
26
|
Pu F, Chen F, Zhang Z, Liu J, Shao Z. Information Transfer and Biological Significance of Neoplastic Exosomes in the Tumor Microenvironment of Osteosarcoma. Onco Targets Ther 2020; 13:8931-8940. [PMID: 32982285 PMCID: PMC7498481 DOI: 10.2147/ott.s266835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is a highly invasive kind of malignant bone tumor. Exosomes are a type of extracellular vesicles that play an important role in intercellular communication in the microenvironment. Tumor cell progression is promoted through the interaction between exosomes and cells in the microenvironment (including immune cells, mesenchymal cells, and endothelial cells) during tumor development. Neoplastic exosomes can carry a variety of biological information molecules, such as proteins, lipids, and nucleic acids. These molecules play an important clinical role, not only being able domesticate the recipient cells but also being recognized as tumor specific markers. At the same time, exosomes secreted by osteosarcoma can also cooperate with antigen-presenting cells to activate the body's immune response and then to exert anti-tumor effects. Studies on exosomes may be a breakthrough in the search for a new osteosarcoma treatment. In this study, we review the role of neoplastic exosomes in the osteosarcoma microenvironment, summarize their potential as tumor markers, and investigate their clinical application prospects.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
27
|
|
28
|
Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci 2020; 62:349-356. [PMID: 32835781 DOI: 10.1016/j.job.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bone marrow derived mesenchymal stem cells (BMSCs) are an irresistible choice for use in stem cell therapy and regenerative medicine. BMSCs osteoblastic differentiation is also important in bone development, diseases, malignancies, and cancers studies. Wnt signaling pathway antagonists, Dickkopf-1 (Dkk 1), Secreted Frizzled-Related Proteins (sFRPs), and Wnt Inhibitory Factor 1 (Wif1) play important roles in inducing osteoblastic differentiation. This study is the first to investigate the association between DNA methylation and gene expression of Dkk1, sFRP2, sFRP4, and Wif1 during BMSCs osteoblastic differentiation. METHODS Human BMSCs were isolated and characterized using flow cytometry. Then, cells were treated with osteo-differentiation medium for three weeks. Alizarin red S staining and polymerase chain reaction (PCR) (alkaline phosphatase/osteocalcin) were performed for confirmation. The expression of Dkk 1, sFRP2, sFRP4, and Wif1 genes was evaluated at days 7, 14, and 21 using real-time PCR. Methylation-specific PCR (MSP) was performed to detect the methylation status of the promoters of the genes. RESULTS Data showed significant decreases (P < 0.05) during various days of BMSCs differentiation, while the promoters of the genes remained mostly un-methylated. CONCLUSIONS The down-regulation of Dkk 1, sFRP2, sFRP4, and Wif1 regulates various stages of human BMSCs during osteoblastic differentiation. DNA methylation does not interfere in the down-regulation of these genes, except for Wif1. We propose that the Wnt antagonist gene promoters should remain un-methylated during osteoblastic differentiation of BMSCs and that the down-regulation of these genes may contribute to other epigenetic mechanisms, other than DNA methylation, which implicitly indicates the role of DNA methylation in osteogenic cancers.
Collapse
Affiliation(s)
- Maedeh Mashhadikhan
- Department of Biology, Faculty of Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamidreza Kheiri
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran.
| | - Ali Dehghanifard
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
29
|
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, Grieb P, Rutkowski P. Molecular Biology of Osteosarcoma. Cancers (Basel) 2020; 12:E2130. [PMID: 32751922 PMCID: PMC7463657 DOI: 10.3390/cancers12082130] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone cancer in children and adolescents and the third most frequent in adults. Many inherited germline mutations are responsible for syndromes that predispose to osteosarcomas including Li Fraumeni syndrome, retinoblastoma syndrome, Werner syndrome, Bloom syndrome or Diamond-Blackfan anemia. TP53 is the most frequently altered gene in osteosarcoma. Among other genes mutated in more than 10% of OS cases, c-Myc plays a role in OS development and promotes cell invasion by activating MEK-ERK pathways. Several genomic studies showed frequent alterations in the RB gene in pediatric OS patients. Osteosarcoma driver mutations have been reported in NOTCH1, FOS, NF2, WIF1, BRCA2, APC, PTCH1 and PRKAR1A genes. Some miRNAs such as miR-21, -34a, -143, -148a, -195a, -199a-3p and -382 regulate the pathogenic activity of MAPK and PI3K/Akt-signaling pathways in osteosarcoma. CD133+ osteosarcoma cells have been shown to exhibit stem-like gene expression and can be tumor-initiating cells and play a role in metastasis and development of drug resistance. Although currently osteosarcoma treatment is based on adriamycin chemoregimens and surgery, there are several potential targeted therapies in development. First of all, activity and safety of cabozantinib in osteosarcoma were studied, as well as sorafenib and pazopanib. Finally, novel bifunctional molecules, of potential imaging and osteosarcoma targeting applications may be used in the future.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Wiktoria Firlej
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Pawel Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute-Oncology Centre, 02-781 Warsaw, Poland
| |
Collapse
|
30
|
Becker M, Bauer J, Pyczek J, König S, Müllen A, Rabe H, Schön MP, Uhmann A, Hahn H. WIF1 Suppresses the Generation of Suprabasal Cells in Acanthotic Skin and Growth of Basal Cell Carcinomas upon Forced Overexpression. J Invest Dermatol 2020; 140:1556-1565.e11. [PMID: 31987884 DOI: 10.1016/j.jid.2019.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
We analyzed the role of WIF1 in normal and acanthotic epidermis of 12-O-tetradecanoylphorbol-13-acetate (TPA) or all-trans-retinoic acid (ATRA)-treated and basal cell carcinoma (BCC)-bearing mice. WIF1 protein is located in the follicular infundibulum and interfollicular epidermis (IFE) in murine back skin. Within the hyperplastic epidermis of TPA- or ATRA-treated or BCC-bearing murine skin, WIF1 and Keratin 10 overlap in Ki67⁻ suprabasal layers, while basal epidermal layers expressing Ki67, and BCCs expressing Wif1 mRNA, are free of WIF1 protein. This is similar in human skin, with the exception that WIF1 protein is found in single Ki67⁻ basal epidermal cells in normal skin and additionally in Ki67+ cells in acanthotic skin. Wif1-deficiency enhances acanthosis of the murine BCC-associated epidermis, which is accompanied by an increase of Ki67+ and of Sca-1+ basal cells. WIF1 overexpression in allografted BCC-derived keratinocytes prevents growth and keratinization, involving enhanced phosphorylation of protein kinase C and extracellular signal-regulated kinase 1 and arguably factors secreted by the in vivo environment. In summary, WIF1 protein marks suprabasal layers in the normal IFE. It is also present in the epidermis overlaying BCCs where it diminishes proliferation of basal cells and production of differentiating suprabasal cells. In addition, WIF1 can prevent proliferation and keratinization of BCC-related keratinocytes.
Collapse
Affiliation(s)
- Marco Becker
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Bauer
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Joanna Pyczek
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Simone König
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Müllen
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Hanna Rabe
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Anja Uhmann
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
31
|
Lu L, Jin W, Wang LL. RECQ DNA Helicases and Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:37-54. [PMID: 32767233 DOI: 10.1007/978-3-030-43085-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.
Collapse
Affiliation(s)
- Linchao Lu
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Weidong Jin
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lisa L Wang
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Asano N, Takeshima H, Yamashita S, Takamatsu H, Hattori N, Kubo T, Yoshida A, Kobayashi E, Nakayama R, Matsumoto M, Nakamura M, Ichikawa H, Kawai A, Kondo T, Ushijima T. Epigenetic reprogramming underlies efficacy of DNA demethylation therapy in osteosarcomas. Sci Rep 2019; 9:20360. [PMID: 31889115 PMCID: PMC6937291 DOI: 10.1038/s41598-019-56883-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) patients with metastasis or recurrent tumors still suffer from poor prognosis. Studies have indicated the efficacy of DNA demethylation therapy for OS, but the underlying mechanism is still unclear. Here, we aimed to clarify the mechanism of how epigenetic therapy has therapeutic efficacy in OS. Treatment of four OS cell lines with a DNA demethylating agent, 5-aza-2′-deoxycytidine (5-aza-dC) treatment, markedly suppressed their growth, and in vivo efficacy was further confirmed using two OS xenografts. Genome-wide DNA methylation analysis showed that 10 of 28 primary OS had large numbers of methylated CpG islands while the remaining 18 OS did not, clustering together with normal tissue samples and Ewing sarcoma samples. Among the genes aberrantly methylated in primary OS, genes involved in skeletal system morphogenesis were present. Searching for methylation-silenced genes by expression microarray screening of two OS cell lines after 5-aza-dC treatment revealed that multiple tumor-suppressor and osteo/chondrogenesis-related genes were re-activated by 5-aza-dC treatment of OS cells. Simultaneous activation of multiple genes related to osteogenesis and cell proliferation, namely epigenetic reprogramming, was considered to underlie the efficacy of DNA demethylation therapy in OS.
Collapse
Affiliation(s)
- Naofumi Asano
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hironori Takamatsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kubo
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratory, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Robert Nakayama
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
33
|
Zhang Y, Wu X, Kai Y, Lee CH, Cheng F, Li Y, Zhuang Y, Ghaemmaghami J, Chuang KH, Liu Z, Meng Y, Keswani M, Gough NR, Wu X, Zhu W, Tzatsos A, Peng W, Seto E, Sotomayor EM, Zheng X. Secretome profiling identifies neuron-derived neurotrophic factor as a tumor-suppressive factor in lung cancer. JCI Insight 2019; 4:129344. [PMID: 31852841 DOI: 10.1172/jci.insight.129344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical and preclinical studies show tissue-specific differences in tumorigenesis. Tissue specificity is controlled by differential gene expression. We prioritized genes that encode secreted proteins according to their preferential expression in normal lungs to identify candidates associated with lung cancer. Indeed, most of the lung-enriched genes identified in our analysis have known or suspected roles in lung cancer. We focused on the gene encoding neuron-derived neurotrophic factor (NDNF), which had not yet been associated with lung cancer. We determined that NDNF was preferentially expressed in the normal adult lung and that its expression was decreased in human lung adenocarcinoma and a mouse model of this cancer. Higher expression of NDNF was associated with better clinical outcome of patients with lung adenocarcinoma. Purified NDNF inhibited proliferation of lung cancer cells, whereas silencing NDNF promoted tumor cell growth in culture and in xenograft models. We determined that NDNF is downregulated through DNA hypermethylation near CpG island shores in human lung adenocarcinoma. Furthermore, the lung cancer-related DNA hypermethylation sites corresponded to the methylation sites that occurred in tissues with low NDNF expression. Thus, by analyzing the tissue-specific secretome, we identified a tumor-suppressive factor, NDNF, which is associated with patient outcomes in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ya Zhang
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xuefeng Wu
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan Kai
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Physics, George Washington University Columbian College of Arts and Sciences, Washington, DC, USA
| | - Chia-Han Lee
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Biochemistry and Molecular Medicine
| | - Fengdong Cheng
- GW Cancer Center and.,Division of Hematology and Oncology, Department of Medicine, and
| | - Yixuan Li
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Yongbao Zhuang
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Javid Ghaemmaghami
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kun-Han Chuang
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zhuo Liu
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yunxiao Meng
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Meghana Keswani
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nancy R Gough
- Center for Translational Medicine, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaojun Wu
- Department of Pathology, Johns Hopkins Sibley Memorial Hospital, Washington, DC, USA.,Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenge Zhu
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Alexandros Tzatsos
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Weiqun Peng
- GW Cancer Center and.,Department of Physics, George Washington University Columbian College of Arts and Sciences, Washington, DC, USA
| | - Edward Seto
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Eduardo M Sotomayor
- GW Cancer Center and.,Division of Hematology and Oncology, Department of Medicine, and
| | - Xiaoyan Zheng
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
34
|
Feehan J, Al Saedi A, Duque G. Targeting fundamental aging mechanisms to treat osteoporosis. Expert Opin Ther Targets 2019; 23:1031-1039. [PMID: 31815563 DOI: 10.1080/14728222.2019.1702973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Osteoporotic fractures represent a growing burden of mortality, morbidity and socioeconomic cost to health-care systems worldwide. Osteoporosis is a disease uniquely associated with aging, therefore, an understanding of the physiological mechanisms underpinning its development as we age may open new avenues for therapeutic exploitation. Novel treatments, as well as refinement of the current approaches, are vital in the effort to sustain healthy, independent patients across the lifespan.Areas covered: This review covers the anabolic and catabolic pathways seen in bone maintenance, highlighting how they are changed with age, leading to osteoporosis. It will also discuss how these changes may be targeted therapeutically, in the development of new therapies, and the refinement of those already in use.Expert opinion: New effective and safe treatments for osteoporosis are still needed. Bone anabolics seem to be the most appropriate therapeutic approach to osteoporosis in older persons. Considering that bone and muscle mass synchronically decline with aging thus predisposing older persons to falls and fractures, combined therapeutic approaches to osteosarcopenia with a dual anabolic effect on muscle and bone will be a major advance in the treatment of these devastating conditions in the future.
Collapse
Affiliation(s)
- Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| |
Collapse
|
35
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
36
|
Kansara M, Thomson K, Pang P, Dutour A, Mirabello L, Acher F, Pin JP, Demicco EG, Yan J, Teng MWL, Smyth MJ, Thomas DM. Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discov 2019; 9:1511-1519. [PMID: 31527131 DOI: 10.1158/2159-8290.cd-19-0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/03/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
The glutamate metabotropic receptor 4 (GRM4) locus is linked to susceptibility to human osteosarcoma, through unknown mechanisms. We show that Grm4-/- gene-targeted mice demonstrate accelerated radiation-induced tumor development to an extent comparable with Rb1+/- mice. GRM4 is expressed in myeloid cells, selectively regulating expression of IL23 and the related cytokine IL12. Osteosarcoma-conditioned media induce myeloid cell Il23 expression in a GRM4-dependent fashion, while suppressing the related cytokine Il12. Both human and mouse osteosarcomas express an increased IL23:IL12 ratio, whereas higher IL23 expression is associated with worse survival in humans. Consistent with an oncogenic role, Il23 -/- mice are strikingly resistant to osteosarcoma development. Agonists of GRM4 or a neutralizing antibody to IL23 suppressed osteosarcoma growth in mice. These findings identify a novel, druggable myeloid suppressor pathway linking GRM4 to the proinflammatory IL23/IL12 axis. SIGNIFICANCE: Few novel systemic therapies targeting osteosarcoma have emerged in the last four decades. Using insights gained from a genome-wide association study and mouse modeling, we show that GRM4 plays a role in driving osteosarcoma via a non-cell-autonomous mechanism regulating IL23, opening new avenues for therapeutic intervention.See related commentary by Jones, p. 1484.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Kristian Thomson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Puiyi Pang
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Aurelie Dutour
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Leon Berard, Lyon, France
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Francine Acher
- IGF, Universite de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Gossypol Promotes Wnt/ β-Catenin Signaling through WIF1 in Ovariectomy-Induced Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8745487. [PMID: 31139657 PMCID: PMC6500658 DOI: 10.1155/2019/8745487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/23/2023]
Abstract
Osteoporosis is one of the most frequent diseases related with age. Previously, we have reported a novel potential drug, gossypol, for the treatment of osteoporosis through its regulation of Wnt/β-catenin signaling. This study aims to identify the detailed mechanism of gossypol in human osteoporosis. Mice injected with gossypol were subjected for RNA-seq analysis and the transcription level of WIF1 was shown to be decreased dramatically in gossypol-treated mice, which was further confirmed by qRT-PCR and western blot analysis. Luciferase reporter assay showed gossypol inhibited the activity of WIF1 and the methylation of WIF1 was significantly upregulated, evidenced by ChIP assay. Cell viability assays demonstrated that gossypol promoted cell proliferation while cotreatment with WIF1 expressing plasmid reversed the effect in a dose- and time-dependent manner. Similarly, cell apoptotic assays and TUNEL assays showed gossypol suppressed cell apoptosis, which was revised by WIF1 overexpression. The mouse model suggested gossypol injection ameliorated osteoporosis, while coinjection of AAV5-WIF1 eliminated the protection effects of gossypol, as evidenced by H&E staining, serum osteocalcin level, serum OPG level, serum RANKL level, bone density, ultimate strength, and postyield displacement. This study is a supplement to the former publication, which reinforced the protection effect of gossypol in human osteoporosis.
Collapse
|
38
|
Ali N, Venkateswaran G, Garcia E, Landry T, McColl H, Sergi C, Persad A, Abuetabh Y, Eisenstat DD, Persad S. Osteosarcoma progression is associated with increased nuclear levels and transcriptional activity of activated β-Catenin. Genes Cancer 2019; 10:63-79. [PMID: 31258833 PMCID: PMC6584208 DOI: 10.18632/genesandcancer.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive primary bone malignancy that has peak incidence in children and young adults <25 years of age. Despite current multimodal treatments, no significant change in patient outcome has been observed in two decades. Presently, there is a lack of established, reliable baseline prognostic markers for aggressive OS, other than extent and site of disease involvement. The canonical Wnt/β-catenin pathway controls multiple cellular processes, and is known to be a critical pathway in OS progression. This pathway regulates cellular levels of β-catenin, which is a significant player in the oncogenesis and progression of many cancers. We investigated the relationship between β-catenin, more specifically, the transcriptionally active form of β-catenin, Activated β-Catenin (ABC), and OS progression. Using an in vitro model, we observed that cellular/nuclear ABC levels, but not cellular/nuclear β-catenin levels, increase with the degree of aggressiveness in OS. Our results demonstrate a strong association between nuclear-ABC levels and aggressive OS in vitro. Furthermore, we observed significant correlation between positive nuclear-ABC and patient age and tumor stage. Our results support the potential use of ABC as a predictive marker for risk stratification in OS.
Collapse
Affiliation(s)
- Noureen Ali
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | - Elizabeth Garcia
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Takaaki Landry
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Hunter McColl
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amit Persad
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Yasser Abuetabh
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
40
|
Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 2019; 8:43257. [PMID: 30932813 PMCID: PMC6443350 DOI: 10.7554/elife.43257] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
The brain, spinal cord, and retina are supplied by capillaries that do not permit free diffusion of molecules between serum and parenchyma, a property that defines the blood-brain and blood-retina barriers. Exceptions to this pattern are found in circumventricular organs (CVOs), small midline brain structures that are supplied by high permeability capillaries. In the eye and brain, high permeability capillaries are also present in the choriocapillaris, which supplies the retinal pigment epithelium and photoreceptors, and the ciliary body and choroid plexus, the sources of aqueous humor and cerebrospinal fluid, respectively. We show here that (1) endothelial cells in these high permeability vascular systems have very low beta-catenin signaling compared to barrier-competent endothelial cells, and (2) elevating beta-catenin signaling leads to a partial conversion of permeable endothelial cells to a barrier-type state. In one CVO, the area postrema, high permeability is maintained, in part, by local production of Wnt inhibitory factor-1.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xiaowu Gu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
41
|
Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, Dai Q, Yang Y, Han A, Wei Z, Bi Q, Ji H, Kang T, Zou W. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest 2019; 129:1895-1909. [PMID: 30830877 PMCID: PMC6486357 DOI: 10.1172/jci124590] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone osteogenic sarcoma has a poor prognosis as the exact cell of origin and the signaling pathways underling tumor formation remain undefined. Here, we report an osteogenic tumor mouse model based on the conditional knockout of liver kinase b1 (Lkb1; also known as Stk11) in Cathepsin K (Ctsk)-Cre expressing cells. Lineage tracing studies demonstrated that Ctsk-Cre could label a population of periosteal cells. The cells functioned as mesenchymal progenitors with regard to markers and functional properties. LKB1 deficiency increased proliferation and osteoblast differentiation of Ctsk+ periosteal cells, while downregulation of mTORC1 activity, using Raptor genetic mouse model or mTORC1 inhibitor treatment, ameliorated tumor progression of Ctsk-Cre Lkb1fllfl mice. Xenograft mouse models, using human osteosarcoma cell lines, also demonstrated that LKB1 deficiency promoted tumor formation, while mTOR inhibition suppressed xenograft tumor growth. In summary, we identified periosteum-derived Ctsk-Cre expressing cells as a cell of origin for osteogenic tumor and suggested the LKB1-mTORC1 pathway as a promising target for treatment of osteogenic tumor.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoting Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qinggang Dai
- The Second Dental Center, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qing Bi
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Poggi L, Casarosa S, Carl M. An Eye on the Wnt Inhibitory Factor Wif1. Front Cell Dev Biol 2018; 6:167. [PMID: 30574494 PMCID: PMC6292148 DOI: 10.3389/fcell.2018.00167] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
The coordinated interplay between extrinsic activating and repressing cell signaling molecules is pivotal for embryonic development and subsequent tissue homeostasis. This is well exemplified by studies on the evolutionarily conserved Wnt signaling pathways. Tight temporal and spatial regulation of Wnt signaling activity is required throughout lifetime, from maternal stages before gastrulation until and throughout adulthood. Outside cells, the action of numerous Wnt ligands is counteracted and fine-tuned by only a handful of well characterized secreted inhibitors, such as for instance Dickkopf, secreted Frizzled Related Proteins and Cerberus. Here, we give an overview of our current understanding of another secreted Wnt signaling antagonist, the Wnt inhibitory factor Wif1. Wif1 can directly interact with various Wnt ligands and inhibits their binding to membrane bound receptors. Epigenetic promoter methylation of Wif1, leading to silencing of its transcription and concomitant up-regulation of Wnt signaling, is a common feature during cancer progression. Furthermore, an increasing number of reports describe Wif1 involvement in regulating processes during embryonic development, which so far has not received as much attention. We will summarize our knowledge on Wif1 function and its mode of action with a particular focus on the zebrafish (Danio rerio). In addition, we highlight the potential of Wif1 research to understand and possibly influence mechanisms underlying eye diseases and regeneration.
Collapse
Affiliation(s)
- Lucia Poggi
- Laboratory of Molecular and Cellular Ophthalmology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Matthias Carl
- Laboratory of Translational Neurogenetics, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
43
|
Fang F, VanCleave A, Helmuth R, Torres H, Rickel K, Wollenzien H, Sun H, Zeng E, Zhao J, Tao J. Targeting the Wnt/β-catenin pathway in human osteosarcoma cells. Oncotarget 2018; 9:36780-36792. [PMID: 30613366 PMCID: PMC6298399 DOI: 10.18632/oncotarget.26377] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Aberrant activation of Wnt signaling has been implicated in human osteosarcoma, which may provide a genetic vulnerability that can be targeted in osteosarcoma treatment. To test whether Wnt activation is necessary for osteosarcoma growth, colony formation, invasion, and metastasis, we treated human osteosarcoma cells with a small molecule inhibitor of Wnt/β-catenin, PRI-724, which suppresses Wnt/β-catenin-mediated transcription. We found increased protein levels of endogenous active-β-catenin in five human osteosarcoma cell lines. Treatment with PRI-724 was sufficient to inhibit human osteosarcoma 143B and SJSA-1 cell proliferation. Suppressed Wnt signaling was confirmed by decreased protein levels of the Wnt target Cyclin D1. Furthermore, we revealed significant inhibitory effects on cell migration, invasion, and colony formation in the human osteosarcoma cells. Using deposited data from next generation sequencing studies, we analyzed somatic mutations and gene expression of components in the Wnt/β-catenin pathway. We found somatic mutations and upregulated gene expression of many components in the Wnt/ β-catenin pathway, indicating activated Wnt signaling. Taken together, our results illustrate the critical role of Wnt/β-catenin signaling in human osteosarcoma pathogenesis and growth, as well as the therapeutic potential of Wnt inhibitors in the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Fang Fang
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Ashley VanCleave
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Ralph Helmuth
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- BRIN Scholar from Dakota Wesleyan University, Sanford Research, Sioux Falls, SD, USA
| | - Haydee Torres
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Kirby Rickel
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, USA
| | - Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa, Iowa City, IA, USA
| | - Erliang Zeng
- Departments of Preventive & Community Dentistry, Biomedical Engineering, and Biostatistics, Division of Biostatistics and Computational Biology of College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, Sioux Falls, SD, USA
- Department of Internal Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jianning Tao
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
- Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
44
|
Liu Y, Guan J, Chen X. Identification of Differentially Expressed Genes under the Regulation of Transcription Factors in Osteosarcoma. Pathol Oncol Res 2018; 25:1091-1102. [PMID: 30411296 DOI: 10.1007/s12253-018-0519-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
The present study was to investigate and identify the differentially expressed genes (DEGs) in the transcriptional regulatory network of osteosarcoma (OS). The gene expression dataset from Gene Expression Omnibus (GEO) datasets was downloaded. DEGs were identified and their functional annotation was also conducted. In addition, differentially expressed transcription factors (TFs) and the regulatory genes were identified. The electronic validation was used to verify the expression of selected genes. The integrated analysis led to 932 DEGs. The results of functional annotation indicated that these DEGs significantly enriched in the p53 signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. ZNF354C, NFIC, NFATC2, SP2, FOXO3, EGR1, ZEB1, RREB1, EGR2 and SRF were covered by most TFs. The expression levels of NFIC and EGR2 in electronic validation were compatible with our bio-informatics result. In conclusion, the deregulation of these genes may provide valuable information in understanding the underlying molecular mechanism in the OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China
| | - Jianzhong Guan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China.
| | - Xiaotian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China
| |
Collapse
|
45
|
Pashirzad M, Shafiee M, Khazaei M, Fiuji H, Ryzhikov M, Soleimanpour S, Hesari A, Avan A, Hassanian SM. Therapeutic potency of Wnt signaling antagonists in the pathogenesis of prostate cancer, current status and perspectives. J Cell Physiol 2018; 234:1237-1247. [PMID: 30191954 DOI: 10.1002/jcp.27137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a major cause of cancer-related death in males. Wnt/β-catenin signaling plays a critical role in the pathogenesis of this disease by regulating angiogenesis, drug resistance, cell proliferation, and apoptosis. Suppression of Wnt canonical or noncanonical signaling pathways via Wnt biological or pharmacological antagonists is a potentially novel therapeutic approach for patients with prostate cancer. This review summarizes the role of Wnt signaling inhibitors in the pathogenesis of prostate cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University, School of Medicine, Saint Louis, Missouri
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Meyer IS, Jungmann A, Dieterich C, Zhang M, Lasitschka F, Werkmeister S, Haas J, Müller OJ, Boutros M, Nahrendorf M, Katus HA, Hardt SE, Leuschner F. The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction. EMBO Mol Med 2018; 9:1279-1293. [PMID: 28774883 PMCID: PMC5582413 DOI: 10.15252/emmm.201707565] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A disturbed inflammatory response following myocardial infarction (MI) is associated with poor prognosis and increased tissue damage. Monocytes are key players in healing after MI, but little is known about the role of the cardiac niche in monocyte activation. This study investigated microenvironment‐dependent changes in inflammatory monocytes after MI. RNA sequencing analysis of murine Ly6Chigh monocytes on day 3 after MI revealed differential regulation depending on location. Notably, the local environment strongly impacted components of the WNT signaling cascade. Analysis of WNT modulators revealed a strong upregulation of WNT Inhibitory Factor 1 (WIF1) in cardiomyocytes—but not fibroblasts or endothelial cells—upon hypoxia. Compared to wild‐type (WT) littermates, WIF1 knockout mice showed severe adverse remodeling marked by increased scar size and reduced ejection fraction 4 weeks after MI. While FACS analysis on day 1 after MI revealed no differences in neutrophil numbers, the hearts of WIF1 knockouts contained significantly more inflammatory monocytes than hearts from WT animals. Next, we induced AAV‐mediated cardiomyocyte‐specific WIF1 overexpression, which attenuated the monocyte response and improved cardiac function after MI, as compared to control‐AAV‐treated animals. Finally, WIF1 overexpression in isolated cardiomyocytes limited the activation of non‐canonical WNT signaling and led to reduced IL‐1β and IL‐6 expression in monocytes/macrophages. Taken together, we investigated the cardiac microenvironment's interaction with recruited monocytes after MI and identified a novel mechanism of monocyte activation. The local initiation of non‐canonical WNT signaling shifts the accumulating myeloid cells toward a pro‐inflammatory state and impacts healing after myocardial infarction.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Andreas Jungmann
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Christoph Dieterich
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Min Zhang
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Susann Werkmeister
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Michael Boutros
- DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hugo A Katus
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| | - Stefan E Hardt
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Florian Leuschner
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Partnersite, Heidelberg/Mannheim, Germany
| |
Collapse
|
47
|
Canalis E. MANAGEMENT OF ENDOCRINE DISEASE: Novel anabolic treatments for osteoporosis. Eur J Endocrinol 2018; 178:R33-R44. [PMID: 29113980 PMCID: PMC5819362 DOI: 10.1530/eje-17-0920] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
Skeletal anabolic agents enhance bone formation, which is determined by the number and function of osteoblasts. Signals that influence the differentiation and function of cells of the osteoblast lineage play a role in the mechanism of action of anabolic agents in the skeleton. Wnts induce the differentiation of mesenchymal stem cells toward osteoblasts, and insulin-like growth factor I (IGF-I) enhances the function of mature osteoblasts. The activity of Wnt and IGF-I is controlled by proteins that bind to the growth factor or to its receptors. Sclerostin is a Wnt antagonist that binds to Wnt co-receptors and prevents Wnt signal activation. Teriparatide, a 1-34 amino terminal fragment of parathyroid hormone (PTH), and abaloparatide, a modified 1-34 amino terminal fragment of PTH-related peptide (PTHrp), induce IGF-I, increase bone mineral density (BMD), reduce the incidence of vertebral and non-vertebral fractures and are approved for the treatment of postmenopausal osteoporosis. Romosozumab, a humanized anti-sclerostin antibody, increases bone formation, decreases bone resorption, increases BMD and reduces the incidence of vertebral fractures. An increased incidence of cardiovascular events has been associated with romosozumab, which is yet to be approved for the treatment of osteoporosis. In conclusion, cell and molecular studies have formed the foundation for the development of new anabolic therapies for osteoporosis with proven efficacy on the incidence of new fractures.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
48
|
Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget 2018; 7:21114-23. [PMID: 27049730 PMCID: PMC5008272 DOI: 10.18632/oncotarget.8522] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/28/2016] [Indexed: 02/04/2023] Open
Abstract
The outcome of patients with metastatic osteosarcoma has not improved since the introduction of chemotherapy in the 1970s. Development of therapies targeting the metastatic cascade is a tremendous unmet medical need. The Wnt signaling pathway has been the focus of intense investigation in osteosarcoma because of its role in normal bone development. Although the role of Wnt signaling in the pathogenesis of osteosarcoma is controversial, there are several reports of dickkopf-1 (DKK-1), a Wnt signaling antagonist, possibly playing a pro-tumorigenic role. In this work we investigated the effect of anti-DKK-1 antibodies on the growth and metastasis of patient-derived osteosarcoma xenografts. We were able to detect human DKK-1 in the blood of tumor-bearing mice and found a correlation between DKK-1 level and tumor proliferation. Treatment with the anti-DKK-1 antibody, BHQ880, slowed the growth of orthotopically implanted patient-derived osteosarcoma xenografts and inhibited metastasis. This effect was correlated with increased nuclear beta-catenin staining and increased expression of the bone differentiation marker osteopontin. These findings suggest that Wnt signaling is anti-tumorigenic in osteosarcoma, and support the targeting of DKK-1 as an anti-metastatic strategy for patients with osteosarcoma.
Collapse
Affiliation(s)
- Seth D Goldstein
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Matteo Trucco
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Wendy Bautista Guzman
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Masanori Hayashi
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - David M Loeb
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma. Oncotarget 2018; 7:21298-314. [PMID: 26802029 PMCID: PMC5008286 DOI: 10.18632/oncotarget.6965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes.
Collapse
|
50
|
Xi LC, Ji YX, Yin D, Zhao ZX, Huang SC, Yu SL, Liu BY, Li HY. Effects of Dermatopontin gene silencing on apoptosis and proliferation of osteosarcoma MG‑63 cells. Mol Med Rep 2017; 17:422-427. [PMID: 29115446 DOI: 10.3892/mmr.2017.7866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effect of Dermatopontin (DPT) gene silencing on the apoptosis and proliferation of osteosarcoma MG‑63 cells. Three eukaryotic expression vectors of short hairpin (sh)RNA fragments targeting different loci of DPT were designed and transfected into an osteosarcoma cell line MG‑63. The cells were assigned to a blank, shRNA‑control, DPT‑shRNA‑a, DPT‑shRNA‑b or DPT‑shRNA‑c group. The shRNA with the highest silencing efficiency was screened using reverse transcription‑quantitative polymerase chain reaction and western blotting. The screened shRNA was transfected into MG‑63 cells. The proliferation, cell cycle and apoptosis of MG‑63 cells were measured using a Cell Counting Kit‑8 assay, flow cytometry and Annexin V‑fluorescein isothiocyanate assay. The recombinant plasmids containing DPT shRNA were successfully constructed. DPT gene silencing was able to significantly reduce the proliferation rate of MG‑63 cells (P<0.05). The proportion of cells in the G0/G1 phase and in the G2/M phase increased significantly (both P<0.05), while the proportion of cells in the S phase decreased (P<0.05). Furthermore, the cell apoptosis rate increased significantly (P<0.05). These results demonstrate that DPT gene silencing is able to reduce the proliferation of MG‑63 cells, slow down cell cycle progression and promote apoptosis, hence may become a novel target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Li-Cheng Xi
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Yun-Xi Ji
- Department of Orthopedics, Zhejiang Provincial Hospital of TCM, Hangzhou, Zhejiang 310000, P.R. China
| | - Dong Yin
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Zi-Xing Zhao
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Si-Cheng Huang
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Shao-Lin Yu
- Department of Orthopedics, Ji'an Central Hospital, Ji'an, Jiangxi 343000, P.R. China
| | - Bo-Yu Liu
- Department of Orthopedics, Liuzhou Work's Hospital, Liuzhou, Guangxi 530021, P.R. China
| | - Hong-Yu Li
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|