1
|
Lee JH, Sánchez-Rivera FJ, He L, Basnet H, Chen FX, Spina E, Li L, Torner C, Chan JE, Yarlagadda DVK, Park JS, Sussman C, Rudin CM, Lowe SW, Tammela T, Macias MJ, Koche RP, Massagué J. TGF-β and RAS jointly unmask primed enhancers to drive metastasis. Cell 2024; 187:6182-6199.e29. [PMID: 39243762 DOI: 10.1016/j.cell.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor β (TGF-β) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-β and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-β. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-β gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lan He
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fei Xavier Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena Spina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangji Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carles Torner
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dig Vijay Kumar Yarlagadda
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jin Suk Park
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carleigh Sussman
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Gallo E, De Renzis S, Sharpe J, Mayor R, Hartmann J. Versatile system cores as a conceptual basis for generality in cell and developmental biology. Cell Syst 2024; 15:790-807. [PMID: 39236709 DOI: 10.1016/j.cels.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
The discovery of general principles underlying the complexity and diversity of cellular and developmental systems is a central and long-standing aim of biology. While new technologies collect data at an ever-accelerating rate, there is growing concern that conceptual progress is not keeping pace. We contend that this is due to a paucity of conceptual frameworks that support meaningful generalizations. This led us to develop the core and periphery (C&P) hypothesis, which posits that many biological systems can be decomposed into a highly versatile core with a large behavioral repertoire and a specific periphery that configures said core to perform one particular function. Versatile cores tend to be widely reused across biology, which confers generality to theories describing them. Here, we introduce this concept and describe examples at multiple scales, including Turing patterning, actomyosin dynamics, multi-cellular morphogenesis, and vertebrate gastrulation. We also sketch its evolutionary basis and discuss key implications and open questions. We propose that the C&P hypothesis could unlock new avenues of conceptual progress in mesoscale biology.
Collapse
Affiliation(s)
- Elisa Gallo
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jonas Hartmann
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Pracharova J, Cyrikova T, Berecka M, Biersack B, Kasparkova J, Brabec V. Antimetastatic activity of (arene)ruthenium(II) complex of 4-aryl-4H-naphthopyran. Chem Biol Interact 2024; 400:111180. [PMID: 39089413 DOI: 10.1016/j.cbi.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Metastatic cancer remains a formidable challenge in anticancer therapy. Despite efforts to develop effective antimetastasis drugs over the past half-century, currently approved treatments fall short of expectations. This report highlights the promising antiproliferative activity of a ruthenium-based therapeutic agent, namely dichlorido(p-cymene)[2-amino-4-(pyridin-3-yl)-4H-benzo[h]-chromene-3-carbonitrile]ruthenium(II) (complex 1) against metastatic cell lines. Complex 1 shows significant efficacy in metastatic LoVo and Du-145 cell lines at nanomolar concentrations, being markedly more active than clinically used anticancer cisplatin. Studies on the MDA-MB-231 cell line, which displays invasive characteristics, demonstrated that 1 significantly reduces cell invasion. This efficacy was confirmed by its impact on matrix metalloproteinase production in MDA-MB-231 cells. Given that cell migration drives cancer invasion and metastasis, complex 1's effect on MDA-MB-231 cell migration was evaluated via wound healing assay and vimentin network analysis. Results indicated a strong reduction in migration. A re-adhesion assay further demonstrated that 1 significantly lowers the re-adhesion ability of MDA-MB-231 cells compared to cisplatin. To better simulate the human body environment, a 3D spheroid invasion assay was used. This method showed that 1 effectively inhibits tumor spheroids from infiltrating the surrounding extracellular matrix. This study underscores the potential of (arene)ruthenium(II) complexes with naphthopyran ligands as potent antimetastatic agents for chemotherapy.
Collapse
Affiliation(s)
- Jitka Pracharova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic
| | - Tereza Cyrikova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic
| | - Michal Berecka
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, 95440, Bayreuth, Germany
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic; Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic
| | - Viktor Brabec
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic; Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic.
| |
Collapse
|
5
|
Ma D, Liu S, Liu K, He Q, Hu L, Shi W, Cao Y, Zhang G, Xin Q, Wang Z, Wu J, Jiang C. CuET overcomes regorafenib resistance by inhibiting epithelial-mesenchymal transition through suppression of the ERK pathway in hepatocellular carcinoma. Transl Oncol 2024; 47:102040. [PMID: 38954975 PMCID: PMC11267041 DOI: 10.1016/j.tranon.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Regorafenib was approved by the US Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) patients showing progress on sorafenib treatment. However, there is an inevitably high rate of drug resistance associated with regorafenib, which reduces its effectiveness in clinical treatment. Thus, there is an urgent need to find a potential way to solve the problem of regorafenib resistance. The metabolite of disulfiram complexed with copper, the Diethyldithiocarbamate-copper complex (CuET), has been found to be an effective anticancer drug candidate. In the present study, we aimed to evaluate the effect of CuET on regorafenib resistance in HCC and uncover the associated mechanism. EXPERIMENTAL APPROACH Regorafenib-resistant HCC strains were constructed by applying an increasing concentration gradient. This study employed a comprehensive range of methodologies, including the cell counting kit-8 (CCK-8) assay, colony formation assay, cell cycle analysis, wound healing assay, Transwell assay, tumor xenograft model, and immunohistochemical analysis. These methods were utilized to investigate the antitumor activity of CuET, assess the combined effect of regorafenib and CuET, and elucidate the molecular mechanism underlying CuET-mediated regorafenib resistance. KEY RESULTS The inhibitory effect of regorafenib on cell survival, proliferation and migration was decreased in regorafenib-resistant MHCC-97H (MHCC-97H/REGO) cells compared with parental cells. CuET demonstrated significant inhibitory effects on cell survival, proliferation, and migration of various HCC cell lines. CuET restored the sensitivity of MHCC-97H/REGO HCC cells to regorafenib in vitro and in vivo. Mechanistically, CuET reverses regorafenib resistance in HCC by suppressing epithelial-mesenchymal transition (EMT) through inhibition of the ERK signaling pathway. CONCLUSION AND IMPLICATIONS Taken together, the results of this study demonstrated that CuET inhibited the activation of the ERK signaling pathway, leading to the suppression of the epithelial-mesenchymal transition (EMT) and subsequently reversing regorafenib resistance in HCC both in vivo and in vitro. This study provides a new idea and potential strategy to improve the treatment of regorafenib-resistant HCC.
Collapse
Affiliation(s)
- Ding Ma
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Kua Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qinyu He
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lili Hu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiwei Shi
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guang Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Zhongxia Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China.
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China; State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
6
|
Lee J, Yoon JH, Lee E, Lee HY, Jeong S, Park S, Jo YS, Kwak JY. Immune response and mesenchymal transition of papillary thyroid carcinoma reflected in ultrasonography features assessed by radiologists and deep learning. J Adv Res 2024; 62:219-228. [PMID: 37783270 PMCID: PMC11331164 DOI: 10.1016/j.jare.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
INTRODUCTION Ultrasonography (US) features of papillary thyroid cancers (PTCs) are used to select nodules for biopsy due to their association with tumor behavior. However, the molecular biological mechanisms that lead to the characteristic US features of PTCs are largely unknown. OBJECTIVES This study aimed to investigate the molecular biological mechanisms behind US features assessed by radiologists and three convolutional neural networks (CNN) through transcriptome analysis. METHODS Transcriptome data from 273 PTC tissue samples were generated and differentially expressed genes (DEGs) were identified according to US feature. Pathway enrichment analyses were also conducted by gene set enrichment analysis (GSEA) and ClusterProfiler according to assessments made by radiologists and three CNNs - CNN1 (ResNet50), CNN2 (ResNet101) and CNN3 (VGG16). Signature gene scores for PTCs were calculated by single-sample GSEA (ssGSEA). RESULTS Individual suspicious US features consistently suggested an upregulation of genes related to immune response and epithelial-mesenchymal transition (EMT). Likewise, PTCs assessed as positive by radiologists and three CNNs showed the coordinate enrichment of similar gene sets with abundant immune and stromal components. However, PTCs assessed as positive by radiologists had the highest number of DEGs, and those assessed as positive by CNN3 had more diverse DEGs and gene sets compared to CNN1 or CNN2. The percentage of PTCs assessed as positive or negative concordantly by radiologists and three CNNs was 85.6% (231/273) and 7.1% (3/273), respectively. CONCLUSION US features assessed by radiologists and CNNs revealed molecular biologic features and tumor microenvironment in PTCs.
Collapse
Affiliation(s)
- Jandee Lee
- Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, Seoul 03722, South Korea
| | - Eunjung Lee
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul 03722, South Korea
| | - Hwa Young Lee
- Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Seonhyang Jeong
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sunmi Park
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Young Suk Jo
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul 03722, South Korea.
| | - Jin Young Kwak
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|
7
|
Li TH, Zhao BB, Qin C, Wang YY, Li ZR, Cao HT, Yang XY, Zhou XT, Wang WB. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol (Dordr) 2024; 47:1253-1265. [PMID: 38536650 DOI: 10.1007/s13402-024-00925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVES Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/β-catenin pathway. RESULTS We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/β-catenin signaling, and that a Wnt/β-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Zheng L, Chen W, Yao K, Xie Y, Liao C, Zhou T. Clinical and preclinical studies of mesenchymal stem cells to alleviate peritoneal fibrosis. Stem Cell Res Ther 2024; 15:237. [PMID: 39080683 PMCID: PMC11290310 DOI: 10.1186/s13287-024-03849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Peritoneal dialysis is an important part of end-stage kidney disease replacement therapy. However, prolonged peritoneal dialysis can result in peritoneal fibrosis and ultrafiltration failure, forcing patients to withdraw from peritoneal dialysis treatment. Therefore, there is an urgent need for some effective measures to alleviate the occurrence and progression of peritoneal fibrosis. Mesenchymal stem cells play a crucial role in immunomodulation and antifibrosis. Numerous studies have investigated the fact that mesenchymal stem cells can ameliorate peritoneal fibrosis mainly through the paracrine pathway. It has been discovered that mesenchymal stem cells participate in the improvement of peritoneal fibrosis involving the following signaling pathways: TGF-β/Smad signaling pathway, AKT/FOXO signaling pathway, Wnt/β-catenin signaling pathway, TLR/NF-κB signaling pathway. Additionally, in vitro experiments, mesenchymal stem cells have been shown to decrease mesothelial cell death and promote proliferation. In animal models, mesenchymal stem cells can enhance peritoneal function by reducing inflammation, neovascularization, and peritoneal thickness. Mesenchymal stem cell therapy has been demonstrated in clinical trials to improve peritoneal function and reduce peritoneal fibrosis, thus improving the life quality of peritoneal dialysis patients.
Collapse
Affiliation(s)
- Lingqian Zheng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Wenmin Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Kaijin Yao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yina Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
9
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
10
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
11
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
12
|
Ma X, Zhao J, Feng Y. Epicardial SMARCA4 deletion exacerbates cardiac injury in myocardial infarction and is related to the inhibition of epicardial epithelial-mesenchymal transition. J Mol Cell Cardiol 2024; 191:76-87. [PMID: 38718920 DOI: 10.1016/j.yjmcc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The reactivated adult epicardium produces epicardium-derived cells (EPDCs) via epithelial-mesenchymal transition (EMT) to benefit the recovery of the heart after myocardial infarction (MI). SMARCA4 is the core catalytic subunit of the chromatin re-modeling complex, which has the potential to target some reactivated epicardial genes in MI. However, the effects of epicardial SMARCA4 on MI remain uncertain. This study found that SMARCA4 was activated over time in epicardial cells following MI, and some of activated cells belonged to downstream differentiation types of EPDCs. This study used tamoxifen to induce lineage tracing and SMARCA4 deletion from epicardial cells in Wt1-CreER;Smarca4fl/fl;Rosa26-RFP adult mice. Epicardial SMARCA4 deletion reduces the number of epicardial cells in adult mice, which was related to changes in the activation, proliferation, and apoptosis of epicardial cells. Epicardial SMARCA4 deletion reduced collagen deposition and angiogenesis in the infarcted area, exacerbated cardiac injury in MI. The exacerbation of cardiac injury was related to the inhibition of generation and differentiation of EPDCs. The alterations in EPDCs were associated with inhibited transition between E-CAD and N-CAD during the epicardial EMT, coupled with the down-regulation of WT1, SNAIL1, and PDGF signaling. In conclusion, this study suggests that Epicardial SMARCA4 plays a critical role in cardiac injury caused by MI, and its regulatory mechanism is related to epicardial EMT. Epicardial SMARCA4 holds potential as a novel molecular target for treating MI.
Collapse
Affiliation(s)
- Xingyu Ma
- College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yi Feng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Wang X, Zhou Y, Wang L, Haseeb A, Li H, Zheng X, Guo J, Cheng X, Yin W, Sun N, Sun P, Zhang Z, Yang H, Fan K. Fascin-1 Promotes Cell Metastasis through Epithelial-Mesenchymal Transition in Canine Mammary Tumor Cell Lines. Vet Sci 2024; 11:238. [PMID: 38921985 PMCID: PMC11209228 DOI: 10.3390/vetsci11060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Canine mammary tumors (CMTs) are the most common type of tumor in female dogs. In this study, we obtained a metastatic key protein, Fascin-1, by comparing the proteomics data of in situ tumor and metastatic cell lines from the same individual. However, the role of Fascin-1 in the CMT cell line is still unclear. Firstly, proteomics was used to analyze the differential expression of Fascin-1 between the CMT cell lines CHMm and CHMp. Then, the overexpression (CHMm-OE and CHMp-OE) and knockdown (CHMm-KD and CHMp-KD) cell lines were established by lentivirus transduction. Finally, the differentially expressed proteins (DEPs) in CHMm and CHMm-OE cells were identified through proteomics. The results showed that the CHMm cells isolated from CMT abdominal metastases exhibited minimal expression of Fascin-1. The migration, adhesion, and invasion ability of CHMm-OE and CHMp-OE cells increased, while the migration, adhesion, and invasion ability of CHMm-KD and CHMp-KD cells decreased. The overexpression of Fascin-1 can upregulate the Tetraspanin 4 (TSPAN4) protein in CHMm cells and increase the number of migrations. In conclusion, re-expressed Fascin-1 could promote cell EMT and increase lamellipodia formation, resulting in the enhancement of CHMm cell migration, adhesion, and invasion in vitro. This may be beneficial to improve female dogs' prognosis of CMT.
Collapse
Affiliation(s)
- Xin Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Ye Zhou
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Linhao Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Abdul Haseeb
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoliang Cheng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Zhenbiao Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Huizhen Yang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Kuohai Fan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| |
Collapse
|
14
|
Li W, Wu J, Jia Q, Shi Y, Li F, Zhang L, Shi F, Wang X, Wu S. PD-L1 knockdown suppresses vasculogenic mimicry of non-small cell lung cancer by modulating ZEB1-triggered EMT. BMC Cancer 2024; 24:633. [PMID: 38783271 PMCID: PMC11118770 DOI: 10.1186/s12885-024-12390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.
Collapse
Affiliation(s)
- Wenjuan Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Jiatao Wu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Fan Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Linxiang Zhang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Fan Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People's Republic of China.
- Department of Pathology, Bengbu Medical University, Bengbu, 233030, Anhui, China.
- Department of Pathology, Anhui No.2 Provincial People's Hospital, Hefei, China.
| |
Collapse
|
15
|
Takihira S, Yamada D, Osone T, Takao T, Sakaguchi M, Hakozaki M, Itano T, Nakata E, Fujiwara T, Kunisada T, Ozaki T, Takarada T. PRRX1-TOP2A interaction is a malignancy-promoting factor in human malignant peripheral nerve sheath tumours. Br J Cancer 2024; 130:1493-1504. [PMID: 38448751 PMCID: PMC11058259 DOI: 10.1038/s41416-024-02632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated. METHODS PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1. RESULTS High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1-TOP2A interaction. CONCLUSION Targeting the PRRX1-TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.
Collapse
Affiliation(s)
- Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tatsunori Osone
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Michiyuki Hakozaki
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takuto Itano
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
16
|
Kanda K, Iwata H. Tris(2-chloroethyl) phosphate (TCEP) exposure inhibits the epithelial-mesenchymal transition (EMT), mesoderm differentiation, and cardiovascular development in early chicken embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171242. [PMID: 38417504 DOI: 10.1016/j.scitotenv.2024.171242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is an organophosphorus flame retardant used worldwide and has been detected in the tissues and eggs of wild birds. Our previous study reported that exposure to TCEP induced developmental delay and cardiovascular dysfunction with attenuated heart rate and vasculogenesis in early chicken embryos. This study aimed to investigate the molecular mechanisms underlying the cardiovascular effects of TCEP on chicken embryos using cardiac transcriptome analysis and to examine whether TCEP exposure affects epithelial-mesenchymal transition (EMT) and mesoderm differentiation during gastrulation. Transcriptome analysis revealed that TCEP exposure decreased the expression of cardiac conduction-related genes and transcription factors on day 5 of incubation. In extraembryonic blood vessels, the expression levels of genes related to fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) were significantly reduced by TCEP exposure and vasculogenesis was suppressed. TCEP exposure also attenuated Snail family transcriptional repressor 2 (SNAI2) and T-box transcription factor T (TBXT) signaling in the chicken primitive streak, indicating that TCEP inhibits EMT and mesoderm differentiation during gastrulation at the early developmental stage. These effects on EMT and mesoderm differentiation may be related to subsequent phenotypic defects, including suppression of heart development and blood vessel formation.
Collapse
Affiliation(s)
- Kazuki Kanda
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
17
|
Bentivoglio V, Galli F, Varani M, Ranieri D, Nayak P, D’Elia A, Soluri A, Massari R, Lauri C, Signore A. Radiolabelled FGF-2 for Imaging Activated Fibroblasts in the Tumor Micro-Environment. Biomolecules 2024; 14:491. [PMID: 38672507 PMCID: PMC11047989 DOI: 10.3390/biom14040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor associated fibroblasts (TAFs) play a key role in tumor growth and metastatization. TAFs overexpress different biomarkers that are usually expressed at low levels in physiological conditions. Among them are the fibroblast growth factor receptors (FGFRs) that bind the fibroblast growth factors (FGFs). In particular, the overexpression of FGFR-2c in tumors has been associated with advanced clinical stages and increased metastatization. Here, we developed a non-invasive tool to evaluate, in vivo, the expression of FGFR-2c in metastatic cancer. This is based on 99mTc-labelled FGF-2. METHODS 99mTc-FGF-2 was tested in vitro and in vivo in mice bearing allografts of sarcoma cells. Images of 99mTc-FGF-2 were acquired using a new portable high-resolution ultra-sensitive gamma camera for small animal imaging. RESULTS FGF-2 was labeled with high specific activity but low labelling efficiency, thus requiring post-labeling purification by gel-filtration chromatography. In vitro binding to 2C human keratinocytes showed a Kd of 3.36 × 10-9 M. In mice bearing J774A.1 cell allografts, we observed high and rapid tumor uptake of 99mTc-FGF-2 with a high Tumor/Blood ratio at 24 h post-injection (26.1 %ID/g and 12.9 %ID) with low kidney activity and moderate liver activity. CONCLUSIONS we labeled FGF-2 with 99mTc and showed nanomolar Kd in vitro with human keratinocytes expressing FGF-2 receptors. In mice, 99mTc-FGF-2 rapidly and efficiently accumulated in tumors expressing FGF-2 receptors. This new radiopharmaceutical could be used in humans to image TAFs.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Danilo Ranieri
- Department of Life Sciences, Health and Healthcare Professions, University “Link Campus University”, 00189 Rome, Italy;
| | - Pallavi Nayak
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Annunziata D’Elia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), 00015 Monterotondo Scalo, Italy; (A.D.); (A.S.); (R.M.)
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), 00015 Monterotondo Scalo, Italy; (A.D.); (A.S.); (R.M.)
- Unit of Molecular Neurosciences, University Campus Bio-Medico, 00128 Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), 00015 Monterotondo Scalo, Italy; (A.D.); (A.S.); (R.M.)
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Rome, Italy; (V.B.); (M.V.); (P.N.); (C.L.)
| |
Collapse
|
18
|
Li S, Zhao M, Zhang S, Yang R, Yin N, Wang H, Faiola F. Assessing developmental neurotoxicity of emerging environmental chemicals using multiple in vitro models: A comparative analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123743. [PMID: 38462195 DOI: 10.1016/j.envpol.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 μM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.
Collapse
Affiliation(s)
- Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Wang D, Chen S, Shao Y, Deng Y, Huang L. EIF4A3 modulated circ_000999 promotes epithelial-mesenchymal transition in cadmium-induced malignant transformation through the miR-205-5p/ZEB1 axis. ENVIRONMENT INTERNATIONAL 2024; 186:108656. [PMID: 38621321 DOI: 10.1016/j.envint.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Cadmium (Cd) is an accumulative toxic metal which poses a serious threat to human health, even in trace amounts. One of the most important steps in the pathophysiology of lung cancer (LC) is the epithelial-mesenchymal transition (EMT). In this investigation, a cell malignant transformation model was established by exposing human bronchial epithelial cells (16HBE) to a low dose of Cd for 30 weeks, after which a highly expressed circular RNA (circ_000999) was identified. Cd-induced EMT was clearly observed in rat lungs and 16HBE cells, which was further enhanced following circ_000999-overexpression. Furthermore, upregulated EIF4A3 interacted with the parental gene AGTPBP1 to promote high expression of circ_000999. Subsequent experiments confirmed that circ_000999 could regulate the EMT process by competitively binding miR-205-5p and inhibiting its activity, consequently upregulating expression of zinc finger E-box binding protein 1 (ZEB1). Importantly, the circ_000999 expression level in LC tissues was significantly increased, exhibiting a strong correlation with EMT indicators. Overall, these findings provide a new objective and research direction for reversing lung EMT and subsequent treatment and prevention of LC.
Collapse
Affiliation(s)
- Donglei Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Shijie Chen
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yueqing Shao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yang Deng
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
20
|
Moore E, Zhao R, McKinney MC, Yi K, Wood C, Trainor P. Cell extrusion - a novel mechanism driving neural crest cell delamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584232. [PMID: 38559094 PMCID: PMC10979875 DOI: 10.1101/2024.03.09.584232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency, that contribute to nearly every tissue and organ system throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube, during neurulation. Their delamination and migration are crucial events in embryo development as the differentiation of NCC is heavily influenced by their final resting locations. Previous work in avian and aquatic species has shown that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these stem and progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular drivers facilitating NCC delamination in mammals are poorly understood. We performed live timelapse imaging of NCC delamination in mouse embryos and discovered a group of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with most delaminating NCC. High magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed these round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, we demonstrate that cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1, a key regulator of the live cell extrusion pathway, revealing a new role for PIEZO1 in neural crest cell development. Our results elucidating the cellular and molecular dynamics orchestrating NCC delamination support a model in which high pressure and tension in the neuroepithelium results in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT. This model has broad implications for our understanding of cell delamination in development and disease.
Collapse
Affiliation(s)
- Emma Moore
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Paul Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Yang F, Akhtar MN, Zhang D, El-Mayta R, Shin J, Dorsey JF, Zhang L, Xu X, Guo W, Bagley SJ, Fuchs SY, Koumenis C, Lathia JD, Mitchell MJ, Gong Y, Fan Y. An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma. SCIENCE ADVANCES 2024; 10:eadj4678. [PMID: 38416830 PMCID: PMC10901371 DOI: 10.1126/sciadv.adj4678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer immunity is subjected to spatiotemporal regulation by leukocyte interaction with neoplastic and stromal cells, contributing to immune evasion and immunotherapy resistance. Here, we identify a distinct mesenchymal-like population of endothelial cells (ECs) that form an immunosuppressive vascular niche in glioblastoma (GBM). We reveal a spatially restricted, Twist1/SATB1-mediated sequential transcriptional activation mechanism, through which tumor ECs produce osteopontin to promote immunosuppressive macrophage (Mφ) phenotypes. Genetic or pharmacological ablation of Twist1 reverses Mφ-mediated immunosuppression and enhances T cell infiltration and activation, leading to reduced GBM growth and extended mouse survival, and sensitizing tumor to chimeric antigen receptor T immunotherapy. Thus, these findings uncover a spatially restricted mechanism controlling tumor immunity and suggest that targeting endothelial Twist1 may offer attractive opportunities for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Junyoung Shin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay F. Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen J. Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin D. Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Ma Z, Wang N, Meng T, Zhang R, Huang Y, Li T. Integrated analysis of ceRNA-miRNA changes in paraquat-induced pulmonary epithelial-mesenchymal transition via high-throughput sequencing. J Biochem Mol Toxicol 2024; 38:e23681. [PMID: 38444083 DOI: 10.1002/jbt.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Recent studies have shown that epithelial-mesenchymal transition (EMT) plays an important role in paraquat (PQ)-induced tissue fibrosis, which is the main cause of death in patients with PQ poisoning. However, no effective treatment for pulmonary interstitial fibrosis caused by PQ poisoning exists. It is of great significance for us to find new therapeutic targets through bioinformatics in PQ-induced EMT. We conducted transcriptome sequencing to determine the expression profiles of 1210 messenger RNAs (mRNAs), 558 long noncoding RNAs, 28 microRNAs (miRNAs), including 18 known-miRNAs, 10 novel-miRNAs and 154 circular RNAs in the PQ-exposed EMT group mice. Using gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses, we identified the pathways associated with signal transduction, cancers, endocrine systems and immune systems were involved in PQ-induced EMT. Furthermore, we constructed long noncoding RNA-miRNA-mRNA interrelated networks and found that upregulated genes included Il22ra2, Mdm4, Slc35e2 and Angptl4, and downregulated genes included RGS2, Gabpb2, Acvr1, Prkd3, Sp100, Tlr12, Syt15 and Camk2d. Thirteen new potential competitive endogenous RNA targets were also identified for further treatment of PQ-induced pulmonary tissue fibrosis. Through further study of the pathway and networks, we may identify new molecular targets in PQ-induced pulmonary EMT.
Collapse
Affiliation(s)
- Zhiyu Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Nana Wang
- Endocrinology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Ruoying Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Yang Huang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| |
Collapse
|
23
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
24
|
Chen HC, Kuo CY, Chang Y, Tsai DL, Lee MH, Lee JY, Lee HM, Su YC. 5-Methoxytryptophan enhances the sensitivity of sorafenib on the inhibition of proliferation and metastasis for lung cancer cells. BMC Cancer 2024; 24:248. [PMID: 38388902 PMCID: PMC10885375 DOI: 10.1186/s12885-024-11986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer-related mortality worldwide, and effective therapies are limited. Lung cancer is a leading cause of cancer-related mortality worldwide with limited effective therapy. Sorafenib is a multi-tyrosine kinase inhibitor frequently used to treat numerous types of malignant tumors. However, it has been demonstrated that sorafenib showed moderate antitumor activity and is associated with several side effects in lung cancer, which restricted its clinical application. This study aimed to examine the antitumor effect of the combination treatment of sorafenib and 5-methoxytryptophan (5-MTP) on cell growth and metastasis of Lewis lung carcinoma (LLC) cells. METHOD The anticancer effect of the combination treatment of sorafenib and 5-MTP was determined through cytotoxicity assay and colony forming assays. The mechanism was elucidated using flow cytometry and western blotting. Wound healing and Transwell assays were conducted to evaluate the impact of the combination treatment on migration and invasion abilities. An in vivo model was employed to analyze the effect of the combination treatment on the tumorigenic ability of LLC cells. RESULT Our results demonstrated that the sorafenib and 5-MTP combination synergistically reduced viability and proliferation compared to sorafenib or 5-MTP treatment alone. Reduction of cyclin D1 expression was observed in the sorafenib alone or combination treatments, leading to cell cycle arrest. Furthermore, the sorafenib-5-MTP combination significantly increased the inhibitory effect on migration and invasion of LLC cells compared to the single treatments. The combination also significantly downregulated vimentin and MMP9 levels, contributing to the inhibition of metastasis. The reduction of phosphorylated Akt and STAT3 expression may further contribute to the inhibitory effect on proliferation and metastasis. In vivo, the sorafenib-5-MTP combination further reduced tumor growth and metastasis compared to the treatment of sorafenib alone. CONCLUSIONS In conclusion, our data indicate that 5-MTP sensitizes the antitumor activity of sorafenib in LLC cells in vitro and in vivo, suggesting that sorafenib-5-MTP has the potential to serve as a therapeutic option for patients with lung cancer.
Collapse
Affiliation(s)
- Huang-Chi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yu Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Dong-Lin Tsai
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Hsuan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Ying Lee
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Ming Lee
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chieh Su
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Li P, Zheng Y, Wang YS. DEC1 is involved in TGF-β1-induced epithelial-mesenchymal transition of gastric cancer. Am J Cancer Res 2024; 14:630-642. [PMID: 38455424 PMCID: PMC10915339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
DEC1 is a helix-loop-helix (bHLH) transcription factor, whose deregulation has been observed in several tumors. However, the effects of the dysregulation of this gene on epithelial-mesenchymal transition (EMT) are controversial, with its roles in gastric cancer (GC) remaining unclear. In the present study, we focused on the impact of DEC1 on EMT and cell mobility in gastric cancer. We found that DEC1 expression positively correlated with TGF-β1 and EMT markers in tumor issues, and that DEC1 facilitated TGF-β1-induced EMT in gastric cancer. In addition, gastric cancer cell migration potential was reduced after DEC1 knockdown. Using murine metastasis models, we confirmed that DEC1 promoted GC metastasis and further explored the correlation of DEC1 with TGF-β1 and E-cadherin in vivo. Chromatin immunoprecipitation (ChIP) assays revealed that DEC1 could directly interact with the promoter region of TGF-β1. These results suggest that DEC1 functions as a tumor enhancer that partially participates in TGF-β1-mediated EMT processes in GC, thus contributing to tumor metastasis.
Collapse
Affiliation(s)
- Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong UniversityJinan, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Yun-Shan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical UniversityJinan, Shandong, China
| |
Collapse
|
26
|
Mathias-Machado MC, de Jesus VHF, Jácome A, Donadio MD, Aruquipa MPS, Fogacci J, Cunha RG, da Silva LM, Peixoto RD. Claudin 18.2 as a New Biomarker in Gastric Cancer-What Should We Know? Cancers (Basel) 2024; 16:679. [PMID: 38339430 PMCID: PMC10854563 DOI: 10.3390/cancers16030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) remains a formidable global health challenge, ranking among the top-five causes of cancer-related deaths worldwide. The majority of patients face advanced stages at diagnosis, with a mere 6% five-year survival rate. First-line treatment for metastatic GC typically involves a fluoropyrimidine and platinum agent combination; yet, predictive molecular markers have proven elusive. This review navigates the evolving landscape of GC biomarkers, with a specific focus on Claudin 18.2 (CLDN18.2) as an emerging and promising target. Recent phase III trials have unveiled the efficacy of Zolbetuximab, a CLDN18.2-targeting antibody, in combination with oxaliplatin-based chemotherapy for CLDN18.2-positive metastatic GC. As this novel therapeutic avenue unfolds, understanding the nuanced decision making regarding the selection of anti-CLDN18.2 therapies over other targeted agents in metastatic GC becomes crucial. This manuscript reviews the evolving role of CLDN18.2 as a biomarker in GC and explores the current status of CLDN18.2-targeting agents in clinical development. The aim is to provide concise insights into the potential of CLDN18.2 as a therapeutic target and guide future clinical decisions in the management of metastatic GC.
Collapse
Affiliation(s)
- Maria Cecília Mathias-Machado
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - Alexandre Jácome
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil;
| | - Mauro Daniel Donadio
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - João Fogacci
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Rio de Janeiro 22775-003, Brazil;
| | - Renato Guerino Cunha
- Cellular Therapy Program, Division of Hematology, Oncoclínicas, São Paulo 04538-132, Brazil;
| | | | - Renata D’Alpino Peixoto
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| |
Collapse
|
27
|
Newton AH, Smith CA. Resolving the mechanisms underlying epithelial-to-mesenchymal transition of the lateral plate mesoderm. Genesis 2024; 62:e23531. [PMID: 37443419 DOI: 10.1002/dvg.23531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Formation of the vertebrate limb buds begins with a localized epithelial-to-mesenchymal transition (EMT) of the somatic lateral plate mesoderm (LPM). While the processes that drive proliferation and outgrowth of the limb mesenchyme are well established, the fundamental mechanisms that precede this process and initiate EMT are less understood. In this review, we outline putative drivers of EMT of the LPM, drawing from analyses across a range of vertebrates and developmental models. We detail the expression patterns of key EMT transcriptional regulators in the somatic LPM of the presumptive limb fields, and their potential role in producing a mesenchymal cell fate. These include a putative cooperative role between the EMT inducers PRRX1 and TWIST1, supported by evidence in zebrafish and chicken models but unconfirmed data from mice. As such, additional functional data are required to definitively determine the mechanisms that initiate and drive EMT of the somatic LPM, a critical transition preceding formation of the limb bud mesenchyme.
Collapse
Affiliation(s)
- Axel H Newton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Zhu X, Ji J, Han X. Osteopontin: an essential regulatory protein in idiopathic pulmonary fibrosis. J Mol Histol 2024; 55:1-13. [PMID: 37878112 DOI: 10.1007/s10735-023-10169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic lung disease characterized by abnormal proliferation and activation of fibroblasts, excessive accumulation of extracellular matrix (ECM), inflammatory damage, and disrupted alveolar structure. Despite its increasing morbidity and mortality rates, effective clinical treatments for IPF remain elusive. Osteopontin (OPN), a multifunctional ECM protein found in various tissues, has been implicated in numerous biological processes such as bone remodeling, innate immunity, acute and chronic inflammation, and cancer. Recent studies have highlighted the pivotal role of OPN in the pathogenesis of IPF. This review aims to delve into the involvement of OPN in the inflammatory response, ECM deposition, and epithelial-mesenchymal transition (EMT) during IPF, and intends to lay a solid theoretical groundwork for the development of therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
29
|
Cui Y, Zhang Y, Liu Y, Zhou Z, Zhu L, Zhou CX. EN1 promotes lung metastasis of salivary adenoid cystic carcinoma by regulating the PI3K-AKT pathway and epithelial-mesenchymal transition. Cancer Cell Int 2024; 24:51. [PMID: 38291456 PMCID: PMC10829235 DOI: 10.1186/s12935-024-03230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Engrailed homeobox 1 (EN1) is a candidate oncogene that is epigenetically modified in salivary adenoid cystic carcinoma (SACC). We investigated the expression of EN1 in SACC tissues and cells, EN1 promoter methylation, and the role of EN1 in tumour progression in SACC. METHODS Thirty-five SACC samples were screened for key transcription factors that affect tumour progression. In vitro and in vivo assays were performed to determine the viability, tumorigenicity, and metastatic ability of SACC cells with modulated EN1 expression. Quantitative methylation-specific polymerase chain reaction analysis was performed on SACC samples. RESULTS EN1 was identified as a transcription factor that was highly overexpressed in SACC tissues, regardless of clinical stage and histology subtype, and its level of expression correlated with distant metastasis. EN1 promoted cell invasion and migration through epithelial-mesenchymal transition in vitro and enhanced SACC metastasis to the lung in vivo. RNA-seq combined with in vitro assays indicated that EN1 might play an oncogenic role in SACC through the PI3K-AKT pathway. EN1 mRNA levels were negatively correlated with promoter hypermethylation, and inhibition of DNA methylation by 5-aza-dC increased EN1 expression. CONCLUSIONS The transcription factor EN1 is overexpressed in SACC under methylation regulation and plays a pivotal role in SACC progression through the PI3K-AKT pathway. These results suggest that EN1 may be a diagnostic biomarker and a potential therapeutic target for SACC.
Collapse
Affiliation(s)
- Yajuan Cui
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Ye Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Yuping Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Zheng Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Research Center of Oral Biomaterials and Digital Medicine Devices, 22 South Avenue Zhongguancun, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
30
|
Kuroda T, Yasuda S, Matsuyama S, Miura T, Sawada R, Matsuyama A, Yamamoto Y, Morioka MS, Kawaji H, Kasukawa T, Itoh M, Akutsu H, Kawai J, Sato Y. ROR2 expression predicts human induced pluripotent stem cell differentiation into neural stem/progenitor cells and GABAergic neurons. Sci Rep 2024; 14:690. [PMID: 38184695 PMCID: PMC10771438 DOI: 10.1038/s41598-023-51082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Despite the development of various in vitro differentiation protocols for the efficient derivation of specific cell types, human induced pluripotent stem cell (hiPSC) lines have varing ability to differentiate into specific lineages. Therefore, surrogate markers for accurately predicting the differentiation propensity of hiPSC lines may facilitate cell-based therapeutic product development and manufacture. We attempted to identify marker genes that could predict the differentiation propensity of hiPSCs into neural stem/progenitor cells (NS/PCs). Using Spearman's rank correlation coefficients, we investigated genes in the undifferentiated state, the expression levels of which were significantly correlated with the neuronal differentiation propensity of several hiPSC lines. Among genes significantly correlated with NS/PC differentiation (P < 0.01), we identified ROR2 as a novel predictive marker. ROR2 expression in hiPSCs was negatively correlated with NS/PC differentiation tendency, regardless of the differentiation method, whereas its knockdown enhanced differentiation. ROR2 regulates NS/PC differentiation, suggesting that ROR2 is functionally essential for NS/PC differentiation. Selecting cell lines with relatively low ROR2 expression facilitated identification of hiPSCs that can differentiate into NS/PCs. Cells with ROR2 knockdown showed increased efficiency of differentiation into forebrain GABAergic neurons compared to controls. These findings suggest that ROR2 is a surrogate marker for selecting hiPSC lines appropriate for NS/PC and GABAergic neuronal differentiations.
Collapse
Affiliation(s)
- Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Center for Reverse TR, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Habikino, Osaka, Japan
| | - Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Rumi Sawada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Akifumi Matsuyama
- Center for Reverse TR, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Habikino, Osaka, Japan
| | - Yumiko Yamamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | | | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Jun Kawai
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
- Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
31
|
Ko B, An J, Lee J, Kim K, Kim T, Park S, Chae H, Youn H. Anticancer effect of superoxide dismutase on canine mammary gland tumour in vitro. Vet Med Sci 2024; 10:e1323. [PMID: 37997503 PMCID: PMC10766058 DOI: 10.1002/vms3.1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) have been shown to promote tumour growth and metastasis in human cell lines. The superoxide anion (•O2 - ) is produced during ROS formation and is involved in tumour cell signalling. OBJECTIVES Superoxide dismutase (SOD) has been applied to canine mammary gland tumours to investigate its antitumour effects in vitro. METHODS Cell proliferation, cell cycle cell migration assays, reverse transcription-quantitative polymerase chain reaction, and western blot analysis were performed to determine the effects of SOD on canine mammary tumour cell line. RESULTS SOD treatment resulted in anti-proliferative effects and mediated cell cycle arrest in the canine mammary gland tumour cell lines (CIPp and CIPm). It also downregulated the expression of N-cadherin and Vimentin. CONCLUSIONS The results confirmed that SOD inhibits tumour cell proliferation and migration, thus supporting the potential applications of SOD as a chemotherapeutic agent for canine mammary gland tumours.
Collapse
Affiliation(s)
- Byung‐Gee Ko
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Ju‐Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary ScienceCollege of Veterinary Medicine, Kangwon National UniversityChuncheon‐siRepublic of Korea
| | - Jeong‐Hwa Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Kyeong‐Bo Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Tae‐Hyeon Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Su‐Min Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Hyung‐Kyu Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Hwa‐Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
32
|
He C, Ding Y, Yang Y, Che G, Teng F, Wang H, Zhang J, Zhou D, Chen Y, Zhou Z, Wang H, Teng L. Stem cell landscape aids in tumor microenvironment identification and selection of therapeutic agents in gastric cancer. Cell Signal 2024; 113:110965. [PMID: 37935339 DOI: 10.1016/j.cellsig.2023.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Gastric cancer stem cells (GCSCs) are strongly associated with the refractory characteristics of gastric cancer, including drug resistance, recurrence, and metastasis. The prognosis for advanced gastric cancer patients treated with multimodal therapy after surgery remains discouraging. GCSCs hold promise as therapeutic targets for GC patients. We obtained 26 sets of stem cell-related genes from the StemChecker database. The Consensus clustering algorithm was employed to discern three distinct stemness subtypes. Prognostic outcomes, components of the tumor microenvironment (TME), and responses to therapies were compared among these subtypes. Following this, a stemness-risk model was formulated using weighted gene correlation network analysis (WGCNA), alongside Cox regression and random survival forest analyses. The C2 subtype predominantly showed enrichment in negative prognostic CSC gene sets and demonstrated an immunosuppressive TME. This specific subtype exhibited minimal responsiveness to immunotherapies and demonstrated reduced sensitivity to drugs. Four pivotal genes were integrated into the construction of the stemness model. Gastric cancer patients with higher stemness-risk scores demonstrated poorer prognoses, a greater presence of immunosuppressive components in TME, and lower rates of treatment response. Subset analysis indicated that only the low-stemness risk subtype derives benefit from 5-fluorouracil-based adjuvant chemotherapy. The model's effectiveness in immunotherapeutic prediction was further validated in the PRJEB25780 cohort. Our study categorized gastric cancer patients into three stemness subtypes, each demonstrating distinct prognoses, components of TME infiltration, and varying sensitivity or resistance to standard chemotherapy or targeted therapy. We propose that the stemness risk model may help the development of well-grounded treatment recommendations and prognostic assessments.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Teng
- Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Chen Y, He Z, Yang S, Chen C, Xiong W, He Y, Liu S. RUNX1 knockdown induced apoptosis and impaired EMT in high-grade serous ovarian cancer cells. J Transl Med 2023; 21:886. [PMID: 38057816 PMCID: PMC10702124 DOI: 10.1186/s12967-023-04762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuting Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- School of Life Science, Yunnan University, Kunming, China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
| | - YingYing He
- School of Chemical Science & Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Rezaul Islam M, Rauf A, Akash S, Kumer A, Hussain MS, Akter S, Gupta JK, Thameemul Ansari L, Mahfoj Islam Raj MM, Bin Emran T, Aljohani AS, Abdulmonem WA, Thiruvengadam R, Thiruvengadam M. Recent perspective on the potential role of phytocompounds in the prevention of gastric cancer. Process Biochem 2023; 135:83-101. [DOI: 10.1016/j.procbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
35
|
Buryska S, Patel K, Wuertz B, Gaffney PM, Ondrey F. Potential Roles of Activin in Head and Neck Squamous Cell Carcinoma Progression and Mortality. Anticancer Res 2023; 43:5299-5310. [PMID: 38030164 PMCID: PMC11285815 DOI: 10.21873/anticanres.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND/AIM Activin, a member of the TGF-β super family of cytokines, is involved in head and neck squamous cell carcinoma (HNSCC). This study examined the constituents of the activin axis in order to further elucidate the role of activin A in HNSCC progression. MATERIALS AND METHODS Immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR), MTT, and matrigel invasion assays, in addition to analysis of the tumor cancer genome atlas (TCGA), were employed. RESULTS IHC in HNSCC and oral leukoplakia (OPL) lesions demonstrated increased expression of the inhibin subunit βA (INHBA) (p<0.0001), as well as activin receptor type IB (ACVR1B) (p<0.0032) compared to normal mucosa. TCGA analysis revealed increased INHBA expression was associated with lymph node positive tumors (p=0.024), decreased overall survival (p=0.0167), and decreased promoter methylation (p<0.0001). Concomitant up-regulated expression of gene pathways strongly correlated with INHBA expression demonstrated further deleterious effects on survival (p<0.0148). CONCLUSION Activin may be an important component of early carcinogenesis in OPL and HNSCC with unfavorable effects on clinical end-points such as survival.
Collapse
Affiliation(s)
- Seth Buryska
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| | - Ketan Patel
- North Memorial Health/Blaze Health, Minneapolis, MN, U.S.A
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A.;
| | | | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
36
|
Lin Y, Shi J, Shi B, Jia Z. MMP16 as NSCL ± P Susceptible Gene in Western Han Chinese. Cleft Palate Craniofac J 2023; 60:1625-1631. [PMID: 36120833 DOI: 10.1177/10556656221125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The role of MMP16 in lip development is unclear. This study aimed to identify nonsyndromic cleft lip with or without palate (NSCL ± P) susceptible loci of MMP16 in western Han Chinese. DESIGN We performed targeted sequencing around MMP16 combined with a 2-phase association analysis on common variants. Phase 2 association analysis was performed with NSCL ± P specific subphenotypes (NSCL and NSCLP). Then we used rare variants burden analysis and genotyping, accompanied by motif analysis. SETTING This study was completed in a tertiary medical center. PATIENTS, PARTICIPANTS Phase 1 targeted sequencing included 159 patients with NSCL ± P and 542 normal controls; phase 2 included 1626 patients with NSCL ± P (1047 NSCL and 579 NSCLP) and 2255 normal controls. INTERVENTIONS Venous blood samples were collected from patients and used to extract DNA. MAIN OUTCOME MEASURES After Bonferroni correction, phase 1 significant threshold of p-value was 4.28 × 10-5 (0.05/1167 single nucleotide polymorphisms [SNPs]), and phase 2 was .00025 (0.05/200 SNPs). Burden analysis significant threshold p-value was .05. RESULTS Common variants phase 1 association analysis identified 11 statistically significant SNPs (lowest p = 1.90 × 10-9, odds ratio (OR) = 0.27, 95% CI: 0.17-0.44), phase 2 replication identified 16 SNPs in NSCL ± P (lowest p = 6.26 × 10-6, OR = 0.77, 95% CI: 0.69-0.86) and 9 in NSCL (lowest p = 8.44 × 10-5, OR = 0.76, 95% CI: 0.66-0.87). Rare variants burden analysis showed no significant results, genotyping results showed they were maternally inherited. CONCLUSIONS Our study identified MMP16 susceptible SNPs in NSCL ± P and NSCL, emphasizing its potential role in lip development. Our study also highlighted the importance to perform association analysis with subphenotypes divided.
Collapse
Affiliation(s)
- Yansong Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Liu X, Wu J, Yang B, Zhao Y, Wang Y, Pan S, Miao S, Wu X. hsa_circ_0005991 promotes epithelial-mesenchymal transition by regulating miR-30b-3p/Cdc42EP1 axis in ovary endometriosis. Genomics 2023; 115:110718. [PMID: 37757976 DOI: 10.1016/j.ygeno.2023.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Endometriosis is a common gynecological disease with an enigmatic pathogenesis. This work explored the function of hsa_circ_0005991 in ovarian endometriosis. High-throughput RNA-Seq was conducted in five matched ectopic (EC) and eutopic (EU) samples. Further, several types of cell function experiments were conducted. According to bioinformatics analysis, a competing endogenous RNA network was established. It included 5 circRNAs, 13 miRNAs, and 551 mRNAs. The expression levels of hsa_circ_0005991 and Cdc42EP1 were significantly elevated, while miR-30b-3p was reduced in the EC group. Upregulation of hsa_circ_0005991 raised Cdc42EP1 levels, induced EMT, and boosted Ishikawa cell proliferation, migration, and invasion. hsa_circ_0005991 knockdown indicated the opposite effects. When co-transfected with miR-30b-3p mimics or inhibitors, these effects could be reversed, respectively. Western blot assays showed alterations of EMT markers in EC samples. hsa_circ_0005991/miR-30b-3p/Cdc42EP1 axis promotes the EMT process in endometriosis, which may offer a theoretical foundation for the mechanism exploration and therapy of this disease.
Collapse
Affiliation(s)
- Xiaoxu Liu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Department of Obstetrics and Gynecology, Shijiazhuang Maternity and Child Healthcare Hospital, Shijiazhuang, Hebei 050000, China
| | - Jing Wu
- College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Bo Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, China
| | - Yuanyuan Zhao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yafan Wang
- Department of Obstetrics and Gynecology, Shijiazhuang Maternity and Child Healthcare Hospital, Shijiazhuang, Hebei 050000, China
| | - Shuhong Pan
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Suibing Miao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
38
|
Bai Y, Bentley L, Ma C, Naveenan N, Cleak J, Wu Y, Simon MM, Westerberg H, Cañas RC, Horner N, Pandey R, Paphiti K, Schulze U, Mianné J, Hough T, Teboul L, de Baaij JH, Cox RD. Cleft palate and minor metabolic disturbances in a mouse global Arl15 gene knockout. FASEB J 2023; 37:e23211. [PMID: 37773757 PMCID: PMC10631251 DOI: 10.1096/fj.202201918r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/27/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
ARL15, a small GTPase protein, was linked to metabolic traits in association studies. We aimed to test the Arl15 gene as a functional candidate for metabolic traits in the mouse. CRISPR/Cas9 germline knockout (KO) of Arl15 showed that homozygotes were postnatal lethal and exhibited a complete cleft palate (CP). Also, decreased cell migration was observed from Arl15 KO mouse embryonic fibroblasts (MEFs). Metabolic phenotyping of heterozygotes showed that females had reduced fat mass on a chow diet from 14 weeks of age. Mild body composition phenotypes were also observed in heterozygous mice on a high-fat diet (HFD)/low-fat diet (LFD). Females on a HFD showed reduced body weight, gonadal fat depot weight and brown adipose tissue (BAT) weight. In contrast, in the LFD group, females showed increased bone mineral density (BMD), while males showed a trend toward reduced BMD. Clinical biochemistry analysis of plasma on HFD showed transient lower adiponectin at 20 weeks of age in females. Urinary and plasma Mg2+ concentrations were not significantly different. Our phenotyping data showed that Arl15 is essential for craniofacial development. Adult metabolic phenotyping revealed potential roles in brown adipose tissue and bone development.
Collapse
Affiliation(s)
- Ying Bai
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Liz Bentley
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Chao Ma
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - James Cleak
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Yixing Wu
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Michelle M Simon
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Henrik Westerberg
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Ramón Casero Cañas
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Neil Horner
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Rajesh Pandey
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Keanu Paphiti
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | | | - Joffrey Mianné
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Tertius Hough
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Lydia Teboul
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Roger D. Cox
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| |
Collapse
|
39
|
Wu HM, Chen LH, Huang HY, Wang HS, Tsai CL. EGF-Enhanced GnRH-II Regulation in Decidual Stromal Cell Motility through Twist and N-Cadherin Signaling. Int J Mol Sci 2023; 24:15271. [PMID: 37894950 PMCID: PMC10607070 DOI: 10.3390/ijms242015271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crucial roles in embryo implantation and placentation in humans include the invasion of the maternal decidua by extravillous trophoblasts and the motile behavior of decidual endometrial stromal cells. The effects of the epidermal growth factor (EGF) and GnRH-II in the endometrium take part in early pregnancy. In the present study, we demonstrated the coaction of EGF- and GnRH-II-promoted motility of human decidual endometrial stromal cells, indicating the possible roles of EGF and GnRH-II in embryo implantation and early pregnancy. After obtaining informed consent, we obtained human decidual endometrial stromal cells from decidual tissues from normal pregnancies at 6 to 12 weeks of gestation in healthy women undergoing suction dilation and curettage. Cell motility was evaluated with invasion and migration assays. The mechanisms of EGF and GnRH-II were performed using real-time PCR and immunoblot analysis. The results showed that human decidual tissue and stromal cells expressed the EGF and GnRH-I receptors. GnRH-II-mediated cell motility was enhanced by EGF and was suppressed by the knockdown of the endogenous GnRH-I receptor and EGF receptor with siRNA, revealing that GnRH-II promoted the cell motility of human decidual endometrial stromal cells through the GnRH-I receptor and the activation of Twist and N-cadherin signaling. This new concept regarding the coaction of EGF- and GnRH-promoted cell motility suggests that EGF and GnRH-II potentially affect embryo implantation and the decidual programming of human pregnancy.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (L.-H.C.); (H.-Y.H.); (H.-S.W.); (C.-L.T.)
| | | | | | | | | |
Collapse
|
40
|
Abstract
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Collapse
Affiliation(s)
- Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arun R Chavan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Stepler KE, Hannah SC, Taneyhill LA, Nemes P. Deep Proteome of the Developing Chick Midbrain. J Proteome Res 2023; 22:3264-3274. [PMID: 37616547 DOI: 10.1021/acs.jproteome.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) and migration of cranial neural crest cells within the midbrain are critical processes that permit proper craniofacial patterning in the early embryo. Disruptions in these processes not only impair development but also lead to various diseases, underscoring the need for their detailed understanding at the molecular level. The chick embryo has served historically as an excellent model for human embryonic development, including cranial neural crest cell EMT and migration. While these developmental events have been characterized transcriptionally, studies at the protein level have not been undertaken to date. Here, we applied mass spectrometry (MS)-based proteomics to establish a deep proteomics profile of the chick midbrain region during early embryonic development. Our proteomics method combines optimal lysis conditions, offline fractionation, separation on a nanopatterned stationary phase (μPAC) using nanoflow liquid chromatography, and detection using quadrupole-ion trap-Orbitrap tribrid high-resolution tandem MS. Identification of >5900 proteins and >450 phosphoproteins in this study marks the deepest coverage of the chick midbrain proteome to date. These proteins have known roles in pathways related to neural crest cell EMT and migration such as signaling, proteolysis/extracellular matrix remodeling, and transcriptional regulation. This study offers valuable insight into important developmental processes occurring in the midbrain region and demonstrates the utility of proteomics for characterization of tissue microenvironments during chick embryogenesis.
Collapse
Affiliation(s)
- Kaitlyn E Stepler
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Seth C Hannah
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Lisa A Taneyhill
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
42
|
Wang XC, Song K, Tu B, Sun H, Zhou Y, Xu SS, Lu D, Sha JM, Tao H. New aspects of the epigenetic regulation of EMT related to pulmonary fibrosis. Eur J Pharmacol 2023; 956:175959. [PMID: 37541361 DOI: 10.1016/j.ejphar.2023.175959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Pulmonary fibrosis is a chronic and progressive fibrotic disease that results in impaired gas exchange, ventilation, and eventual death. The pro-fibrotic environment is instigated by various factors, leading to the transformation of epithelial cells into myofibroblasts and/or fibroblasts that trigger fibrosis. Epithelial mesenchymal transition (EMT) is a biological process that plays a critical role in the pathogenesis of pulmonary fibrosis. Epigenetic regulation of tissue-stromal crosstalk involving DNA methylation, histone modifications, non-coding RNA, and chromatin remodeling plays a key role in the control of EMT. The review investigates the epigenetic regulation of EMT and its significance in pulmonary fibrosis.
Collapse
Affiliation(s)
- Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Kai Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Bin Tu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - He Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Yang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Sheng-Song Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Dong Lu
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
43
|
Maltabe VA, Melidoni AN, Beis D, Kokkinopoulos I, Paschalidis N, Kouklis P. VE-CADHERIN is expressed transiently in early ISL1 + cardiovascular progenitor cells and facilitates cardiac differentiation. Stem Cell Reports 2023; 18:1827-1840. [PMID: 37541259 PMCID: PMC10545488 DOI: 10.1016/j.stemcr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/06/2023] Open
Abstract
Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.
Collapse
Affiliation(s)
- Violetta A Maltabe
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Anna N Melidoni
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitris Beis
- Developmental Biology, Center for Experimental Surgery Clinical and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), 11527 Athens, Greece; Laboratory of Biochemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Kokkinopoulos
- Developmental Biology and Immunobiology Laboratories, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Panos Kouklis
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece.
| |
Collapse
|
44
|
Ma J, Da M. High-Mobility Group Box 1 Overexpression Predicts a Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Gastric Cancer by Activating TLR4/NF-κB Signaling. Oncology 2023; 101:786-798. [PMID: 37666221 DOI: 10.1159/000533927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION The molecular mechanism of high-mobility group box 1 (HMGB1) promoting the epithelial-mesenchymal transition (EMT) of gastric cancer (GC) has not been known well. This study aimed to explore the clinical effects of HMGB1 expression levels on the clinicopathological characteristics of patients with GC and to uncover the potential molecular mechanism which promotes tumor progression. METHODS The expression levels of HMGB1 in 125 patients with GC were detected by immunohistochemistry and Western blotting. Univariate and multivariate analyses were performed to evaluate the relationship between HMGB1 expression and clinical characteristics of patients with GC. Stable overexpression (over-HMGB1) and knockdown (sh-HMGB1) GC cell lines (AGS and MKN-45) were used to determine the effects of HMGB1 on the activation of TLR4/NF-κB signaling. Differences were considered statistically significant at p < 0.05 in two sides. RESULTS HMGB1 is highly expressed in GC tissues and cell lines. High HMGB1 expression (HR = 1.89, 95% CI: 1.44-2.39, p = 0.001) was an independent risk factor for overall survival in patients with GC. Downregulation of HMGB1 resulted in downregulation of TLR4 and NF-κB subunit (p-p65 and p-IκBα) expression, whereas the upregulated expression of HMGB1 led to increased expression of TLR4 and NF-κB subunits. Overexpression of HMGB1 promotes the upregulation of EMT-TF expression, which enhances the proliferation and migration abilities of GC cell lines. CONCLUSION HMGB1 is highly expressed in GC tissues and is associated with a poorer prognosis in patients with GC. HMGB1 activates the TLR4/NF-κB signaling pathway to promote EMT progression in GC cell lines. HMGB1 may be a critical molecule in prognosis prediction and a therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Jichun Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China,
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
45
|
Wang F, Zhang Y, Pang R, Shi S, Wang R. Scoulerine promotes cytotoxicity and attenuates stemness in ovarian cancer by targeting PI3K/AKT/mTOR axis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:475-488. [PMID: 37708956 DOI: 10.2478/acph-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 09/16/2023]
Abstract
In women, ovarian cancer is a common gynecological cancer associated with poor prognosis, reoccurrence and chemoresistance. Scoulerine, a benzylisoquinoline alkaloid, has been reported effective against several carcinomas. Thus, we investigated the impact of scoulerine on ovarian cancer cells (OVCAR3). Cell viability was assessed by MTT assay, migration was determined by Boyden Chamber assay, while the invasion was monitored by Boyden Chamber assay using the matrigel. The stemness properties of OVCAR3 cells were observed by tumorsphere assay. Epithelial to mesenchymal transition (EMT) and stemness-related protein markers were monitored by real-time PCR analysis and immunoblotting. Scoulerine inhibits the viability of OVCAR3 cells with the IC 50 observed at 10 µmol L-1 after 48 h treatment. Scoulerine inhibited the colony-forming ability, migration and invasiveness of OVCAR3 cells in a dose-dependent fashion. Scoulerine treatment also drastically reduced the spheroid-forming ability of OVCAR3 cells. The mesenchymal and stemness--related markers like N-cadherin, vimentin, CD-44, Oct-4, Sox-2 and Aldh1A1 were downregulated, whereas the epithelial markers like E-cadherin and CD-24 were upregulated in scoulerine-treated cells. The upstream PI3K/Akt/mTOR-axis was downregulated in scoulerine-treated cells. We concluded that scoulerine successfully perturbs the cancerous properties of OVCAR3 cells by targeting the PI3K/Akt/mTOR axis. In vivo studies revealed a substantial decrease in tumor mass and volume after scoulerine treatment. Furthermore, scoulerine treatment was found to decrease oxidative stress factors in ovarian cancer mice model. Scoulerine is a potential anticancer agent against ovarian cancer and can be considered as a lead molecule for this malignancy, provided further investigations are performed.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Yang Zhang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Rui Pang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Shaohong Shi
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Ran Wang
- Department of Clinical laboratory, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang Jiangsu, China
| |
Collapse
|
46
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
47
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
48
|
Zhang J, Xu X, Liang Y, Wu X, Qian Z, Zhang L, Wang T. Particulate matter promotes the epithelial to mesenchymal transition in human lung epithelial cells via the ROS pathway. Am J Transl Res 2023; 15:5159-5167. [PMID: 37692935 PMCID: PMC10492054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023]
Abstract
OBJECTS Epidemiologic studies have linked exposure to airborne pollutant particulate matter (PM) with increased rates of chronic cardiopulmonary diseases, including asthma and idiopathic pulmonary fibrosis (IPF). Several investigations have suggested that the epithelial-to-mesenchymal transition (EMT) may contribute to the complex pathobiology of environmental exposure-mediated pulmonary fibrosis. The present study was designed to characterize the mechanisms of PM-mediated EMT in human lung epithelial cells (HBECs). METHODS AND RESULTS PM induced significant dose (0-100 μg/ml) and time (0-72 h)-dependent increases in transforming growth factor β (TGFβ) and fibronectin (FN) protein levels in HBECs lysates. PM-activated TGFβ and FN protein production in HBECs was prevented by the antioxidant N-acetyl-cysteine (NAC, 5 mM). Furthermore, the NF-κB inhibitor BAY11-7082 (5 μM) abolished PM-induced FN production in HBECs. Biomarkers of EMT (ACTA2, SNAIL1 and SNAIL2) in PM-treated HBECs were significantly increased at the mRNA level compared to control cells. CONCLUSIONS These results demonstrate that PM increases protein levels of TGFβ and FN via reactive oxygen species (ROS)-dependent pathways. In addition, PM exposure induces EMT in human lung epithelial cells, supporting a novel mechanism for PM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medicine, University of ArizonaTucson, AZ, USA
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing, China
| | - Xiaoyan Xu
- Department of Medicine, University of ArizonaTucson, AZ, USA
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing, China
| | - Ying Liang
- Department of Medicine, University of ArizonaTucson, AZ, USA
| | - Xiaomin Wu
- Department of Medicine, University of ArizonaTucson, AZ, USA
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical CollegeBengbu, Anhui, China
| | - Liming Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical UniversityBeijing, China
| | - Ting Wang
- Department of Medicine, University of ArizonaTucson, AZ, USA
- Center of Translational Science, Florida International University11350 SW Village Parkway, Port St. Lucie, FL, USA
| |
Collapse
|
49
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
50
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|