1
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Wen X, Zhang J, Wan X, Frank AA, Qu X, Kellum JA. Tissue Inhibitor of Metalloproteinases-2 Mediates Kidney Injury during Sepsis. Nephron Clin Pract 2020; 144:644-649. [PMID: 33091916 DOI: 10.1159/000511165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/22/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Urinary tissue inhibitor of metalloproteinases (TIMP)-2 has been identified as a predictive marker for acute kidney injury (AKI), including sepsis-associated AKI (S-AKI). Whether TIMP-2 might be causally related to AKI and hence represent a viable drug target is unclear. OBJECTIVE The aim of this study was to evaluate whether suppression of TIMP-2 attenuates S-AKI. METHODS Balb/c mice were randomized to sham or cecal ligation and puncture surgery and treated with or without a TIMP-2-neutralizing antibody. Animals were followed for 48 h and then sacrificed for analysis of TIMP-2 expression, cell cycle, and histology. RESULTS Anti-TIMP-2 resulted in decreased lumen TIMP-2 expression which markedly increased cell cycle progression and attenuated epithelial cell injury by histology. CONCLUSIONS TIMP-2 mediates S-AKI and appears to be a viable drug target.
Collapse
Affiliation(s)
- Xiaoyan Wen
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jicheng Zhang
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaojian Wan
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia A Frank
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xin Qu
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,
| |
Collapse
|
3
|
Zhang CC, Hoffelt DAA, Merle U. Urinary cell cycle arrest biomarker [TIMP-2]·[IGFBP7] in patients with hepatorenal syndrome. Biomarkers 2019; 24:692-699. [DOI: 10.1080/1354750x.2019.1652347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Uta Merle
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Zhang H, Bagherie-Lachidan M, Badouel C, Enderle L, Peidis P, Bremner R, Kuure S, Jain S, McNeill H. FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling. Dev Cell 2019; 48:780-792.e4. [PMID: 30853441 DOI: 10.1016/j.devcel.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Abstract
FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4-/- kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4-/- kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.
Collapse
Affiliation(s)
- Hongtao Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mazdak Bagherie-Lachidan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Caroline Badouel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse 31062, France
| | - Leonie Enderle
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Philippos Peidis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satu Kuure
- GM-unit at Laboratory Animal Centre, HiLIFE and Medicum, University of Helsinki, Helsinki 00014, Finland
| | - Sanjay Jain
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
BMP7 plays a critical role in TMEM100-inhibited cell proliferation and apoptosis in mouse metanephric mesenchymal cells in vitro. In Vitro Cell Dev Biol Anim 2017; 54:111-119. [DOI: 10.1007/s11626-017-0211-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
|
6
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, Humphreys BD, Koyner JL, Liu KD, Mour G, Nolin TD, Bihorac A. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am J Kidney Dis 2016; 68:19-28. [PMID: 26948834 DOI: 10.1053/j.ajkd.2015.12.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/26/2015] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a serious complication, commonly occurring in the critically ill population, with devastating short- and long-term consequences. Despite standardization of the definition and staging of AKI, early recognition remains challenging given that serum creatinine level is a marker, albeit imperfect, of kidney function and not kidney injury. Furthermore, the delay in increase in serum creatinine level after loss of glomerular filtration also prevents timely detection of decreased kidney function in patients with AKI. During the past decade, numerous clinical investigations have evaluated the utility of several biomarkers in the early diagnosis and risk stratification of AKI. In 2014, the US Food and Drug Administration approved the marketing of a test based on the combination of urine concentrations of tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 ([TIMP-2] × [IGFBP7]) to determine whether certain critically ill patients are at risk for developing moderate to severe AKI. The optimal role of this biomarker in the diagnosis, management, and prognosis of AKI in different clinical settings requires further clarification. In this perspective, we summarize the biological actions of these 2 cell-cycle arrest biomarkers and present important considerations regarding the clinical application, interpretation, and limitations of this novel test for the early detection of AKI.
Collapse
Affiliation(s)
- Anitha Vijayan
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO.
| | - Sarah Faubel
- Renal Division, University of Colorado Denver and Denver VA Medical Center, Denver, CO
| | - David J Askenazi
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL
| | | | - William H Fissell
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Michael Heung
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Benjamin D Humphreys
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL
| | - Kathleen D Liu
- Department of Medicine, University of California, San Francisco, San Francisco, CA; Department of Anesthesia, University of California, San Francisco, San Francisco, CA
| | - Girish Mour
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL; Department of Anesthesiology, University of Florida, Gainesville, FL; Department of Surgery, University of Florida, Gainesville, FL
| | | |
Collapse
|
8
|
Minuth WW, Denk L. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction. Biores Open Access 2016; 5:49-60. [PMID: 26862472 PMCID: PMC4744892 DOI: 10.1089/biores.2015.0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of specimens by glutaraldehyde (GA) solution including cupromeronic blue, ruthenium red, or tannic acid for electron microscopy depicts that the interface is not void but filled in extended areas by textured extracellular matrix. Surprisingly, projections of mesenchymal cells cross the interface to contact epithelial cells. At those sites the plasma membranes of a mesenchymal and an epithelial cell are connected via tunneling nanotubes. Regarding detected morphological features in combination with involved morphogens, their transport cannot longer be explained solely by diffusion. Instead, it has to be sorted according to biophysical properties of morphogens and to detected environment. Thus, the new working hypothesis is that morphogens with good solubility such as glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factors (FGFs) are transported by diffusion. Morphogens with minor solubility such as bone morphogenetic proteins (BMPs) are secreted and stored for delivery on demand in illustrated extracellular matrix. In contrast, morphogens with poor solubility such as Wnts are transported in mesenchymal cell projections along the plasma membrane or via illustrated tunneling nanotubes. However, the presence of an intercellular route between mesenchymal and epithelial stem/progenitor cells by tunneling nanotubes also makes it possible that all morphogens are transported this way.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg , Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg , Regensburg, Germany
| |
Collapse
|
9
|
MMP-2 and MMP-9 activities and TIMP-1 and TIMP-2 expression in the prostatic tissue of two ethanol-preferring rat models. Anal Cell Pathol (Amst) 2015; 2015:954548. [PMID: 26258010 PMCID: PMC4518171 DOI: 10.1155/2015/954548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022] Open
Abstract
We investigated whether chronic ethanol intake is capable of altering the MMP-2 and MMP-9 activities and TIMP-2 and TIMP-1 expression in the dorsal and lateral prostatic lobes of low (UChA) and high (UChB) ethanol-preferring rats. MMP-2 and MMP-9 activities and TIMP-1 and TIMP-2 expression were significantly reduced in the lateral prostatic lobe of the ethanol drinking animals. Dorsal prostatic lobe was less affected showing no significant alterations in these proteins, except for a reduction in the TIMP-1 expression in UChA rats. These important findings demonstrate that chronic ethanol intake impairs the physiological balance of the prostate extracellular matrix turnover, through downregulation of MMPs, which may contribute to the development of prostatic diseases. Furthermore, since these proteins are also components of prostate secretion, the negative impact of chronic ethanol intake on fertility may also involve reduction of MMPs and TIMPs in the seminal fluid.
Collapse
|
10
|
Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2014; 10:147-55. [PMID: 25092601 DOI: 10.2215/cjn.12191213] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AKI is a common clinical condition associated with a number of adverse outcomes. More timely diagnosis would allow for earlier intervention and could improve patient outcomes. The goal of early identification of AKI has been the primary impetus for AKI biomarker research, and has led to the discovery of numerous novel biomarkers. However, in addition to facilitating more timely intervention, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Furthermore, AKI biomarkers could also function as molecular phenotyping tools that could be used to direct clinical intervention. This review highlights the major studies that have characterized the diagnostic and prognostic predictive power of these biomarkers. The mechanistic relevance of neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, IL-18, liver-type fatty acid-binding protein, angiotensinogen, tissue inhibitor of metalloproteinase-2, and IGF-binding protein 7 to the pathogenesis and pathobiology of AKI is discussed, putting these biomarkers in the context of the progressive phases of AKI. A biomarker-integrated model of AKI is proposed, which summarizes the current state of knowledge regarding the roles of these biomarkers and the molecular and cellular biology of AKI.
Collapse
Affiliation(s)
- Joseph L Alge
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and
| | - John M Arthur
- Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
11
|
Qiu L, Hyink DP, Gans WH, Amsler K, Wilson PD, Burrow CR. Midkine promotes selective expansion of the nephrogenic mesenchyme during kidney organogenesis. Organogenesis 2012; 1:14-21. [PMID: 19521555 DOI: 10.4161/org.1.1.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022] Open
Abstract
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.
Collapse
Affiliation(s)
- Libo Qiu
- Division of Nephrology, Department of Medicine; New York, New York USA
| | | | | | | | | | | |
Collapse
|
12
|
Minuth WW, Denk L. Illustration of extensive extracellular matrix at the epithelial-mesenchymal interface within the renal stem/progenitor cell niche. BMC Clin Pathol 2012; 12:16. [PMID: 23009620 PMCID: PMC3511299 DOI: 10.1186/1472-6890-12-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED BACKGROUND Stem/progenitor cells are promising candidates to treat diseased renal parenchyma. However, implanted stem/progenitor cells are exposed to a harmful atmosphere of degenerating parenchyma. To minimize hampering effects after an implantation investigations are in progress to administer these cells within an artificial polyester interstitum supporting survival. Learning from nature the renal stem/progenitor cell niche appears as a valuable model. At this site epithelial stem/progenitor cells within the collecting duct ampulla face mesenchymal stem/progenitor cells. Both cell types do not have close contact but are separated by a wide interstitium. METHODS To analyze extracellular matrix in this particular interstitium, special contrasting for transmission electron microscopy was performed. Kidneys of neonatal rabbits were fixed in solutions containing glutaraldehyde (GA) or in combination with cupromeronic blue, ruthenium red and tannic acid. RESULTS GA revealed a basal lamina at the ampulla and a bright but inconspicuously looking interstitial space. In contrast, GA containing cupromeronic blue exhibits numerous proteoglycan braces lining from the ampulla towards the interstitial space. GA containing ruthenium red or tannic acid demonstrates clouds of extracellular matrix protruding from the basal lamina of the ampulla to the surface of mesenchymal stem/progenitor cells. CONCLUSIONS The actual data show that the interstitium between epithelial and mesenchymal stem/progenitor cells contains much more and up to date unknown extracellular matrix than earlier observed by classical GA fixation.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D - 93053, Regensburg, Germany
| |
Collapse
|
13
|
Feng Y, Shen Y, Zhang H. Molecular mechanism of remodeling of autologous artery graft interposed to vein in rabbit. Anat Rec (Hoboken) 2011; 295:432-7. [PMID: 22213534 DOI: 10.1002/ar.21536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/06/2011] [Indexed: 01/06/2023]
Abstract
Our previous study found that the artery interposed to vein did not develop atherosclerosis but rather underwent atrophic remodeling in hyperlipidemic rabbits, suggesting that local hemodynamic load was another important determinant for the development of atherosclerosis. This study focused on the cellular and molecular changes in autologous artery grafts derived from rabbits fed with high lipid diet for 1, 2, 4, 8, and 12 weeks. Thickness, area of vessel wall, and lumen area were measured and analyzed on the grafted common carotid artery (GCCA) interposed to vein and on the right common carotid artery. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling. Both elastin and collagen of GCCA were identified by the method of double stains of elastin and collagen. Reverse transcription polymerase chain reaction was used to observe matrix metalloproteinases (MMPs) mRNA expression changes in the examined arteries. The lumen area increased gradually in control common carotid artery and remained unchanged in GCCA 3 months later, since the surgery and the start of high lipid diet, while significantly increased apoptosis was evidenced from inner to outer part of GCCA. Collagen content decreased gradually and elastic fibers remained unchanged in GCCA. At 1 week after operation, the mRNA expression of MMP(2) and MMP(9) increased significantly and returned to baseline thereafter. The artery interposed to a vein underwent atrophy, characterized by increased apoptosis in the vessel wall from intima to adventitia, possibly due to low shear stress circumference and reduced vessel collagen resulting from postsurgical upregulated MMP(2) and MMP(9) expression.
Collapse
Affiliation(s)
- Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Shanghai 201508, People's Republic of China
| | | | | |
Collapse
|
14
|
Haddad N, Andalousi JE, Khairallah H, Yu M, Ryan AK, Gupta IR. The tight junction protein claudin-3 shows conserved expression in the nephric duct and ureteric bud and promotes tubulogenesis in vitro. Am J Physiol Renal Physiol 2011; 301:F1057-65. [DOI: 10.1152/ajprenal.00497.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The claudin family of proteins is required for the formation of tight junctions that are contact points between epithelial cells. Although little is known of the cellular events by which epithelial cells of the ureteric bud form tubules and branch, tubule formation is critical for kidney development. We hypothesize that if claudin-3 (Cldn3) is expressed within tight junctions of the ureteric bud, this will affect ureteric bud cell shape and tubule formation. Using transmission electron microscopy, we identified tight junctions within epithelial cells of the ureteric bud. Whole mount in situ hybridization and immunoassays were performed in the mouse and chick and demonstrated that Cldn3 transcript and protein were expressed in the nephric duct, the ureteric bud, and its derivatives at critical time points during tubule formation and branching. Mouse inner medullary collecting duct cells (mIMCD-3) form tubules when seeded in a type I collagen matrix and were found to coexpress CLDN3 and the tight junction marker zonula occludens-1 in the cell membrane. When these cells were stably transfected with Cldn3 fused to the enhanced green fluorescent protein reporter, multiple clones showed a significant increase in tubule formation compared with controls ( P < 0.05) due in part to an increase in cell proliferation ( P < 0.01). Cldn3 may therefore promote tubule formation and expansion of the ureteric bud epithelium.
Collapse
Affiliation(s)
| | - Jasmine El Andalousi
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | | | - Melissa Yu
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | - Aimee K. Ryan
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| | - Indra R. Gupta
- Pediatrics, McGill University, and The Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montréal, Québec, Canada
| |
Collapse
|
15
|
Peculiarities of the extracellular matrix in the interstitium of the renal stem/progenitor cell niche. Histochem Cell Biol 2011; 136:321-34. [PMID: 21822715 DOI: 10.1007/s00418-011-0851-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 02/07/2023]
Abstract
The development of the nephron is piloted by interactions between epithelial and surrounding mesenchymal stem/progenitor cells. Data show that an astonishingly wide interstitial space separates both kinds of stem/progenitor cells. A simple contrasting procedure was applied to visualize features that keep renal epithelial and mesenchymal stem/progenitor cells in distance. The kidney of neonatal rabbits was fixed in solutions containing glutaraldehyde (GA) in combination with alcian blue, lanthanum, ruthenium red, or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the tissue was exactly orientated along the axis of collecting ducts. Fixation with GA or in combination with alcian blue or lanthanum revealed an inconspicuous interstitial space. In contrast, fixation with GA containing ruthenium red exhibits strands of extracellular matrix lining from epithelial stem/progenitor cells through the interstitium up to the surface of mesenchymal stem/progenitor cells. Fixation with GA containing tannic acid shows that the basal lamina of epithelial stem/progenitor cells, the adjacent interstitial space and also the surface of mesenchymal stem/progenitor cells are connected over a net of extracellular matrix. The applied technique appears to be a suitable method to illuminate the interstitium in stem/progenitor cell niches of specialized tissues, the microenvironment of tumors and extension of degeneration.
Collapse
|
16
|
Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 2010; 240:1127-41. [DOI: 10.1002/dvdy.22503] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/06/2022] Open
|
17
|
Costa PM, Chicano-Gálvez E, López Barea J, DelValls TA, Costa MH. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3338-3346. [PMID: 20719421 DOI: 10.1016/j.envpol.2010.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The livers of soles (Solea senegalensis) injected with subacute doses of cadmium (Cd), benzo[a]pyrene (B[a]P), or their combination, were screened for alterations to cytosolic protein expression patterns, complemented by cytological and histological analyses. Cadmium and B[a]P, but not combined, induced hepatocyte apoptosis and Kupfer cell hyperplasia. Proteomics, however, suggested that apoptosis was triggered through distinct pathways. Cadmium and B[a]P caused upregulation of different anti-oxidative enzymes (peroxiredoxin and glutathione peroxidase, respectively) although co-exposure impaired induction. Similarly, apoptosis was inhibited by co-exposure, to which may have contributed a synergistic upregulation of tissue metalloproteinase inhibitor, beta-actin and a lipid transport protein. The regulation factors of nine out of eleven identified proteins of different types revealed antagonistic or synergistic effects between Cd and B[a]P at the prospected doses after 24 h of exposure. The results indicate that co-exposure to Cd and B[a]P may enhance toxicity by impairing specific responses and not through cumulative damage.
Collapse
Affiliation(s)
- P M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal.
| | | | | | | | | |
Collapse
|
18
|
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:55-71. [PMID: 20080133 DOI: 10.1016/j.bbamcr.2010.01.003] [Citation(s) in RCA: 919] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 12/14/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are widely distributed in the animal kingdom and the human genome contains four paralogous genes encoding TIMPs 1 to 4. TIMPs were originally characterized as inhibitors of matrix metalloproteinases (MMPs), but their range of activities has now been found to be broader as it includes the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. TIMPs are therefore key regulators of the metalloproteinases that degrade the extracellular matrix and shed cell surface molecules. Structural studies of TIMP-MMP complexes have elucidated the inhibition mechanism of TIMPs and the multiple sites through which they interact with target enzymes, allowing the generation of TIMP variants that selectively inhibit different groups of metalloproteinases. Engineering such variants is complicated by the fact that TIMPs can undergo changes in molecular dynamics induced by their interactions with proteases. TIMPs also have biological activities that are independent of metalloproteinases; these include effects on cell growth and differentiation, cell migration, anti-angiogenesis, anti- and pro-apoptosis, and synaptic plasticity. Receptors responsible for some of these activities have been identified and their signaling pathways have been investigated. A series of studies using mice with specific TIMP gene deletions has illuminated the importance of these molecules in biology and pathology.
Collapse
Affiliation(s)
- Keith Brew
- Department of Basic Science, College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
19
|
Arnould C, Lelièvre-Pégorier M, Ronco P, Lelongt B. MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J Am Soc Nephrol 2009; 20:2171-80. [PMID: 19713309 DOI: 10.1681/asn.2009030312] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Early events in kidney organogenesis involve reciprocal interactions between the ureteric bud and the metanephric mesenchyme, which lead to remodeling of the extracellular matrix. This remodeling involves matrix metalloproteases (MMPs), but the specific roles of individual MMPs in kidney development are not completely understood. Here, we analyzed MMP9-deficient mice at the first step of kidney development and found that MMP9 deficiency delayed embryonic kidney maturation and increased apoptosis ex vivo by 2.5-fold. These early defects resulted in a 30% decrease in nephron number, a 20% decrease in adult kidney weight, and altered kidney function and morphology at 12 mo. The membrane form of stem cell factor (SCF) increased, whereas the activated form of the SCF receptor, c-kit, decreased in MMP9-deficient embryonic kidneys. In organotypic culture, MMP9-deficient kidneys failed to secrete SCF, and addition of recombinant SCF partially rescued both apoptosis and the branching defect. In conclusion, these data show that MMP9 protects mesenchymal cells from apoptosis during kidney development and stimulates ureteric bud branching morphogenesis, most likely by releasing the soluble form of SCF, suggesting that normal renal development requires MMP9.
Collapse
Affiliation(s)
- Catherine Arnould
- Université Pierre et Marie Curie University of Paris 06, Paris, France
| | | | | | | |
Collapse
|
20
|
Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 2009; 3:169-81. [PMID: 18682239 DOI: 10.1016/j.stem.2008.05.020] [Citation(s) in RCA: 701] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/23/2008] [Accepted: 05/29/2008] [Indexed: 12/20/2022]
Abstract
Nephrons, the basic functional units of the kidney, are generated repetitively during kidney organogenesis from a mesenchymal progenitor population. Which cells within this pool give rise to nephrons and how multiple nephron lineages form during this protracted developmental process are unclear. We demonstrate that the Six2-expressing cap mesenchyme represents a multipotent nephron progenitor population. Six2-expressing cells give rise to all cell types of the main body of the nephron during all stages of nephrogenesis. Pulse labeling of Six2-expressing nephron progenitors at the onset of kidney development suggests that the Six2-expressing population is maintained by self-renewal. Clonal analysis indicates that at least some Six2-expressing cells are multipotent, contributing to multiple domains of the nephron. Furthermore, Six2 functions cell autonomously to maintain a progenitor cell status, as cap mesenchyme cells lacking Six2 activity contribute to ectopic nephron tubules, a mechanism dependent on a Wnt9b inductive signal. Taken together, our observations suggest that Six2 activity cell-autonomously regulates a multipotent nephron progenitor population.
Collapse
Affiliation(s)
- Akio Kobayashi
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Stetler-Stevenson WG. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Sci Signal 2008; 1:re6. [PMID: 18612141 DOI: 10.1126/scisignal.127re6] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past 20 years, the tissue inhibitors of metalloproteinases (TIMPs) have been implicated in direct regulation of cell growth and apoptosis. However, the mechanisms of these effects have been controversial. Recent work by several laboratories has identified specific signaling pathways and cell surface binding partners for members of the TIMP family. TIMP-2 binding to the integrin alpha(3)beta(1) is the first description of a cell surface receptor for a TIMP family member. TIMP-2 has been shown to induce gene expression, to promote G(1) cell cycle arrest, and to inhibit cell migration. TIMP-1 binding to CD63 inhibits cell growth and apoptosis. These new findings suggest that TIMPs are multifunctional and can act either directly through cell surface receptors or indirectly through modulation of protease activity to direct cell fate. The emerging concept is that TIMPs function in a contextual fashion so that the mechanism of action depends on the tissue microenvironment.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Cell and Cancer Biology Branch, Vascular Biology Faculty, Center for Cancer Research, National Cancer Institute (NCI), NIH, Advanced Technology Center, Bethesda, MD 20892-4605, USA.
| |
Collapse
|
22
|
Duong Van Huyen JP, Viltard M, Nehiri T, Freund N, Bélair MF, Martinerie C, Lelongt B, Bruneval P, Lelièvre-Pégorier M. Expression of matrix metalloproteinases MMP-2 and MMP-9 is altered during nephrogenesis in fetuses from diabetic rats. J Transl Med 2007; 87:680-9. [PMID: 17496904 DOI: 10.1038/labinvest.3700562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Remodeling of extracellular matrix (ECM) is an important physiological feature of normal growth and development. Recent studies have emphasized the role of matrix metalloproteinases (MMP-2 and MMP-9) in normal mouse nephrogenesis. We have demonstrated previously in the rat that in utero exposure to maternal diabetes impairs renal development leading to a 30% reduction in the nephron number. Transforming growth factor-beta1 (TGF-beta1) and connective tissue growth factor (CTGF) are known to mediate high glucose effects on matrix degradation. The aim of the present study was to address the expression of type IV collagenase and TGF-beta1/CTGF systems in rat kidney during normal development and after in utero exposure to maternal diabetes. Both MMP-2 and MMP-9 mRNA metanephric expressions and activities were dramatically downregulated in kidneys issued from diabetic fetuses and in metanephros cultured in the presence of high glucose concentration. TGF-beta1 and CTGF expressions were significantly enhanced in diabetic fetal kidneys and in high glucose cultured metanephroi. Conditioned media obtained from metanephroi grown with high glucose concentration upregulated functional TGF-beta activity in transfected ATDC5 cells. In conclusion, in impaired nephrogenesis resulting from in utero exposure to maternal diabetes, alteration of both type IV collagenase and TGF-beta1/CTGF systems may lead to abnormal remodeling of ECM, which may, in turn, induce defects in ureteral bud branching leading to the observed reduction in the nephron number with consequences later in life: progression of chronic renal disease and hypertension.
Collapse
Affiliation(s)
- Jean-Paul Duong Van Huyen
- INSERM U652, IFR 58, Centre de recherche des Cordeliers, Université René Descartes (Paris 5), Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ronco P, Lelongt B, Piedagnel R, Chatziantoniou C. Matrix Metalloproteinases in Kidney Disease Progression and Repair: A Case of Flipping the Coin. Semin Nephrol 2007; 27:352-62. [PMID: 17533011 DOI: 10.1016/j.semnephrol.2007.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinases (MMPs) have pleiotropic enzymatic actions that go far beyond degradation of extracellular matrix. Both the multiplicity of their targets and the complexity of their regulation account for a variety of biological effects. In renal diseases, MMP effects may be different and/or opposite during the different phases of the pathology evolution. The major challenge with future therapeutic interventions using MMP inhibitors remains how to accomplish temporal and spatial control of their activity without flipping the coin.
Collapse
Affiliation(s)
- Pierre Ronco
- INSERM Unit 702, and Université Pierre et Marie Curie, Paris, France.
| | | | | | | |
Collapse
|
24
|
Montesano R, Carrozzino F, Soulié P. Low concentrations of transforming growth factor-beta-1 induce tubulogenesis in cultured mammary epithelial cells. BMC DEVELOPMENTAL BIOLOGY 2007; 7:7. [PMID: 17288590 PMCID: PMC1802066 DOI: 10.1186/1471-213x-7-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 02/08/2007] [Indexed: 01/08/2023]
Abstract
Background Formation of branching tubes is a fundamental step in the development of glandular organs. To identify extracellular cues that orchestrate epithelial tubulogenesis, we employed an in vitro assay in which EpH4-J3B1A mammary epithelial cells form spheroidal cysts when grown in collagen gels under serum-free conditions, but form branching tubules in the presence of fetal calf serum (FCS). Results Initial experiments showed that the tubulogenesis-inducing activity of FCS was markedly increased by heating (70°C) or transient acidification to pH3. We therefore hypothesized that the tubulogenic agent was transforming growth factor-beta (TGF-beta), a cytokine that is present in serum in latent form and can be activated by heat or acid treatment. We found indeed that the tubulogenic activity of acidified FCS is abrogated by addition of either SB-431542, a selective inhibitor of the TGF-beta type I receptor, or a neutralizing antibody to TGF-beta-1. On the other hand, addition of low concentrations (20–100 pg/ml) of exogenous TGF-beta-1 recapitulated the effect of acidified FCS in inducing morphogenesis of hollow tubes. In contrast, higher concentrations of TGF-beta-1 induced the formation of thin cellular cords devoid of a detectable lumen. To gain insight into the mechanisms underlying TGF-beta-1-induced tube formation, we assessed the potential role of matrix metalloproteinases (MMPs). By western blot and gelatin zymography, we observed a dose-dependent increase in MMP-9 upon TGF-beta-1 treatment. Tube formation was suppressed by a synthetic broad-spectrum metalloproteinase inhibitor, by recombinant tissue inhibitor of metalloproteinases-2 (TIMP-2) and by a selective inhibitor of MMP-9, indicating that this morphogenetic process requires the activity of MMP-9. Conclusion Altogether, our results provide evidence that, at low concentrations, TGF-beta-1 promotes MMP-dependent branching tubulogenesis by mammary epithelial cells in vitro, and suggest that it plays a similar role during mammary gland development in vivo.
Collapse
Affiliation(s)
- Roberto Montesano
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Fabio Carrozzino
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| | - Priscilla Soulié
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
25
|
Rho SB, Chung BM, Lee JH. TIMP-1 regulates cell proliferation by interacting with the ninth zinc finger domain of PLZF. J Cell Biochem 2007; 101:57-67. [PMID: 17340613 DOI: 10.1002/jcb.21127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are multifunctional proteins that specifically inhibit matrix metalloproteinases (MMPs) and regulate extracellular matrix (ECM) turnover and tissue remodeling. This is directed by forming tightly bound inhibitory complexes with MMPs. Recent years have revealed important differences of various biological activities between TIMP families but molecular mechanisms are not clear. To define the molecular mechanisms of TIMP-1-dependent biological processes, we used TIMP-1 as bait in a yeast two-hybrid screen, along with a human ovary cDNA library. Further characterization revealed the ninth zinc finger domain as an interacting domain of the promyelocytic leukemia zinc finger protein (PLZF). Interaction of PLZF with TIMP-1 in mammalian cells was also confirmed by co-immunoprecipitation and with in vitro binding assays. We investigated whether TIMP-1-mediated anti-apoptotic activity could promote the growth of ovarian cancer in an experimental model system. TIMP-1 treatment was found to be more effective at increasing ovarian cancer growth when compared with PLZF in parallel experiments. Subsequently, the efficacy of a combined treatment with TIMP-1 and PLZF was investigated. In the presence of both of these proteins, TIMP-1 significantly reduced apoptosis induced by PLZF in cervical carcinoma cells. These combined results indicate that TIMP-1 functions as an anti-activator of the transcriptional repressive activity of PLZF.
Collapse
Affiliation(s)
- Seung Bae Rho
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, 50, Ilwon-Dong, Kangnam-Ku, Seoul 135-710, South Korea.
| | | | | |
Collapse
|
26
|
Chetty C, Bhoopathi P, Joseph P, Chittivelu S, Rao JS, Lakka S. Adenovirus-mediated small interfering RNA against matrix metalloproteinase-2 suppresses tumor growth and lung metastasis in mice. Mol Cancer Ther 2006; 5:2289-99. [PMID: 16985063 DOI: 10.1158/1535-7163.mct-06-0169] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinases (MMP) are a group of proteinases that have normal physiologic roles degrading and remodeling the extracellular matrix. They also have multiple roles in different stages of tumor progression. Elevated levels of MMPs have been observed in many tumors; these increases have a strong association with the invasive phenotype. MMP-2 and MMP-9 are particularly involved in cancer invasion and metastasis. MMP inhibitors are currently being tested as therapeutic agents for a number of cancers in both preclinical models and in clinical trials. To date, clinical trials using this strategy have had limited efficacy. A major concern is the lack of specificity of commercially available MMP inhibitors. An adenoviral vector expressing small interfering RNA against the MMP-2 gene (Ad-MMP-2) was constructed to specifically inhibit MMP-2 expression. The effect of Ad-MMP-2 on invasion, angiogenesis, tumor growth, and metastasis of A549 lung cancer cell was evaluated. Ad-MMP-2 infection of lung cancer cells showed specific down-regulation of MMP-2 protein, activity, and transcription as determined by Western blotting, gelatin zymography, and reverse transcription-PCR. Ad-MMP-2 inhibition also mitigated lung cancer invasion and migration, and reduced tumor cell-induced angiogenesis in vitro. In an experimental metastatic lung tumor model, treatment of established tumors by Ad-MMP-2 inhibited s.c. tumor growth and formation of lung nodules in mice. Adenoviral-mediated RNA interference against MMP-2 has significant therapeutic potential for lung cancer and exerts some of this effect by inhibiting angiogenesis.
Collapse
Affiliation(s)
- Chandramu Chetty
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
27
|
Heymans S. Inflammation and cardiac remodeling during viral myocarditis. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:197-218. [PMID: 16329664 DOI: 10.1007/3-540-30822-9_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute viral myocarditis is the main cause of cardiac failure in young patients and accounts for up to 60% of "idiopathic" dilated cardiomyopathy. The clinical course of viral myocarditis is mostly insidious with limited cardiac inflammation and dysfunction. However, overwhelming inflammation may occur in a subset of patients, leading to fulminant cardiac injury, whereas others develop chronic heart failure due to autoimmune myocarditis. Today, little effective treatment exists for patients, apart from general supportive therapy and antifailure regimens. Urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMP) have been implicated in cardiac inflammation, matrix remodeling, and wound healing after cardiac injury. The present review will assess the mechanism by which these proteinases mediate cardiac dilatation, fibrosis, and dysfunction after cardiac stress or injury, in order to understand how inhibition of proteinases may provide a novel therapeutic tool to prevent cardiac dilatation and failure during viral myocarditis.
Collapse
Affiliation(s)
- S Heymans
- Experimental and Molecular Cardiology Laboratory/CARIM, Department of Cardiology, University Hospital Maastricht, The Netherlands.
| |
Collapse
|
28
|
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs) and the balance between MMPs/TIMPs regulates the extracellular matrix (ECM) turnover and remodeling during normal development and pathogenesis. Increasing evidence indicates a much more complex role for TIMPs during tumor progression and angiogenesis, in addition to their regulation of MMP-mediated ECM degradation. In this article, we review both the MMP-dependent and -independent actions of TIMPs for the regulation of cell death, cell proliferation, and angiogenesis, with a particular emphasis on TIMP-1 in the regulation of tetraspanin/integrin-mediated cell survival signal transduction pathways.
Collapse
Affiliation(s)
- Rosemarie Chirco
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
29
|
Pérez-Martínez L, Jaworski DM. Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci 2006; 25:4917-29. [PMID: 15901773 PMCID: PMC1282460 DOI: 10.1523/jneurosci.5066-04.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although traditionally recognized for maintaining extracellular matrix integrity during morphogenesis, the function of matrix metallo-proteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), in the mature nervous system is essentially unknown. Here, we report that TIMP-2 induces pheochromocytoma PC12 cell-cycle arrest via regulation of cell-cycle regulatory proteins, resulting in differentiation and neurite outgrowth. TIMP-2 decreases cyclins B and D expression and increases p21Cip expression. Furthermore, TIMP-2 promotes cell differentiation via activation of the cAMP/Rap1/ERK (extracellular signal-regulated kinase) pathway. Expression of dominant-negative Rap1 blocks TIMP-2-mediated neurite outgrowth. Both the cell-cycle arrest and neurite outgrowth induced by TIMP-2 was independent of MMP inhibitory activity. Consistent with the PC12 cell data, primary cultures of TIMP-2 knock-out cerebral cortical neurons exhibit significantly reduced neurite length, which is rescued by TIMP-2. These in vitro results were corroborated in vivo. TIMP-2 deletion causes a delay in neuronal differentiation, as demonstrated by the persistence of nestin-positive progenitors in the neocortical ventricular zone. The interaction of TIMP-2 with alpha3beta1 integrin in the cerebral cortex suggests that TIMP-2 promotes neuronal differentiation and maintains mitotic quiescence in an MMP-independent manner through integrin activation. The identification of molecules responsible for neuronal quiescence has significant implications for the ability of the adult brain to generate new neurons in response to injury and neurological disorders, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Leonor Pérez-Martínez
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | |
Collapse
|
30
|
Lizárraga F, Maldonado V, Meléndez-Zajgla J. Tissue inhibitor of metalloproteinases-2 growth-stimulatory activity is mediated by nuclear factor-kappa B in A549 lung epithelial cells. Int J Biochem Cell Biol 2005; 36:1655-63. [PMID: 15147743 DOI: 10.1016/j.biocel.2004.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 11/20/2003] [Accepted: 01/08/2004] [Indexed: 11/29/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are pleiotropic factors that function as key regulators of extracellular matrix remodeling. They exhibit multifunctional roles including cell growth-stimulating activities and protection from apoptosis. In the present study, we showed that human recombinant TIMP-2 (hrTIMP-2) promotes growth of A549 lung cells. This effect was accompanied by increase in nuclear factor-kappa B (NF-kappaB) activity 24h after exposure as determined by electrophoretic mobility shift assay (EMSA) analysis. This effect was correlated with downregulation of IkappaBalpha and beta proteins and later increases in Bcl-3, IkappaB, and cyclin D1 proteins. Blocking induction of NF-kappaB activity using a dominant-negative mutated version of IkappaBalpha abrogated NF-kappaB activation and cell proliferation.
Collapse
Affiliation(s)
- Floria Lizárraga
- Laboratorio de Biologia Molecular Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Tlalpan, 14080 México City, DF, Mexico
| | | | | |
Collapse
|
31
|
Karihaloo A, Nickel C, Cantley LG. Signals which build a tubule. Nephron Clin Pract 2005; 100:e40-5. [PMID: 15731568 DOI: 10.1159/000084111] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 08/26/2004] [Indexed: 11/19/2022] Open
Abstract
The phenomenon of branching morphogenesis is a fundamental process critical for development of several tubular organs including lung, mammary gland, and kidney. In the case of kidney, the ureteric bud (UB) that extends out from a pre-existing epithelial tube, the Wolffian duct, gives rise to the branched collecting duct system while the surrounding metanephric mesenchyme undergoes mesenchymal-epithelial transition to form the proximal parts of the nephron. These events are mediated by several soluble factors that act in a cooperative fashion either as pro or anti tubulogenic factors. Among the growing list of such molecules are the members of the FGF, TGF-beta, and Wnt families as well as GDNF, HGF, and EGF. Cells respond to these soluble factors by initiating signaling pathways that regulate cell proliferation, cell migration and cell morphogenesis. These signaling pathways are also regulated in parallel by cell-cell and cell-matrix interactions, leading to the complex events necessary for tubule formation. Recent in-vitro and in-vivo studies have begun to shed light on the overall regulation of this phenomenon while the specific subcellular mechanisms are only beginning to be understood. This review focuses on our understanding of the morphogenic responses that regulate in-vitro tubulogenesis and how they may help us to ultimately understand this process in vivo in the kidney.
Collapse
Affiliation(s)
- Anil Karihaloo
- Department of Nephrology, University of Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
32
|
Liu XW, Taube ME, Jung KK, Dong Z, Lee YJ, Roshy S, Sloane BF, Fridman R, Kim HRC. Tissue Inhibitor of Metalloproteinase-1 Protects Human Breast Epithelial Cells from Extrinsic Cell Death: A Potential Oncogenic Activity of Tissue Inhibitor of Metalloproteinase-1. Cancer Res 2005. [DOI: 10.1158/0008-5472.898.65.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases and some members of a disintegrin and metalloproteinase domain (ADAM) family. In addition, recent studies unveiled novel functions of TIMPs in the regulation of apoptosis. TIMP-1 inhibits intrinsic apoptosis by inducing TIMP-1 specific cell survival pathways involving focal adhesion kinase (FAK). TIMP-3, however, was shown to enhance extrinsic cell death by inhibiting the shedding of the cell surface death receptors mediated by tumor necrosis factor-α converting enzymes (TACE/ADAM-17). Here, we examined whether TIMP-1, an inhibitor of some of the ADAM family members, enhances the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)–induced extrinsic apoptotic pathway. Surprisingly, we found that TIMP-1 effectively protects human breast epithelial cells from TRAIL-induced apoptosis, demonstrating opposite roles of TIMP-1 and TIMP-3 for the regulation of extrinsic apoptosis. TIMP-1 inhibition of TRAIL-induced apoptosis does not depend on its ability to inhibit matrix metalloproteinases or ADAM activities and is unrelated to its ability to stabilize active or decoy death receptors. Importantly, inhibition of PI 3-kinase signaling by wortmannin and down-regulation of FAK expression using siRNA significantly diminish TIMP-1 protection of human breast epithelial cells against TRAIL-induced extrinsic apoptosis. In addition, the in vitro three-dimensional culture studies showed that TIMP-1 inhibits lumen formation and apoptosis during morphogenesis of MCF10A acini. Taken together, these studies suggest that TIMP-1 may exert oncogenic activity in breast cancer through inhibition of both intrinsic and extrinsic apoptosis involving the FAK survival signal transduction pathway.
Collapse
Affiliation(s)
| | | | | | | | - Yong J. Lee
- 3Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefanie Roshy
- 2Pharmacology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan; and
| | - Bonnie F. Sloane
- 2Pharmacology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan; and
| | | | | |
Collapse
|
33
|
Sampogna RV, Nigam SK. Implications of gene networks for understanding resilience and vulnerability in the kidney branching program. Physiology (Bethesda) 2005; 19:339-47. [PMID: 15546851 DOI: 10.1152/physiol.00025.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Branching morphogenesis in the kidney is tightly regulated. Whereas disruption of certain pathways produces catastrophic effects, numerous instances exist in which mutation of ostensibly key molecules has minimal apparent phenotypic consequence. We suggest how the network structure of gene interactions in the branching program might explain these findings as well as apparant discrepancies between in vivo and in vitro studies. Emerging genetic, cell-biological, and microarray data should help test and/or clarify these ideas.
Collapse
Affiliation(s)
- Rosemary V Sampogna
- Department of Medicine, School of Medicine, University of California-San Diego, La Jolla, California 92093-0696, USA
| | | |
Collapse
|
34
|
Karihaloo A, Kale S, Rosenblum ND, Cantley LG. Hepatocyte growth factor-mediated renal epithelial branching morphogenesis is regulated by glypican-4 expression. Mol Cell Biol 2004; 24:8745-52. [PMID: 15367691 PMCID: PMC516744 DOI: 10.1128/mcb.24.19.8745-8752.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glypican (Gpc) family of cell surface heparan sulfate proteoglycans are expressed in a tissue-specific and developmentally regulated fashion. To determine if individual Gpcs can modulate heparin-binding growth factor signaling, we examined hepatocyte growth factor (HGF)-stimulated mitogenic, motogenic, and morphogenic responses of renal tubular cells expressing different Gpcs. Adult inner medullary collecting duct (IMCD) cells were found to express primarily Gpc4 and to proliferate, migrate, and form tubules with HGF, correlating with sustained extracellular signal-regulated kinase (ERK) activation. Embryonic IMCD cells expressing predominantly Gpc3 proliferated and migrated in response to HGF but activated ERK only transiently and failed to form tubules. Overexpressing Gpc-4 but not Gpc-3 or Gpc-1 led to sustained HGF-stimulated ERK activation and rescued the tubulogenic response in these cells. These results demonstrate that both signaling and phenotypic responses to HGF can be regulated by specific Gpc expression patterns.
Collapse
Affiliation(s)
- Anil Karihaloo
- Division of Nephrology, Program in Development Biology, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
35
|
Ueland JM, Gwira J, Liu ZX, Cantley LG. The chemokine KC regulates HGF-stimulated epithelial cell morphogenesis. Am J Physiol Renal Physiol 2004; 286:F581-9. [PMID: 14600031 DOI: 10.1152/ajprenal.00289.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) induces migration, proliferation, and branching in renal epithelial cells from the inner medullary collecting duct (mIMCD-3 cells). Microarray analysis after HGF stimulation of these cells revealed upregulation of the chemokine KC. We found that both the message and protein levels of KC are increased after HGF treatment and that mIMCD-3 cells express the KC receptor CXCR2. Treatment with KC results in stimulation of mIMCD-3 cell proliferation but has no effect on basal rates of cell migration or branching morphogenesis. In contrast to its known stimulatory effect on neutrophil migration, KC markedly inhibits HGF-mediated cell migration and branching morphogenesis, resulting in shorter tubules with fewer branch points. Examination of the mechanism of this effect reveals that KC does not alter phosphorylation of the c-met receptor or the initial activation of the MAPK or phosphoinositide 3-kinase (PI 3-K) signaling pathways. However, sustained activation of the PI 3-K pathway by HGF was inhibited by treatment with KC, and mimicking this effect by treatment with LY-294002 2 h after HGF stimulation reproduced the inhibition of HGF-stimulated branching morphogenesis. These data demonstrate that HGF-mediated KC production can act in an autocrine fashion to downregulate excessive branching and migration of renal epithelial cells in response to HGF, while still supporting cell proliferation. These characteristics may play a role in modulating the response to HGF during developmental tubule formation and/or during the repair of the tubular architecture following injury.
Collapse
Affiliation(s)
- Joseph M Ueland
- Section of Nephrology, Yale University School of Medicine, 1 Gilbert St., CAB S240, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Matrix metalloproteinases (MMPs) are enzymes with metal ion-dependent activity that degrade extracellular matrix (ECM) glycoproteins. MMPs play a vital role in various biological processes, such as embryogenesis, tissue remodeling, angiogenesis, and wound healing, and in certain disease processes, for example, metastasis of cancer cells. Following their activation, MMPs are believed to modulate both cell-cell and cell-matrix interactions, which in turn regulate cellular differentiation, migration, proliferation, and cell survival. Being involved in pericellular proteolysis, they maintain a gradient of ECM proteins by balancing ECM synthesis and degradation. Such a balance is critical for various mammalian developmental processes during embryonic life and also for the homeostasis of various organs and reparative processes in later life. During the past two decades the role of MMPs in the morphogenesis of various organs, including that of the metanephros, has been investigated extensively. Mammalian nephrogenesis comprises a series of intricate events characterized by a sustained remodeling and turnover of ECM, suggesting a potential role of MMPs in renal development. Conceivably, reciprocal inductive epithelial-mesenchymal interactions that take place at the very commencement of nephrogenesis are modulated by a number of ECM proteins. Their expression, especially at the epithelial-mesenchymal interface, are critical for metanephric development, and such a strategic expression is likely to be modified by a number of different macromolecules that exhibit spatiotemporal and stage-specific expression. Among them the most suitable candidate that could exert such a control would be MMPs. This review addresses the current status of our understanding of the functions and the role of MMPs in renal development.
Collapse
Affiliation(s)
- Christian S Haas
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
37
|
Mori K, Yang J, Barasch J. Ureteric bud controls multiple steps in the conversion of mesenchyme to epithelia. Semin Cell Dev Biol 2003; 14:209-16. [PMID: 14627119 DOI: 10.1016/s1084-9521(03)00023-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of renal mesenchyme into epithelia depends on the ureteric bud, but its specific actions are not established. From conditioned media of ureteric bud cells, we have identified molecules that mimic the growth and epithelialization of mesenchyme in vivo. LIF targets late epithelial progenitors surrounding the ureteric bud, and in combination with survival factors, converts them into nephrons. In contrast, 24p3/Ngal targets early progenitors at the kidney's periphery through an iron-mediated, but a transferrin-independent mechanism. Hence, the ureteric bud controls many steps of cell conversion. A genome wide search for ureteric bud-specific molecules will identify additional pathways that induce morphogenesis.
Collapse
Affiliation(s)
- Kiyoshi Mori
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
38
|
Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. J Transl Med 2003. [DOI: 10.1038/labinvest.3700003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
39
|
Liu XW, Bernardo MM, Fridman R, Kim HRC. Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. J Biol Chem 2003; 278:40364-72. [PMID: 12904305 DOI: 10.1074/jbc.m302999200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tissue inhibitor of metalloproteinase (TIMP-1) is a natural protease inhibitor of matrix metalloproteinases (MMPs). Recent studies revealed a novel function of TIMP-1 as a potent inhibitor of apoptosis in mammalian cells. However, the mechanisms by which TIMP-1 exerts its anti-apoptotic effect are not understood. Here we show that TIMP-1 activates cell survival signaling pathways involving focal adhesion kinase, phosphatidylinositol 3-kinase, and ERKs in human breast epithelial cells to TIMP-1. TIMP-1-activated cell survival signaling down-regulates caspase-mediated classical apoptotic pathways induced by a variety of stimuli including anoikis, staurosporine exposure, and growth factor withdrawal. Consistently, down-regulation of TIMP-1 expression greatly enhances apoptotic cell death. In a previous study, substitution of the second amino acid residue threonine for glycine in TIMP-1, which confers selective MMP inhibition, was shown to obliterate its anti-apoptotic activity in activated hepatic stellate cells suggesting that the anti-apoptotic activity of TIMP-1 is dependent on MMP inhibition. Here we show that the same mutant inhibits apoptosis of human breast epithelial cells, suggesting different mechanisms of TIMP-1 regulation of apoptosis depending on cell types. Neither TIMP-2 nor a synthetic MMP inhibitor protects breast epithelial cells from intrinsic apoptotic cell death. Furthermore, TIMP-1 enhances cell survival in the presence of the synthetic MMP inhibitor. Taken together, the present study unveils some of the mechanisms mediating the anti-apoptotic effects of TIMP-1 in human breast epithelial cells through TIMP-1-specific signal transduction pathways.
Collapse
Affiliation(s)
- Xu-Wen Liu
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
40
|
Zhang J, Bai S, Tanase C, Nagase H, Sarras MP. The expression of tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for normal development of zebrafish embryos. Dev Genes Evol 2003; 213:382-9. [PMID: 12736828 DOI: 10.1007/s00427-003-0333-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 04/03/2003] [Indexed: 11/29/2022]
Abstract
MMP activities are controlled by a combination of proteolytic pro-enzyme activation steps and inhibition by endogenous inhibitors like alpha2-macroglobulin and the tissue inhibitors of metalloproteinases (TIMPs). TIMPs are the key inhibitors in tissue. The expression of both MMPs and TIMPs is controlled during tissue remodeling to maintain a balance in the turnover of extracellular matrix. Disruption of this balance may result in a broad spectrum of diseases. Additionally, TIMP-2 has been reported to have growth factor activities. To further study the function of TIMP-2 in development, we utilized zebrafish as an experimental model system. We have successfully isolated a TIMP-2 homologue from zebrafish (zTIMP-2). This zebrafish TIMP-2 showed high similarity to human TIMP-2 with all critical features conserved. Whole-mount in situ analysis showed that zTIMP-2 was expressed as early as the one-cell stage indicating a maternal origin. This expression continued through later stages of development. RT-PCR analysis confirmed the early expression pattern from the 16-cell stage through blastula, gastrula and 24-h stages. In addition, at the protein level, immunoreactive zTIMP-2 was detected using antibody against recombinant human TIMP-2. RFP-reporter analysis indicated that TIMP-2 can be secreted into the extracellular space where ECM is forming. Functional studies showed that the balance of TIMP-2 expression is important to normal development as reflected by the fact that both blockage of TIMP-2 translation using antisense morpholino oligonculeotides or increased translation of TIMP-2 using a mRNA microinjection approach resulted in abnormal zebrafish development. This is in contrast to murine knockout studies that indicate that TIMP-2 does not have a major role in mouse embryogenesis.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
41
|
Lelongt B, Ronco P. Role of extracellular matrix in kidney development and repair. Pediatr Nephrol 2003; 18:731-42. [PMID: 12811645 DOI: 10.1007/s00467-003-1153-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 02/13/2003] [Accepted: 02/14/2003] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) molecules and their receptors exert a dynamic role in cell-matrix interactions during kidney development and repair processes. They provide a physical substratum for the spatial organization of the cells, but also regulate cell growth and proliferation by interacting with growth factors. In addition, they can regulate signal transduction pathways by binding to integrins or by modulating the activity of signaling molecules such as Wnts. ECM and ECM-related molecules control multiple (if not all) steps of kidney development, including ureteric bud branching morphogenesis, mesenchymal condensation, nephron formation, terminal differentiation of renal tubules, and glomerular basement membrane assembly. Their role still needs to be better documented in renal repair. The emergence of conditionally mutated mice for basement membrane components will provide a useful tool to demonstrate further the involvement of ECM and ECM-related proteins in development and repair.
Collapse
Affiliation(s)
- Brigitte Lelongt
- Institut National de la Santé et de la Recherche Médicale, Unité 489, Hôpital Tenon (AP-HP), 4 rue de la Chine, 75020 Paris, France.
| | | |
Collapse
|
42
|
Abstract
Brilliant new discoveries in the field of iron metabolism have revealed novel transmembrane iron transporters, novel hormones that regulate iron traffic, and iron's control of gene expression. An important role for iron in the embryonic kidney was first identified by Ekblom, who studied transferrin (Landschulz W and Ekblom P. J Biol Chem 260: 15580-15584, 1985; Landschulz W, Thesleff I, and Ekblom P. J Cell Biol 98: 596-601, 1984; Thesleff I, Partanen AM, Landschulz W, Trowbridge IS, and Ekblom P. Differentiation 30: 152- 158, 1985). Nevertheless, how iron traffics to developing organs remains obscure. This review discusses a member of the lipocalin superfamily, 24p3 or neutrophil gelatinase-associated lipocalcin (NGAL), which induces the formation of kidney epithelia. We review the data showing that lipocalins transport low-molecular-weight chemical signals and data indicating that 24p3/NGAL transports iron. We compare 24p3/NGAL to transferrin and a variety of other iron trafficking pathways and suggest specific roles for each in iron transport.
Collapse
Affiliation(s)
- Jun Yang
- Dept. of Medicine and Anatomy and Cell Biology, College of Physicians and Surgeons of Columbia Univ., 630 W 168th St., New York, NY 10032, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases play a central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. Currently 23 MMP genes have been identified in humans, and most are multidomain proteins. This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.
Collapse
Affiliation(s)
- Robert Visse
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, 1 Aspenlea Rd, London W6 8LH, UK
| | | |
Collapse
|
44
|
Abstract
The understanding of the complex branching morphogenesis of the early kidney is at an early stage; however, a framework is emerging that suggests numerous active genes sequentially switching on and reciprocally influencing each other. Much of our understanding of this process comes from studies of rodents specifically engineered to lack a particular gene responsible for an inductive agent or receptor. This review attempts to place newly discovered genetic programs within an organized framework of sequential renal development.
Collapse
Affiliation(s)
- Michael E Levin
- Pediatric Urology, Mount Sinai School of Medicine, 5 E. 98th Street, Box 1272, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Gebb SAL, Jones PL. Hypoxia and lung branching morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 543:117-25. [PMID: 14713117 DOI: 10.1007/978-1-4419-8997-0_8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Morphogens, growth factors and extracellular matrix (ECM) components modulate early lung branching, and have been studied extensively both in vivo and in vitro. In vitro studies have been particularly useful, because tissue can be manipulated either chemically or mechanically. For the most part, such studies have been conducted at ambient oxygen tensions, despite the fact that the fetus develops in a low oxygen environment. Since oxygen tension regulates the expression of various growth factors, adhesion molecules and their receptors, we investigated whether the low oxygen environment of the fetus contributes towards lung branching morphogenesis by affecting one or more these mediators. Using an established fetal lung explant model, we demonstrated that in comparison to tissues cultured at ambient oxygen concentration (21% O2), fetal lung explants cultured at 3% O2 show increases in terminal branching and cellular proliferation, and they display appropriate proximal to distal differentiation. To investigate the factor(s) mediating the induction of lung branching morphogenesis and differentiation by fetal oxygen tension, we focused on matrix metalloproteinases (MMPs), a group of zinc-dependent enzymes that modify ECM structure and function. Our results reveal that hypoxia suppresses MMP activity, leading to the accumulation of specific ECM components, including tenascin-C (TN-C), that act to stimulate lung branching. These studies demonstrate that low oxygen in the setting of the developing lung positively regulates lung branching morphogenesis, and suggest that the pathologic responses to low oxygen in the adult lung reflect a dysregulation of this lung developmental program.
Collapse
Affiliation(s)
- Sarah A L Gebb
- CVP Laboratory, University Colorado Health Sciences Ctr., Denver 80262, USA.
| | | |
Collapse
|
46
|
Piscione TD, Rosenblum ND. The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation 2002; 70:227-46. [PMID: 12190985 DOI: 10.1046/j.1432-0436.2002.700602.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mammalian kidney development requires the formation of a patterned, branched network of collecting ducts, a process termed renal branching morphogenesis. Disruption of renal branching morphogenesis during human kidney development results in renal dysplasia, the major cause of renal failure in young children. Genetic evidence, combined with in vitro data, have implicated transcription factors, secreted growth factors, and cell surface signaling peptides as critical regulators of renal branching morphogenesis. This review discusses the current knowledge regarding the regulation of renal branching morphogenesis in vivo provided by the analysis of genetic mutations in mice and humans which disrupt collecting duct system development. In addition, in vivo and in vitro evidence regarding the functions of several other gene families are considered, rendering new insight into emerging regulatory roles for these molecules in renal branching morphogenesis.
Collapse
Affiliation(s)
- Tino D Piscione
- Program in Development Biology, Division of Nephrology, The Hospital for Sick Children, University of Toronto, 555 University Ave., Ontario, M5G1X8, Canada
| | | |
Collapse
|
47
|
Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J. An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol 2002; 246:296-310. [PMID: 12051817 DOI: 10.1006/dbio.2002.0646] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kidney epithelia develop from the metanephric mesenchyme after receiving inductive signals from the ureteric bud and from the renal stroma. However, it is not clear how these signals induce the different types of epithelia that make up the nephron. To investigate inductive signaling, we have isolated clusters of epithelial progenitors from the metanephric mesenchyme, thereby separating them from the renal stroma. When the isolated progenitors were treated with the ureteric bud factor LIF, they expressed epithelial proteins (ZO-1, E-cadherin, laminin alpha(5)) and produced nephrons (36 glomeruli with 58 tubules), indicating that they are the target of inductive signaling from the ureteric bud, and that renal stroma is not absolutely required for epithelial development in vitro. In fact, stroma-depleted epithelial progenitors produced sevenfold more glomeruli than did intact metanephric mesenchyme (5 glomeruli, 127 tubules). Conversely, when epithelial progenitors were treated with both LIF and proteins secreted from a renal stromal cell line, glomerulogenesis was abolished but tubular epithelia were expanded (0 glomeruli, 47 tubules). Hence, by isolating epithelial progenitors from the metanephric mesenchyme, we show that they are targeted by factors from the ureteric bud and from the renal stroma, and that epithelial diversification is stimulated by the ureteric bud and limited by renal stroma.
Collapse
Affiliation(s)
- Jun Yang
- College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
48
|
Itäranta P, Lin Y, Peräsaari J, Roël G, Destrée O, Vainio S. Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis 2002; 32:259-68. [PMID: 11948913 DOI: 10.1002/gene.10079] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The embryonic kidney is a classic developmental model system for studying inductive tissue interactions that govern organogenesis. We report here that Wnt-6 is expressed in the ureter bud, and that cell lines expressing Wnt-6 induce nephrogenesis in vitro. Wnt-6 cells induce tubules with similar kinetics to spinal cord (SPC) and lead to induced expression of Pax2, Pax8, Sfrp2, and E-cadherin genes, early markers of tubulogenesis. Moreover, Wnt-6 signaling rescues tubulogenesis in mesenchyme separated from Wnt-4 mutant embryos and leads to activation of Wnt-4 transcription. Wnt-6 also induces a secondary axis in early Xenopus embryos. We conclude that Wnt-6 is a candidate for the ureter epithelium-derived signal that leads to activation of kidney tubulogenesis via Wnt-4.
Collapse
Affiliation(s)
- Petri Itäranta
- Biocenter Oulu, Department of Biochemistry, University of Oulu, Linnanmaa 90570 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
49
|
Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJP, Benyon C, Iredale JP. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002; 277:11069-76. [PMID: 11796725 DOI: 10.1074/jbc.m111490200] [Citation(s) in RCA: 331] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activated hepatic stellate cell (HSC) is central to liver fibrosis as the major source of collagens I and III and the tissue inhibitors of metalloproteinase-1 (TIMP-1). During spontaneous recovery from liver fibrosis, there is a decrease of TIMP expression, an increase in collagenase activity, and increased apoptosis of HSC, highlighting a potential role for TIMP-1 in HSC survival. In this report, we use tissue culture and in vivo models to demonstrate that TIMP-1 directly inhibits HSC apoptosis. TIMP-1 demonstrated a consistent, significant, and dose-dependent antiapoptotic effect for HSC activated in tissue culture and stimulated to undergo apoptosis by serum deprivation, cycloheximide exposure, and nerve growth factor stimulation. A nonfunctional mutated TIMP-1 (T2G mutant) in which all other domains are conserved did not inhibit apoptosis, indicating that inhibition of apoptosis was mediated through MMP inhibition. Synthetic MMP inhibitors also inhibited HSC apoptosis. Studies of experimental liver cirrhosis demonstrated that persistent expression of TIMP-1 mRNA determined by PCR correlated with persistence of activated HSC quantified by alpha smooth muscle actin staining, while in fibrosis, loss of activated HSC correlated with a reduction in TIMP-1 mRNA. We conclude that TIMP-1 inhibits apoptosis of activated HSC via MMP inhibition.
Collapse
Affiliation(s)
- Frank R Murphy
- Liver Group, Division of Infection, Inflammation and Repair, University of Southampton, Hampshire SO16 6YD, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The kidney is derived from the ureteric bud and the metanephrogenic mesenchyme, and these two progenitor cells differentiate into more than 26 different cell types in the adult kidney. The ureteric bud contains the precursor of the epithelial cells of the collecting duct and the renal mesenchyme contains precursors of all the epithelia of the rest of the nephron, endothelial cell precursors and stroma cells, but the relatedness among these cells is unclear. A single metanephric mesenchymal cell can generate all the epithelial cells of the nephron (except the collecting duct), indicating that the kidney contains epithelial stem cells. It is currently unknown whether these stem cells also are present in the adult kidney but experience in other organs makes this likely. It also is unclear whether embryonic renal epithelial stem cells can generate other cell types, but preliminary studies in our laboratory suggest that they can differentiate into myofibroblasts, smooth muscle, and perhaps endothelial cells, indicating that they are pluripotent renal stem cells. The important problem to be solved now is the identification and location of adult renal stem cells. This article discusses work done in other organs and in renal development that we believe may be useful for the resolution of this problem.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians & Surgeons of Columbia University, New York New York 10032, USA.
| | | |
Collapse
|