1
|
Zhao S, Wang C, Luo H, Li F, Wang Q, Xu J, Huang Z, Liu W, Zhang W. A role for Retinoblastoma 1 in hindbrain morphogenesis by regulating GBX family. J Genet Genomics 2024; 51:900-910. [PMID: 38570112 DOI: 10.1016/j.jgg.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The hindbrain, which develops from the anterior end of the neural tube expansion, can differentiate into the metencephalon and myelencephalon, with varying sizes and functions. The midbrain-hindbrain boundary (MHB) and hindbrain myelencephalon/ventral midline (HMVM) are known to be the source of the progenitors for the anterior hindbrain and myelencephalon, respectively. However, the molecular networks regulating hindbrain morphogenesis in these structures remain unclear. In this study, we show that retinoblastoma 1 (rb1) is highly expressed at the MHB and HMVM in zebrafish. Knocking out rb1 in mice and zebrafish results in an enlarged hindbrain due to hindbrain neuronal hyperproliferation. Further study reveals that Rb1 controls the hindbrain morphogenesis by suppressing the expression of Gbx1/Gbx2, essential transcription factors for hindbrain development, through its binding to E2f3/Hdac1, respectively. Interestingly, we find that Gbx1 and Gbx2 are expressed in different types of hindbrain neurons, suggesting distinct roles in hindbrain morphogenesis. In summary, our study clarifies the specific role of RB1 in hindbrain neural cell proliferation and morphogenesis by regulating the E2f3-Gbx1 axis and the Hdac1-Gbx2 axis. These findings provide a research paradigm for exploring the differential proliferation of neurons in various brain regions.
Collapse
Affiliation(s)
- Shuang Zhao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chen Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Haiping Luo
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Feifei Li
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qiang Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Pascual-Pasto G, McIntyre B, Giudice AM, Alikarami F, Morrissey A, Matlaga S, Hofmann TJ, Burgueño V, Harvey K, Martinez D, Shah AC, Foster JB, Pogoriler J, Eagle RC, Carcaboso AM, Shields CL, Leahey AM, Bosse KR. Targeting GPC2 on Intraocular and CNS Metastatic Retinoblastomas with Local and Systemic Delivery of CAR T Cells. Clin Cancer Res 2024; 30:3578-3591. [PMID: 38864848 PMCID: PMC11326963 DOI: 10.1158/1078-0432.ccr-24-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Retinoblastoma is the most common intraocular malignancy in children. Although new chemotherapeutic approaches have improved ocular salvage rates, novel therapies are required for patients with refractory intraocular and metastatic disease. Chimeric antigen receptor (CAR) T cells targeting glypican-2 (GPC2) are a potential new therapeutic strategy. EXPERIMENTAL DESIGN GPC2 expression and its regulation by the E2F1 transcription factor were studied in retinoblastoma patient samples and cellular models. In vitro, we performed functional studies comparing GPC2 CAR T cells with different costimulatory domains (4-1BB and CD28). In vivo, the efficacy of local and systemic administration of GPC2 CAR T cells was evaluated in intraocular and leptomeningeal human retinoblastoma xenograft models. RESULTS Retinoblastoma tumors, but not healthy retinal tissues, expressed cell surface GPC2, and this tumor-specific expression was driven by E2F1. GPC2-directed CARs with 4-1BB costimulation (GPC2.BBz) were superior to CARs with CD28 stimulatory domains (GPC2.28z), efficiently inducing retinoblastoma cell cytotoxicity and enhancing T-cell proliferation and polyfunctionality. In vivo, GPC2.BBz CARs had enhanced persistence, which led to significant tumor regression compared with either control CD19 or GPC2.28z CARs. In intraocular models, GPC2.BBz CAR T cells efficiently trafficked to tumor-bearing eyes after intravitreal or systemic infusions, significantly prolonging ocular survival. In central nervous system (CNS) retinoblastoma models, intraventricular or systemically administered GPC2.BBz CAR T cells were activated in retinoblastoma-involved CNS tissues, resulting in robust tumor regression with substantially extended overall mouse survival. CONCLUSIONS GPC2-directed CAR T cells are effective against intraocular and CNS metastatic retinoblastomas.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Anna M. Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Fatemeh Alikarami
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Amanda Morrissey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ted J. Hofmann
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Victor Burgueño
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Kyra Harvey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Daniel Martinez
- Department of Pathology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Amish C. Shah
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Jessica B. Foster
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ralph C. Eagle
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Carol L. Shields
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Ann-Marie Leahey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
3
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
4
|
Lisek M, Tomczak J, Swiatek J, Kaluza A, Boczek T. Histone Deacetylases in Retinoblastoma. Int J Mol Sci 2024; 25:6910. [PMID: 39000021 PMCID: PMC11241206 DOI: 10.3390/ijms25136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. Through their deacetylase activity, HDACs exert control over key tumor suppressors and oncogenes, influencing the delicate equilibrium between proliferation and cell death. Furthermore, the interplay between HDACs and the retinoblastoma protein pathway, a pivotal aspect of retinoblastoma etiology, reveals a complex network of interactions influencing the tumor microenvironment. The examination of HDAC inhibitors, encompassing both established and novel compounds, offers insights into potential approaches to restore acetylation balance and impede retinoblastoma progression. Moreover, the identification of specific HDAC isoforms exhibiting varying expression in retinoblastoma provides avenues for personalized therapeutic strategies, allowing for interventions tailored to individual patient profiles. This review focuses on the intricate interrelationship between HDACs and retinoblastoma, shedding light on epigenetic mechanisms that control tumor development and progression. The exploration of HDAC-targeted therapies underscores the potential for innovative treatment modalities in the pursuit of more efficacious and personalized management strategies for this disease.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (J.T.); (J.S.); (A.K.)
| | | | | | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (J.T.); (J.S.); (A.K.)
| |
Collapse
|
5
|
Liu S, Yan Z, Huang Z, Yang H, Li J. Smart Nanocarriers for the Treatment of Retinal Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2070-2085. [PMID: 38489843 DOI: 10.1021/acsabm.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Retinal diseases, such as age-related macular degeneration, diabetic retinopathy, and retinoblastoma, stand as the leading causes of irreversible vision impairment and blindness worldwide. Effectively administering drugs for retinal diseases poses a formidable challenge due to the presence of complex ocular barriers and elimination mechanisms. Over time, various approaches have been developed to fabricate drug delivery systems for improving retinal therapy including virus vectors, lipid nanoparticles, and polymers. However, conventional nanocarriers encounter issues related to the controllability, efficiency, and safety in the retina. Therefore, the development of smart nanocarriers for effective or more invasive long-term treatment remains a desirable goal. Recently, approaches have surfaced for the intelligent design of nanocarriers, leveraging specific responses to external or internal triggers and enabling multiple functions for retinal therapy such as topical administration, prolonged drug release, and site-specific drug delivery. This Review provides an overview of prevalent retinal pathologies and related pharmacotherapies to enhance the understanding of retinal diseases. It also surveys recent developments and strategies employed in the intelligent design of nanocarriers for retinal disease. Finally, the challenges of smart nanocarriers in potential clinical retinal therapeutic applications are discussed to inspire the next generation of smart nanocarriers.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhike Yan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
6
|
Mollick T, Darekar S, Dalarun B, Plastino F, Zhang J, Fernández AP, Alkasalias T, André H, Laín S. Retinoblastoma vulnerability to combined de novo and salvage pyrimidine ribonucleotide synthesis pharmacologic blockage. Heliyon 2024; 10:e23831. [PMID: 38332874 PMCID: PMC10851301 DOI: 10.1016/j.heliyon.2023.e23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
Retinoblastoma is an eye cancer that commonly affects young children. Despite significant advances, current treatments cause side effects even when administered locally, and patients may still have to undergo enucleation. This is particularly disheartening in cases of bilateral retinoblastoma. Hence, there is an urgent need for novel therapeutic strategies. Inhibitors of the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in the de novo pyrimidine ribonucleotide synthesis pathway, have proven to be effective in preclinical trials against several cancers including pediatric cancers. Here we tested whether blocking pyrimidine ribonucleotide synthesis promotes retinoblastoma cell death. Cultured retinoblastoma cell lines were treated with small molecule inhibitors of DHODH alone or in combination with inhibitors of nucleoside uptake to also block the salvage pathway for pyrimidine ribonucleotide formation. On their own, DHODH inhibitors had a moderate killing effect. However, the combination with nucleoside uptake inhibitors greatly enhanced the effect of DHODH inhibition. In addition, we observed that pyrimidine ribonucleotide synthesis blockage can cause cell death in a p53 mutant retinoblastoma cell line derived from a patient with metastasis. Explaining these results, the analysis of a published patient cohort revealed that loss of chr16q22.2 (containing the DHODH gene) is amongst the most frequent alterations in retinoblastoma and that these tumors often show gains in chromosome regions expressing pyrimidine ribonucleotide salvage factors. Furthermore, these genome alterations associate with malignancy. These results indicate that targeting pyrimidine ribonucleotide synthesis may be an effective therapeutic strategy to consider as a treatment for retinoblastoma.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Basile Dalarun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Juan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Andres Pastor Fernández
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| |
Collapse
|
7
|
Wang N, Ma JM. Progress of Cancer Stem Cells in Retinoblastoma. Curr Stem Cell Res Ther 2024; 19:1093-1101. [PMID: 37815190 DOI: 10.2174/011574888x252989230921065809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023]
Abstract
The theory of cancer stem cells is a breakthrough discovery that offers exciting possibilities for comprehending the biological behavior of tumors. More and more evidence suggests that retinoblastoma cancer stem cells promote tumor growth and are likely to be the origin of tumor formation, drug resistance, recurrence, and metastasis. At present, some progress has been made in the verification, biological behavior, and drug resistance mechanism of retinoblastoma cancer stem cells. This article aims to review the relevant research and explore future development direction.
Collapse
Affiliation(s)
- Nan Wang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Min Ma
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Byroju VV, Nadukkandy AS, Cordani M, Kumar LD. Retinoblastoma: present scenario and future challenges. Cell Commun Signal 2023; 21:226. [PMID: 37667345 PMCID: PMC10478474 DOI: 10.1186/s12964-023-01223-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
With an average incidence of 1 in every 18,000 live births, retinoblastoma is a rare type of intraocular tumour found to affect patients during their early childhood. It is curable if diagnosed at earlier stages but can become life-threateningly malignant if not treated timely. With no racial or gender predisposition, or even environmental factors known to have been involved in the incidence of the disease, retinoblastoma is often considered a clinical success story in pediatric oncology. The survival rate in highly developed countries is higher than 95% and they have achieved this because of the advancement in the development of diagnostics and treatment techniques. This includes developing the already existing techniques like chemotherapy and embarking on new strategies like enucleation, thermotherapy, cryotherapy, etc. Early diagnosis, studies on the etiopathogenesis and genetics of the disease are the need of the hour for improving the survival rates. According to the Knudson hypothesis, also known as the two hit hypothesis, two hits on the retinoblastoma susceptibility (RB) gene is often considered as the initiating event in the development of the disease. Studies on the molecular basis of the disease have also led to deciphering the downstream events and thus in the discovery of biomarkers and related targeted therapies. Furthermore, improvements in molecular biology techniques enhanced the development of efficient methods for early diagnosis, genetic counseling, and prevention of the disease. In this review, we discuss the genetic and molecular features of retinoblastoma with a special emphasis on the mutation leading to the dysregulation of key signaling pathways involved in cell proliferation, DNA repair, and cellular plasticity. Also, we describe the classification, clinical and epidemiological relevance of the disease, with an emphasis on both the traditional and innovative treatments to tackle retinoblastoma. Video Abstract.
Collapse
Affiliation(s)
- Vishnu Vardhan Byroju
- Department of Biochemistry, American International Medical University, Gros Islet, St. Lucia, USA
| | | | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India.
| |
Collapse
|
9
|
Cerna-Chavez R, Rozanska A, Poretti GL, Benvenisty N, Parulekar M, Lako M. Retinal pigment epithelium exhibits gene expression and phagocytic activity alterations when exposed to retinoblastoma chemotherapeutics. Exp Eye Res 2023; 233:109542. [PMID: 37331647 DOI: 10.1016/j.exer.2023.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Retinoblastoma (Rb) is a rare malignant disorder affecting the developing retina of children under the age of five. Chemotherapeutic agents used for treating Rb have been associated with defects of the retinal pigment epithelium (RPE), such as hyperplasia, gliosis, and mottling. Herein, we have developed two pluripotent stem cell (PSC)-RPE models to assess the cytotoxicity of known Rb chemotherapeutics such as Melphalan, Topotecan and TW-37. Our findings demonstrate that these drugs alter the RPE by decreasing the monolayer barrier's trans-epithelial resistance and affecting the cells' phagocytic activity. Transcriptional analyses demonstrate an altered expression of genes involved in melanin and retinol processing, tight junction and apical-basal polarity pathways in both models. When applied within the clinical range, none of the drug treatments caused significant cytotoxic effects, changes to the apical-basal polarity, tight junction network or cell cycle. Together, our results demonstrate that although the most commonly used Rb chemotherapeutic drugs do not cause cytotoxicity in RPE, their application in vitro leads to compromised phagocytosis and strength of the barrier function, in addition to changes in gene expression that could alter the visual cycle in vivo. Our data demonstrate that widely used Rb chemotherapeutic drugs can have a deleterious impact on RPE cells and thus great care has to be exercised with regard to their delivery so the adjacent healthy RPE is not damaged during the course of tumor eradication.
Collapse
Affiliation(s)
| | | | | | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
10
|
Wang L, Li S, Mei J, Ye L. Immunotherapies of retinoblastoma: Effective methods for preserving vision in the future. Front Oncol 2022; 12:949193. [PMID: 36132125 PMCID: PMC9483150 DOI: 10.3389/fonc.2022.949193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Retinoblastoma is the most common intraocular tumor in children. Patients can be cured by enucleation, but it can lead to vision loss. Chemotherapy is the main method of treatment for RB currently. Unfortunately, chemoresistant and tumor metastasis often happen, resulting in a relatively poor prognosis. Therefore, immunotherapy becomes one of the optimal choices. Targeting not only tumor cells but also the active tumor microenvironment is a novel strategy for RB treatment. Here, we conclude several potential targets for RB immunotherapy, including gangliosides GD2, PD-1 and PD-L1, B7H3, EpCAM and SYK. We also review the techniques for CART, bispecific antibodies and genetically modified Dendritic cells according to the characteristics of different targets and discuss the feasibility of immunotherapy with different targets.
Collapse
|
11
|
Li YP, Wang YT, Wang W, Zhang X, Shen RJ, Jin K, Jin LW, Jin ZB. Second hit impels oncogenesis of retinoblastoma in patient-induced pluripotent stem cell-derived retinal organoids: direct evidence for Knudson's theory. PNAS NEXUS 2022; 1:pgac162. [PMID: 36714839 PMCID: PMC9802398 DOI: 10.1093/pnasnexus/pgac162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Retinoblastoma (Rb) is a type of malignant tumor due to abnormal retinogenesis with biallelic mutations of the RB1 gene. Its pathogenesis has been proposed as a "two-mutation hypothesis" by Knudson since 1971; however, there remain some debates on disease onset sufficiency of the biallelic RB1 mutations. To obtain straightforward evidence for this hypothesis, we investigated whether two-hit mutations of the RB1 gene drive tumorigenesis in patient-induced pluripotent stem cell (hiPSC)-derived human retinal organoids (hROs) and whether single allelic mutation hiPSC-derived hROs exhibit molecular and cellular defects. We generated hiPSCs with a heterozygous germline mutation (RB1m1/ wt ) from a Rb patient. A second-allele RB1 gene mutation was knocked in to produce compound heterozygous mutations (RB1m1/m2 ) in the hiPSCs. These two hiPSC lines were independently developed into hROs through a stepwise differentiation. The hiPSC-RB1m1/m2 derived organoids demonstrated tumorigenesis in dishes, consistent with Rb profiles in spatiotemporal transcriptomes, in which developmentally photoreceptor fate-determining markers, CRX and OTX2, were highly expressed in hiPSC-RB1m1/m2 derived hROs. Additionally, ARR3+ maturing cone precursors were co-labeled with proliferative markers Ki67 or PCNA, in agreement with the consensus that human Rb is originated from maturing cone precursors. Finally, we demonstrated that retinal cells of hROs with monoallelic RB1 mutation were abnormal in molecular aspects due to its haploinsufficiency. In conclusion, this study provides straightforward supporting evidence in a way of reverse genetics for "two-hit hypothesis" in the Rb tumorigenesis and opens new avenues for development of early intervention and treatment of Rb.
Collapse
Affiliation(s)
- Yan-Ping Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ya-Ting Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Wen Jin
- Quanzhou Aier Eye Hospital, Quanzhou 362017, China
| | | |
Collapse
|
12
|
Zhou L, Ng DSC, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK. Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2022; 29:33. [PMID: 35650644 PMCID: PMC9161509 DOI: 10.1186/s12929-022-00818-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
The retinoblastoma protein (pRb) functions as a cell cycle regulator controlling G1 to S phase transition and plays critical roles in tumour suppression. It is frequently inactivated in various tumours. The functions of pRb are tightly regulated, where post-translational modifications (PTMs) play crucial roles, including phosphorylation, ubiquitination, SUMOylation, acetylation and methylation. Most PTMs on pRb are reversible and can be detected in non-cancerous cells, playing an important role in cell cycle regulation, cell survival and differentiation. Conversely, altered PTMs on pRb can give rise to anomalies in cell proliferation and tumourigenesis. In this review, we first summarize recent findings pertinent to how individual PTMs impinge on pRb functions. As many of these PTMs on pRb were published as individual articles, we also provide insights on the coordination, either collaborations and/or competitions, of the same or different types of PTMs on pRb. Having a better understanding of how pRb is post-translationally modulated should pave the way for developing novel and specific therapeutic strategies to treat various human diseases.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny Siu-Chun Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Ma H, Nie C, Chen Y, Li J, Xie Y, Tang Z, Gao Y, Ai S, Mao Y, Sun Q, Lu R. Therapeutic Targeting PLK1 by ON-01910.Na Is Effective in Local Treatment of Retinoblastoma. Oncol Res 2021; 28:745-761. [PMID: 33573708 PMCID: PMC8420894 DOI: 10.3727/096504021x16130322409507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell cycle deregulation is involved in the pathogenesis of many cancers and is often associated with protein kinase aberrations, including the polo-like kinase 1 (PLK1). We used retinoblastoma, an intraocular malignancy that lacks targeted therapy, as a disease model and set out to reveal targetability of PLK1 with a small molecular inhibitor ON-01910.Na. First, transcriptomic analysis on patient retinoblastoma tissues suggested that cell cycle progression was deregulated and confirmed that PLK1 pathway was upregulated. Next, antitumor activity of ON-01910.Na was investigated in both cellular and animal levels. Cytotoxicity induced by ON-01910.Na was tumor specific and dose dependent in retinoblastoma cells, while nontumor cells were minimally affected. In three-dimensional culture, ON-01910.Na demonstrated efficient drug penetrability with multilayer cell death. Posttreatment transcriptomic findings revealed that cell cycle arrest and MAPK cascade activation were induced following PLK1 inhibition and eventually resulted in apoptotic cell death. In Balb/c nude mice, a safe threshold of 0.8 nmol intravitreal dosage of ON-01910.Na was established for intraocular safety, which was demonstrated by structural integrity and functional preservation. Furthermore, intraocular and subcutaneous xenograft were significantly reduced with ON-01910.Na treatments. For the first time, we demonstrated targetability of PLK1 in retinoblastoma by efficiently causing cell cycle arrest and apoptosis. Our study is supportive that local treatment of ON-01910.Na may be a novel, effective modality benefiting patients with PLK1-aberrant tumors.
Collapse
Affiliation(s)
- Huan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Cong Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yanjie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zhixin Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Sahoo S, Li Y, de Jesus D, Sembrat JC, Rojas MM, Goncharova E, Cifuentes-Pagano E, Straub AC, Pagano PJ. Notch2 Suppression Mimicking Changes in Human Pulmonary Hypertension Modulates Notch1 and Promotes Endothelial Cell Proliferation. Am J Physiol Heart Circ Physiol 2021; 321:H542-H557. [PMID: 34296965 DOI: 10.1152/ajpheart.00125.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with resistance to apoptosis and occlusive remodeling of the small pulmonary arteries in humans. The Notch family of proteins are proximal signaling mediators of an evolutionarily conserved pathway that effect cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) has been shown to promote endothelial apoptosis. However, a pro- or anti-proliferative role for Notch2 in pulmonary endothelial proliferation and ensuing PAH is unknown. Herein, we postulated that suppressed Notch2 signaling drives pulmonary endothelial proliferation in the setting of PAH. We observed that levels of Notch2 are ablated in lung and PA tissue samples from PAH patients compared to non-PAH controls. Interestingly, Notch2 expression was attenuated in human pulmonary artery endothelial cells (hPAECs) exposed to vasoactive factors including hypoxia, TGFβ, ET-1, and IGF-1. Gene silencing of Notch2 increased EC proliferation and reduced apoptosis. At the molecular level, Notch2-deficient hPAECs activated Akt, Erk1/2 and anti-apoptotic protein Bcl-2, and reduced levels of p21cip and Bax. Intriguingly, loss of Notch2 elicits a paradoxical activation of Notch1 and transcriptional upregulation of canonical Notch target genes Hes1, Hey1 and Hey2. Further, reduction in Rb and increased E2F1 binding to the Notch1 promoter appear to explain the upregulation of Notch1. In aggregate, our results demonstrate that loss of Notch2 derepresses Notch1 and elicits aberrant EC hallmarks of PAH. The data underscore a novel role for Notch in the maintenance of endothelial cell homeostasis.
Collapse
Affiliation(s)
- Sanghamitra Sahoo
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yao Li
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel de Jesus
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Charles Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mauricio M Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elena Goncharova
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eugenia Cifuentes-Pagano
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam C Straub
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patrick J Pagano
- Heart, Lung, Blood & Vascular Medicine Institute; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Dohogne B, Arif-Tiwari H, Bracamonte E, Babiker HM. Exceptional response to cyclophosphamide and dexamethasone in a patient with metastatic castrate-resistant prostate cancer and RB1 mutation. Anticancer Drugs 2021; 32:337-343. [PMID: 33534414 DOI: 10.1097/cad.0000000000001025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rates of prostate cancer relapsing from anti-androgen therapies are increasing in the United States and worldwide. It has been suggested that this is caused by variant and altered lineage marker expression within the tumor, allowing for lineage plasticity that then facilitates therapeutic resistance. The genomic landscape of castrate-resistant prostate cancer has been well-defined with the advent of next-generation sequencing, but the clinical applications of these findings as measured by patient outcomes remains poorly understood. Here, we report on a patient with recurrent, metastatic castrate-resistant prostate cancer and identified RB1 mutation with progressive symptomatology, who was treated with cyclophosphamide and dexamethasone after other standard treatment regimens failed. After completing 2 years of treatment, he experienced complete resolution of his symptoms. Disease remission was confirmed on multiple imaging modalities and through serial measurements of prostate-specific antigen levels that showed a reduction of 99%. Our patient's case supports ongoing research that genetic profiling can help elucidate key biological and molecular tumor components, which can then inform targeted, individualized treatment approaches in the management of recurrent, castrate-resistant prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Hani M Babiker
- Hematology and Oncology, University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
16
|
Ioakeim-Ioannidou M, MacDonald SM. Evolution of Care of Orbital Tumors with Radiation Therapy. J Neurol Surg B Skull Base 2020; 81:480-496. [PMID: 33072488 DOI: 10.1055/s-0040-1713894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Orbital tumors are rare lesions comprising 0.1% of all tumors and less than 20% of all ocular diseases. These lesions in children and adults differ significantly in their incidence, tumor type, and treatment management. Although surgery and systemic therapies are commonly used in the management of these diseases, radiation therapy has become a widely used treatment for both benign and malignant tumors of the orbit. Radiotherapy is used as a definitive treatment to provide local control while avoiding morbidity associated with surgery for some tumors while it is used as an adjuvant treatment following surgical resection for others. For many tumors, radiation provides excellent tumor control with preservation of visual function. This article is dedicated for presenting the most common applications of orbital radiotherapy. A brief overview of the commonly available radiation therapy modalities is given. Dose constraint goals are reviewed and acute and long-term side effects are discussed. Orbital tumors covered in this article include optic glioma, ocular melanoma, retinoblastoma, orbital rhabdomyosarcoma, orbital lymphoma, and lacrimal gland tumors. Background information, indications for radiotherapy, and goals of treatment for each case example are described.
Collapse
Affiliation(s)
- Myrsini Ioakeim-Ioannidou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Retinoblastoma: Etiology, Modeling, and Treatment. Cancers (Basel) 2020; 12:cancers12082304. [PMID: 32824373 PMCID: PMC7465685 DOI: 10.3390/cancers12082304] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoblastoma is a retinal cancer that is initiated in response to biallelic loss of RB1 in almost all cases, together with other genetic/epigenetic changes culminating in the development of cancer. RB1 deficiency makes the retinoblastoma cell-of-origin extremely susceptible to cancerous transformation, and the tumor cell-of-origin appears to depend on the developmental stage and species. These are important to establish reliable preclinical models to study the disease and develop therapies. Although retinoblastoma is the most curable pediatric cancer with a high survival rate, advanced tumors limit globe salvage and are often associated with high-risk histopathological features predictive of dissemination. The advent of chemotherapy has improved treatment outcomes, which is effective for globe preservation with new routes of targeted drug delivery. However, molecularly targeted therapeutics with more effectiveness and less toxicity are needed. Here, we review the current knowledge concerning retinoblastoma genesis with particular attention to the genomic and transcriptomic landscapes with correlations to clinicopathological characteristics, as well as the retinoblastoma cell-of-origin and current disease models. We further discuss current treatments, clinicopathological correlations, which assist in guiding treatment and may facilitate globe preservation, and finally we discuss targeted therapeutics for future treatments.
Collapse
|
18
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
19
|
Mao Y, Nie Q, Yang Y, Mao G. Identification of co‑expression modules and hub genes of retinoblastoma via co‑expression analysis and protein‑protein interaction networks. Mol Med Rep 2020; 22:1155-1168. [PMID: 32468072 PMCID: PMC7339782 DOI: 10.3892/mmr.2020.11189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma is a common intraocular malignant tumor in children. However, the molecular and genetic mechanisms of retinoblastoma remain unclear. The gene expression dataset GSE110811 was retrieved from Gene Expression Omnibus. After preprocessing, coexpression modules were constructed by weighted gene coexpression network analysis (WGCNA), and modules associated with clinical traits were identified. In addition, functional enrichment analysis was performed for genes in the indicated modules, and protein-protein interaction (PPI) networks and subnetworks were constructed based on these genes. Eight coexpression modules were constructed through WGCNA. Of these, the yellow module had the highest association with severity and age (r=0.82 and P=3e-07; r=0.72 and P=3e-05). The turquoise module had the highest association with months (r=−0.63 and P=5e-04). The genes in the two modules participate in multiple pathways of retinoblastoma, and by combining the PPI network and subnetworks; 10 hub genes were identified in the two modules. The present study identified coexpression modules and hub genes associated with clinical traits of retinoblastoma, providing novel insight into retinoblastoma progression.
Collapse
Affiliation(s)
- Yukun Mao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qingbin Nie
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| | - Yang Yang
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| | - Gengsheng Mao
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
20
|
Wang L, Zhang Y, Xin X. Long non-coding RNA MALAT1 aggravates human retinoblastoma by sponging miR-20b-5p to upregulate STAT3. Pathol Res Pract 2020; 216:152977. [PMID: 32336590 DOI: 10.1016/j.prp.2020.152977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Retinoblastoma (RB) is an uncommon childhood carcinoma of the developing retina. Long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1), microRNA-20b-5p (miR-20b-5p) and signal transducer and activator of transcription 3 (STAT3) was revealed to partake in RB. But their relationship was still to be investigated, so we intended to discuss the specific interaction of MALAT1, miR-20b-5p and STAT3 in RB. METHODS By RNA isolation and quantitation, we measured the MALAT1 expression in RB tissues and cell lines. Then, to determine the influence of MALAT1 on RB cells, RB cells were transfected with siRNA-MALAT1 or pcDNA-MALAT1. The interplay among MALAT1, miR-20b-5p and STAT3 were evaluated through dual luciferase reporter gene assay and RNA pull-down after RB cells treated with siRNA/pcDNA-MALAT1 or/and miR-20b-5p mimic/inhibitor. The influence of their interaction on cells was evaluated by cell counting kit-8, EdU assay and flow cytometry. Finally, the involvement of MALAT1 in tumorigenesis was elucidated in vivo. RESULTS Both RB tissues and cells showed highly expressed MALAT1. When MALAT1 was downregulated, RB cell proliferation was hindered and apoptosis was accelerated. MALAT1 sponged miR-20b-5p and upregulated STAT3. Silencing MALAT1 or overexpressing miR-20b-5p inhibited proliferation and promoted apoptosis in RB cells. The tumor growth of nude mice treated with siRNA-MALAT1 was inhibited. CONCLUSION MALAT1 could increase proliferation and reduce apoptosis by sponging miR-20b-5p to upregulate STAT3 in RB cells. Therefore, MALAT1 might be a latent target in the RB treatment.
Collapse
Affiliation(s)
- Liming Wang
- Department of Ophthalmology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia, PR China
| | - Yanwen Zhang
- Department of Ophthalmology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia, PR China
| | - Xiangyang Xin
- Department of Ophthalmology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia, PR China.
| |
Collapse
|
21
|
Zheng C, Schneider JW, Hsieh J. Role of RB1 in human embryonic stem cell-derived retinal organoids. Dev Biol 2020; 462:197-207. [PMID: 32197890 DOI: 10.1016/j.ydbio.2020.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) organoid models derived from human pluripotent stem cells provide a platform for studying human development and understanding disease mechanisms. Most studies that examine biallelic inactivation of the cell cycle regulator Retinoblastoma 1 (RB1) and the link to retinoblastoma is in mice, however, less is known regarding the pathophysiological role of RB1 during human retinal development. To study the role of RB1 in early human retinal development and tumor formation, we generated retinal organoids from CRISPR/Cas9-derived RB1-null human embryonic stem cells (hESCs). We showed that RB is abundantly expressed in retinal progenitor cells in retinal organoids and loss of RB1 promotes S-phase entry. Furthermore, loss of RB1 resulted in widespread apoptosis and reduced the number of photoreceptor, ganglion, and bipolar cells. Interestingly, RB1 mutation in retinal organoids did not result in retinoblastoma formation in vitro or in the vitreous body of NOD/SCID immunodeficient mice. Together, our work identifies a crucial function for RB1 in human retinal development and suggests that RB1 deletion alone is not sufficient for tumor development, at least in human retinal organoids.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, GD, 510080, China
| | - Jay W Schneider
- Wanek Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
22
|
Singh L, Singh MK, Rizvi MA, Bakhshi S, Meel R, Lomi N, Sen S, Kashyap S. Clinical relevance of the comparative expression of immune checkpoint markers with the clinicopathological findings in patients with primary and chemoreduced retinoblastoma. Cancer Immunol Immunother 2020; 69:1087-1099. [PMID: 32100078 DOI: 10.1007/s00262-020-02529-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The goal of this study is to identify the pathological findings and expression of immune checkpoint marker (PD-1, PD-L1, and CTLA-4) in the tumor microenvironment of both primary and chemoreduced retinoblastoma and correlate them with clinicopathological parameters and patient outcome. METHODS Total of 262 prospective cases was included prospectively in which 144 cases underwent primary enucleation and 118 cases received chemotherapy/radiotherapy before enucleation (chemoreduced retinoblastoma). Immunohistochemistry, qRT-PCR and western blotting were performed to evaluate the expression pattern of immune checkpoint markers in primary and chemoreduced retinoblastoma. RESULTS Tumor microenvironment were different for both primary and chemoreduced retinoblastoma. Expression of PD-1 was found in 29/144 (20.13%) and 48/118 (40.67%) in primary and chemoreduced retinoblastoma, respectively, whereas PD-L1 was expressed in 46/144 (31.94%) and 22/118 (18.64%) in cases of primary and chemoreduced retinoblastoma, respectively. Expression pattern of CTLA-4 protein was similar in both groups of retinoblastoma. On multivariate analysis, massive choroidal invasion, bilaterality and PD-L1 expression (p = 0.034) were found to be statistically significant factors in primary retinoblastoma, whereas PD-1 expression (p = 0.015) and foamy macrophages were significant factors in chemoreduced retinoblastoma. Overall survival was reduced in cases of PD-L1 (80.76%) expressed primary retinoblastoma, and PD-1 (63.28%) expressed chemoreduced retinoblastoma. CONCLUSIONS This is the first of its kind study predicting a relevant role of the immune checkpoint markers in both groups of primary and chemoreduced retinoblastoma with prognostic significance. Differential expression of these markers in both group of retinoblastoma is a novel finding and might be an interesting and beneficial target for chemoresistant tumors.
Collapse
Affiliation(s)
- Lata Singh
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mithalesh Kumar Singh
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sameer Bakhshi
- Department of Medical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Meel
- Department of Ophthalmology, Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Neiwete Lomi
- Department of Ophthalmology, Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Seema Kashyap
- Department of Ocular Pathology, Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
23
|
Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG, Restrepo-Perdomo CA, Mato-Berciano A, Ottaviani D, Weber K, Correa G, Paco S, Vila-Ubach M, Cuadrado-Vilanova M, Castillo-Ecija H, Botteri G, Garcia-Gerique L, Moreno-Gilabert H, Gimenez-Alejandre M, Alonso-Lopez P, Farrera-Sal M, Torres-Manjon S, Ramos-Lozano D, Moreno R, Aerts I, Doz F, Cassoux N, Chapeaublanc E, Torrebadell M, Roldan M, König A, Suñol M, Claverol J, Lavarino C, Carmen de T, Fu L, Radvanyi F, Munier FL, Catalá-Mora J, Mora J, Alemany R, Cascalló M, Chantada GL, Carcaboso AM. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2020; 11:11/476/eaat9321. [PMID: 30674657 DOI: 10.1126/scitranslmed.aat9321] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
Retinoblastoma is a pediatric solid tumor of the retina activated upon homozygous inactivation of the tumor suppressor RB1 VCN-01 is an oncolytic adenovirus designed to replicate selectively in tumor cells with high abundance of free E2F-1, a consequence of a dysfunctional RB1 pathway. Thus, we reasoned that VCN-01 could provide targeted therapeutic activity against even chemoresistant retinoblastoma. In vitro, VCN-01 effectively killed patient-derived retinoblastoma models. In mice, intravitreous administration of VCN-01 in retinoblastoma xenografts induced tumor necrosis, improved ocular survival compared with standard-of-care chemotherapy, and prevented micrometastatic dissemination into the brain. In juvenile immunocompetent rabbits, VCN-01 did not replicate in retinas, induced minor local side effects, and only leaked slightly and for a short time into the blood. Initial phase 1 data in patients showed the feasibility of the administration of intravitreous VCN-01 and resulted in antitumor activity in retinoblastoma vitreous seeds and evidence of viral replication markers in tumor cells. The treatment caused local vitreous inflammation but no systemic complications. Thus, oncolytic adenoviruses targeting RB1 might provide a tumor-selective and chemotherapy-independent treatment option for retinoblastoma.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | - Nagore G Olaciregui
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | | | - Daniela Ottaviani
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - Klaus Weber
- AnaPath GmbH, Oberbuchsiten 4625, Switzerland
| | - Genoveva Correa
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Sonia Paco
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Monica Vila-Ubach
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Maria Cuadrado-Vilanova
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Helena Castillo-Ecija
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Gaia Botteri
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Laura Garcia-Gerique
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Helena Moreno-Gilabert
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | | | | | - Silvia Torres-Manjon
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dolores Ramos-Lozano
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabelle Aerts
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - François Doz
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Paris Descartes University, 75006 Paris, France
| | - Nathalie Cassoux
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Paris Descartes University, 75006 Paris, France.,Institut Curie, Ophthalmic Oncology, 75248 Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - Montserrat Torrebadell
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Monica Roldan
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pathology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Andrés König
- Vivotecnia Research S.L., Tres Cantos, Madrid 28760, Spain
| | - Mariona Suñol
- Pathology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Joana Claverol
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Clinical Trials Unit, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Cinzia Lavarino
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Torres Carmen de
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Ligia Fu
- Pediatric Hematology-Oncology, Hospital Escuela Universitario, Tegucigalpa, Honduras
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | | | | | - Jaume Mora
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Ramón Alemany
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Cascalló
- VCN Biosciences, Sant Cugat del Valles, Barcelona 08174, Spain
| | - Guillermo L Chantada
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain.,Hospital de Pediatria JP Garrahan, Buenos Aires 1245, Argentina.,CONICET, Buenos Aires 1245, Argentina
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain. .,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| |
Collapse
|
24
|
Gudiseva HV, Berry JL, Polski A, Tummina SJ, O’Brien JM. Next-Generation Technologies and Strategies for the Management of Retinoblastoma. Genes (Basel) 2019; 10:genes10121032. [PMID: 31835688 PMCID: PMC6947430 DOI: 10.3390/genes10121032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Retinoblastoma (RB) is an inherited retinal disorder (IRD) caused by the mutation in the RB1 gene or, rarely, by alterations in the MYCN gene. In recent years, new treatment advances have increased ocular and visual preservation in the developed world. The management of RB has improved significantly in recent decades, from the use of external beam radiation to recently, more localized treatments. Determining the underlying genetic cause of RB is critical for timely management decisions. The advent of next-generation sequencing technologies have assisted in understanding the molecular pathology of RB. Liquid biopsy of the aqueous humor has also had significant potential implications for tumor management. Currently, patients’ genotypic information, along with RB phenotypic presentation, are considered carefully when making treatment decisions aimed at globe preservation. Advances in molecular testing that improve our understanding of the molecular pathology of RB, together with multiple directed treatment options, are critical for developing precision medicine strategies to treat this disease.
Collapse
Affiliation(s)
- Harini V. Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Jesse L. Berry
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (J.L.B.); (A.P.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ashley Polski
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (J.L.B.); (A.P.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Santa J. Tummina
- Office of the Director, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Joan M. O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Correspondence: joan.o'; Tel.: +215-662-8657; Fax: +215-662-9676
| |
Collapse
|
25
|
Asnaghi L, White DT, Yoon L, Price A, Lee GY, Sahoo A, Mumm JS, Eberhart CG. Downregulation of Nodal inhibits metastatic progression in retinoblastoma. Acta Neuropathol Commun 2019; 7:137. [PMID: 31451106 PMCID: PMC6709548 DOI: 10.1186/s40478-019-0785-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most common intraocular malignancy in children. We previously found that the ACVR1C/SMAD2 pathway is significantly upregulated in invasive retinoblastoma samples from patients. Here we studied the role of an ACVR1C ligand, Nodal, in regulating growth and metastatic dissemination in retinoblastoma. Inhibition of Nodal using multiple short hairpin (shRNAs) in WERI Rb1 and Y79 retinoblastoma cell cultures reduced growth by more than 90%, as determined by CCK-8 growth assay. Proliferation was also significantly inhibited, as found by Ki67 assay. These effects were paralleled by inhibition in the phosphorylation of the downstream effector SMAD2, as well as induction of apoptosis, as we observed more than three-fold increase in the percentage of cells positive for cleaved-caspase-3 or expressing cleaved-PARP1. Importantly, we found that downregulation of Nodal potently suppressed invasion in vitro, by 50 to 80%, as determined by transwell invasion assay (p = 0.02). Using an orthotopic model of retinoblastoma in zebrafish, we found 34% reduction in the ability of the cells to disseminate outside the eye, when Nodal was knocked down by shRNA (p = 0.0003). These data suggest that Nodal plays an important role in promoting growth, proliferation and invasion in retinoblastoma, and can be considered a new therapeutic target for both primary tumor growth and metastatic progression.
Collapse
|
26
|
Papin J, Zummo FP, Pachera N, Guay C, Regazzi R, Cardozo AK, Herchuelz A. Na +/Ca 2+ Exchanger a Druggable Target to Promote β-Cell Proliferation and Function. J Endocr Soc 2018; 2:631-645. [PMID: 29942927 PMCID: PMC6009611 DOI: 10.1210/js.2017-00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
An important feature of type 2 diabetes is a decrease in β-cell mass. Therefore, it is essential to find new approaches to stimulate β-cell proliferation. We have previously shown that heterozygous inactivation of the Na+/Ca2+ exchanger (isoform 1; NCX1), a protein responsible for Ca2+ extrusion from cells, increases β-cell proliferation, mass, and function in mice. Here, we show that Ncx1 inactivation also increases β-cell proliferation in 2-year-old mice and that NCX1 inhibition in adult mice by four small molecules of the benzoxyphenyl family stimulates β-cell proliferation both in vitro and in vivo. NCX1 inhibition by small interfering RNA or small molecules activates the calcineurin/nuclear factor of activated T cells (NFAT) pathway and inhibits apoptosis induced by the immunosuppressors cyclosporine A (CsA) and tacrolimus in insulin-producing cell. Moreover, NCX1 inhibition increases the expression of β-cell-specific genes, such as Ins1, Ins2, and Pdx1, and inactivates/downregulates the tumor suppressors retinoblastoma protein (pRb) and miR-193a and the cell cycle inhibitor p53. Our data show that Na+/Ca2+ exchange is a druggable target to stimulate β-cell function and proliferation. Specific β-cell inhibition of Na+/Ca2+ exchange by phenoxybenzamyl derivatives may represent an innovative approach to promote β-cell regeneration in diabetes and improve the efficiency of pancreatic islet transplantation for the treatment of the disease.
Collapse
Affiliation(s)
- Julien Papin
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Francesco Paolo Zummo
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Nathalie Pachera
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - André Herchuelz
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| |
Collapse
|
27
|
López López JC, Fernández Alonso N, Cuevas Álvarez J, García-Caballero T, Pastor Jimeno JC. Immunohistochemical assay for neuron-specific enolase, synaptophysin, and RB-associated protein as a diagnostic aid in advanced retinoblastomas. Clin Ophthalmol 2018; 12:1171-1179. [PMID: 29988700 PMCID: PMC6029607 DOI: 10.2147/opth.s141503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose We evaluated the expression of the neural markers, neuron-specific enolase, and synaptophysin, as a tool to confirm the diagnosis of retinoblastoma (RB) in undifferentiated and advanced tumors. Additionally, we determined whether the extent of RB-associated protein (pRb) expression is helpful in assessing the prognosis in RB patients. Methods Conventional whole tissue section and tissue microarray immunohistochemistry for neuron-specific enolase, synaptophysin, and pRb were carried out in a series of 22 RBs. Results Neuron-specific enolase and synaptophysin were expressed in 75%–100% of the tumor cells, and the staining intensity was strong. Two RBs expressed pRb in 75%–100% of the tumor cells, also with strong staining intensity. Concordance between the immunohistochemical outcomes for whole tissue staining and tissue microarray staining was 76.2% for neuron-specific enolase, 85.7% for synaptophysin, and 80.0% for pRb. Conclusion Neuron-specific enolase and synaptophysin have the potential to be useful markers for the diagnosis of RBs. Extensive and strong pRb staining is not associated with less aggressive tumor behavior according to the pathologic classification of RBs.
Collapse
Affiliation(s)
- José Carlos López López
- Ocular Pathology Laboratory, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain,
| | - Nieves Fernández Alonso
- Ocular Pathology Laboratory, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain,
| | - Juan Cuevas Álvarez
- Ocular Pathology Laboratory, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Valladolid, Spain, .,Department of Pathology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | | | - José Carlos Pastor Jimeno
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Hospital Clínico Universitario, Valladolid, Spain
| |
Collapse
|
28
|
Saito N, Shirai Y, Uwagawa T, Horiuchi T, Sugano H, Haruki K, Shiba H, Ohashi T, Yanaga K. Pomalidomide enhanced gemcitabine and nab-paclitaxel on pancreatic cancer both in vitro and in vivo. Oncotarget 2018; 9:15780-15791. [PMID: 29644009 PMCID: PMC5884664 DOI: 10.18632/oncotarget.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Background Chemotherapy with gemcitabine and nab-paclitaxel (gemcitabine/nab-paclitaxel) is recommended for unresectable pancreatic cancer. However, the therapeutic efficacy is attenuated by the antitumor agent-induced activation of nuclear factor-κB (NF-κB). Thalidomide inhibits NF-κB activation, therefore, we hypothesized that pomalidomide, a third-generation IMiD, would also inhibit NF-κB activation and enhance the antitumor effects of gemcitabine/nab-paclitaxel. Methods In vitro, we assessed NF-κB activity and apoptosis in response to pomalidomide alone, gemcitabine/nab-paclitaxel, or combination of pomalidomide and gemcitabine/nab-paclitaxel in human pancreatic cancer cell lines (PANC-1 and MIA PaCa-2). In vivo, we established orthotopic model and the animals were treated with oral pomalidomide and injection of gemcitabine/nab-paclitaxel. Results In pomalidomide and gemcitabine/nab-paclitaxel group, gemcitabine/nab-paclitaxel-induced NF-κB activation was inhibited and apoptosis was enhanced in comparison with those in the other groups both in vitro and in vivo. Especially, this study revealed for the first time that pomalidomide enhances p53 on pancreatic cancer cells. The tumor growth in the pomalidomide and gemcitabine/nab-paclitaxel group was significantly slower than that in the gemcitabine/nab-paclitaxel group. Moreover, pomalidomide induced G0/G1 cell cycle arrest and suppressed angiogenesis. Conclusions Pomalidomide enhanced the antitumor effect of gemcitabine/nab-paclitaxel by inhibition of NF-κB activation. This combination regimen would be a novel strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Sugano
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Peddada KV, Brown A, Verma V, Nebbioso M. Therapeutic potential of curcumin in major retinal pathologies. Int Ophthalmol 2018; 39:725-734. [DOI: 10.1007/s10792-018-0845-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
|
30
|
Chen X, Kunda PE, Lin J, Zhou M, Huang J, Zhang H, Liu T. SYK-targeted dendritic cell-mediated cytotoxic T lymphocytes enhance the effect of immunotherapy on retinoblastoma. J Cancer Res Clin Oncol 2018; 144:675-684. [PMID: 29372378 PMCID: PMC5843685 DOI: 10.1007/s00432-018-2584-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Retinoblastoma (RB) is the most common primary intraocular tumor in children. Chemotherapy is currently the main method of RB treatment. Unfortunately, RB often becomes chemoresistant and turns lethal. Here, we used in vitro cell immunotherapy to explore whether adoptive immunotherapy could be used as a potential treatment for RB. We focused on spleen tyrosine kinase (SYK), which is significantly upregulated in RB cells and serves as a marker for RB cells. METHODS Using lentiviruses, we genetically modified dendritic cells (DCs) to express and present the SYK peptide antigen to cytotoxic T lymphocytes (CTLs) in vitro. We used SYK-negative cell lines (MDA-MB-231, MCF-10A, and hTERT-RPE1) and SYK-positive cell lines (MCF-7 and RB-Y79) to evaluate the specificity and cytotoxicity of DC presented CTLs using FACS, live-cell imaging, and RNA interference. RESULTS The cytotoxicity of CTLs induced by SYK-overexpressing DCs (SYK-DC-CTLs) was enhanced more than three times in SYK-positive cell lines compared with SYK-negative cell lines. DCs primed with SYK could drive CTL cytotoxicity against SYK-positive cell lines but not against SYK-negative cell lines. Moreover, SYK-silenced RB-Y79 cells successfully evaded the cytotoxic attack from SYK-DC-CTLs. However, SYK-DC-CTLs could target SYK overexpressed hTERT-RPE1 cells, suggesting that SYK is a specific antigen for RB. Furthermore, SYK-DC-CTL exhibited specific cytotoxicity against carboplatin-resistant RB-Y79 cells in vitro. CONCLUSIONS Our data showed that SYK could be a potential immunotherapy target mediated by DCs. We propose SYK as a candidate target for treatment of chemoresistant RB.
Collapse
Affiliation(s)
- Xuemei Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Patricia Elena Kunda
- Centro Investigación Medicina Traslacional "Severo Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina
| | - Jianwei Lin
- Shenzhen Key Laboratory for Anti-Ageing and Regenerative Medicine, Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, Guangdong, China
| | - Meiling Zhou
- Shenzhen Key Laboratory for Anti-Ageing and Regenerative Medicine, Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, Guangdong, China
- Department of Biotherapy, Shenzhen Luohu People's Hospital, No. 47 Youyi Road, Shenzhen, 518001, Guangdong, China
| | - Jinghan Huang
- Department of Biotherapy, Shenzhen Luohu People's Hospital, No. 47 Youyi Road, Shenzhen, 518001, Guangdong, China
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tao Liu
- Shenzhen Key Laboratory for Anti-Ageing and Regenerative Medicine, Health Science Center, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, Guangdong, China.
- Department of Biotherapy, Shenzhen Luohu People's Hospital, No. 47 Youyi Road, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
31
|
Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis 2018; 9:55. [PMID: 29352139 PMCID: PMC5833441 DOI: 10.1038/s41419-017-0089-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/25/2017] [Accepted: 10/20/2017] [Indexed: 12/28/2022]
Abstract
Cellular senescence, which leads to a cell cycle arrest of damaged or dysfunctional cells, is an important mechanism to restrain the malignant progression of cancer cells. Because metabolic changes underlie many cell-fate decisions, it has been suggested that cell metabolism might play key roles in senescence pathways. Here, we show that mitochondrial glutamine metabolism regulates senescence in human pancreatic ductal adenocarcinoma (PDAC) cells. Glutamine deprivation or inhibition of mitochondrial aspartate transaminase (GOT2) results in a profound induction of senescence and a suppression of PDAC growth. Glutamine carbon flow through GOT2 is required to create NADPH and to maintain the cellular redox state. We found that elevated reactive oxygen species levels by GOT2 knockdown lead to the cyclin-dependent kinase inhibitor p27-mediated senescence. Importantly, PDAC cells exhibit distinct dependence on this pathway, whereas knockdown of GOT2 did not induce senescence in non-transformed cells. The essentiality of GOT2 in senescence regulation of PDAC, which is dispensable in their normal counterparts, may have profound implications for the development of strategies to treat these refractory cancers.
Collapse
|
32
|
Nair RM, Balla MM, Khan I, Kalathur RKR, Kondaiah P, Vemuganti GK. In vitro characterization of CD133 lo cancer stem cells in Retinoblastoma Y79 cell line. BMC Cancer 2017; 17:779. [PMID: 29162051 PMCID: PMC5698942 DOI: 10.1186/s12885-017-3750-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Background Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSClo/SSClo/CD133lo/CD44hi). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. Methods The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133lo/CD133hi) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Results Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133lo cells (16.1 ± 0.2%) were FSClo/SSClo, predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133hi cells. The CD133lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133hi cells. Conclusions This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming ability, differentiation to CD133hi cells, higher invasiveness potential, drug resistance and primitive gene expression pattern. These findings provide a proof of concept for methodological characterization of the retinoblastoma CSCs with future implications for improved diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Murali Ms Balla
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad, 500034, India.,Radiation Signalling and Cancer Biology Section, RB & HSD, BSG, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Imran Khan
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.,National Cancer Institute, National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Ravi Kiran Reddy Kalathur
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.,Department of Biomedicine, University of Basel, 4058, Basel, Switzerland
| | - Paturu Kondaiah
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
33
|
Geurtsen ML, Kors WA, Moll AC, Smits C. Long-term audiologic follow-up of carboplatin-treated children with retinoblastoma. Ophthalmic Genet 2016; 38:74-78. [PMID: 27050825 DOI: 10.3109/13816810.2015.1137325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Children treated for retinoblastoma with carboplatin have an increased risk for ototoxicity. Impaired hearing may have major consequences for these children, because they often suffer from reduced vision. Previous studies have shown limited information on the incidence and severity of carboplatin-induced ototoxicity and the used audiologic methods. The frequency of audiological testing is often limited and the audiologic follow-up time is relatively short. OBJECTIVE The aim of this study was to determine the long-term effects of carboplatin ototoxicity in children with retinoblastoma. MATERIALS AND METHODS In this retrospective non-randomized single center cohort study, we reviewed audiologic results of 25 patients. Experienced audiologists analyzed the pure-tone audiograms. RESULTS All patients had normal hearing prior to therapy and had a mean age of 11 months at first carboplatin administration. The mean audiologic follow-up was 12.0 years with a median of 11.6 (IQR 4.8) years. Three patients were excluded: two passed away and one could not participate in the audiologic tests. One of the 22 included patients developed sustained low-grade bilateral high-frequency hearing loss between 2 and 7 years after the last carboplatin dose. In one patient it was not possible to make a reliable conclusion due to a conductive hearing loss component. Twenty patients had normal hearing. CONCLUSIONS We observed no clear effect between carboplatin administration in young children and clinical significant ototoxicity in the long term. One child showed low-grade bilateral high-frequency hearing loss.
Collapse
Affiliation(s)
- Madelon L Geurtsen
- a Department of Pediatric Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Wijnanda A Kors
- a Department of Pediatric Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Annette C Moll
- b Department of Ophthalmology , VU University Medical Center , Amsterdam , The Netherlands
| | - Cas Smits
- c Department of Otolaryngology, Head and Neck Surgery, Section of Ear & Hearing , and EMGO Institute for Health Care Research, VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
34
|
Affiliation(s)
- Pia R. Mendoza
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Hans E. Grossniklaus
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Osteosarcoma: prognosis plateau warrants retinoblastoma pathway targeted therapy. Signal Transduct Target Ther 2016; 1:16001. [PMID: 29263893 PMCID: PMC5657420 DOI: 10.1038/sigtrans.2016.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents, affecting ~560 young patients in the United States annually. The term OS describes a diverse array of subtypes with varying prognoses, but the majority of tumors are high grade and aggressive. Perhaps because the true etiology of these aggressive tumors remains unknown, advances in OS treatment have reached a discouraging plateau, with only incremental improvements over the past 40 years. Thus, research surrounding the pathogenesis of OS is essential, as it promises to unveil novel therapeutic targets that can attack tumor cells with greater specificity and lower toxicity. Among the candidate molecular targets in OS, the retinoblastoma (RB) pathway demonstrates the highest frequency of inactivation and thus represents a particularly promising avenue for molecular targeted therapy. This review examines the present thinking and practices in OS treatment and specifically highlights the relevance of the RB pathway in osteosarcomagenesis. Through further investigation into RB pathway-related novel therapeutic targets, we believe that a near-term breakthrough in improved OS prognosis is possible.
Collapse
|
36
|
Rangamani S, SathishKumar K, Manoharan N, Julka PK, Rath GK, Shanta V, Swaminathan R, Rama R, Datta K, Mandal S, Koyande S, Deshmane V, Ganesh B, Banavali SD, Badwe RA, Ramesh C, Appaji L, Nandakumar A. Paediatric retinoblastoma in India: evidence from the National Cancer Registry Programme. Asian Pac J Cancer Prev 2016; 16:4193-8. [PMID: 26028071 DOI: 10.7314/apjcp.2015.16.10.4193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Globally, retinoblastoma is the most common primary intraocular malignancy occurring in children. This paper documents the recent incidence rates of retinoblastoma by age and sex groups from the Population Based Cancer Registries (PBCRs) of Bangalore, Mumbai, Chennai, Delhi and Kolkata using the data from the National Cancer Registry Programme. MATERIALS AND METHODS Relative proportions, sex ratio, method of diagnosis, and incidence rates (crude and age standardized) for each PBCR and pooled rates of the five PBCRs were calculated for the years 2005/06 to 2009/10. Standard errors and 95% confidence limits of ASIRs by sex group in each PBCR were calculated using the Poisson distribution. Standardised rate ratios of ASIR by sex group and rate ratios at risk were also calculated. RESULTS The maximum retinoblastoma cases were in the 0-4 age group, accounting for 78% (females) and 81% (males) of pooled cases from five PBCRs. The pooled crude incidence rate in the 0-14 age group was 3.5 and the pooled ASIR was 4.4 per million. The pooled ASIR in the 0-4, 5-9 and 10-14 age group were 9.6, 2.0 and 0.1 respectively. The M/F ratio in Chennai (1.9) and Bangalore PBCRs (2.0) was much higher than the other PBCRs. Among the PBCRs, the highest incidence rate in 0-4 age group was found in males in Chennai (21.7 per million), and females in Kolkata (18.9 per million). There was a distinct variation in incidence rates in the PBCRs in different geographic regions of India.
Collapse
Affiliation(s)
- Sukanya Rangamani
- National Centre for Disease Informatics and Research, Indian Council of Medical Research, India E-mail :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cerman E, Çekiç O. Clinical use of photodynamic therapy in ocular tumors. Surv Ophthalmol 2015; 60:557-74. [PMID: 26079736 DOI: 10.1016/j.survophthal.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Although the introduction of intravitreal anti-vascular endothelial growth factor drugs reduced the indications for photodynamic therapy in ophthalmology, it may still be used in various ocular tumors. Although many studies have shown that photodynamic therapy is effective in ocular tumors, the literature consists of case reports and series. In this review, we systematically performed a meta-analysis for the use of photodynamic therapy in circumscribed choroidal hemangioma, diffuse choroidal hemangioma, retinal capillary hemangioma, von Hippel-Lindau angiomatosis, choroidal melanoma, retinal astrocytoma, retinoblastoma, eyelid tumors, conjunctival tumors, and choroidal metastasis.
Collapse
Affiliation(s)
- Eren Cerman
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Osman Çekiç
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
38
|
Wenzel AA, O’Hare MN, Shadmand M, Corson TW. Optical coherence tomography enables imaging of tumor initiation in the TAg-RB mouse model of retinoblastoma. Mol Vis 2015; 21:515-22. [PMID: 25999678 PMCID: PMC4440496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Retinoblastoma is the most common primary intraocular malignancy in children. Although significant advances in treatment have decreased mortality in recent years, morbidity continues to be associated with these therapies, and therefore, there is a pressing need for new therapeutic options. Transgenic mouse models are popular for testing new therapeutics as well as studying the pathophysiology of retinoblastoma. The T-antigen retinoblastoma (TAg-RB) model has close molecular and histological resemblance to human retinoblastoma tumors; these mice inactivate pRB by retinal-specific expression of the Simian Virus 40 T-antigens. Here, we evaluated whether optical coherence tomography (OCT) imaging could be used to document tumor growth in the TAg-RB model from the earliest stages of tumor development. METHODS The Micron III rodent imaging system was used to obtain fundus photographs and OCT images of both eyes of TAg-RB mice weekly from 2 to 12 weeks of age and at 16 and 20 weeks of age to document tumor development. Tumor morphology was confirmed with histological analysis. RESULTS Before being visible on funduscopy, hyperreflective masses arising in the inner nuclear layer were evident at 2 weeks of age with OCT imaging. After most of these hyperreflective cell clusters disappeared around 4 weeks of age, the first tumors became visible on OCT and funduscopy by 6 weeks. The masses grew into discrete, discoid tumors, preferentially in the periphery, that developed more irregular morphology over time, eventually merging and displacing the inner retinal layers into the vitreous. CONCLUSIONS OCT is a non-invasive imaging modality for tracking early TAg-RB tumor growth in vivo. Using OCT, we characterized TAg-positive cells as early as 2 weeks, corresponding to the earliest stages at which tumors are histologically evident, and well before they are evident with funduscopy. Tracking tumor growth from its earliest stages will allow better analysis of the efficacy of novel therapeutics and genetic factors tested in this powerful mouse model.
Collapse
Affiliation(s)
- Andrea A. Wenzel
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN
| | - Michael N. O’Hare
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN,School of Biomedical Science, University of Ulster, Coleraine, Northern Ireland, UK
| | - Mehdi Shadmand
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| |
Collapse
|
39
|
Mouw KW, Sethi RV, Yeap BY, MacDonald SM, Chen YLE, Tarbell NJ, Yock TI, Munzenrider JE, Adams J, Grabowski E, Mukai S, Shih HA. Proton radiation therapy for the treatment of retinoblastoma. Int J Radiat Oncol Biol Phys 2014; 90:863-9. [PMID: 25227498 PMCID: PMC4253018 DOI: 10.1016/j.ijrobp.2014.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 07/21/2014] [Indexed: 11/22/2022]
Abstract
PURPOSE To investigate long-term disease and toxicity outcomes for pediatric retinoblastoma patients treated with proton radiation therapy (PRT). METHODS AND MATERIALS This is a retrospective analysis of 49 retinoblastoma patients (60 eyes) treated with PRT between 1986 and 2012. RESULTS The majority (84%) of patients had bilateral disease, and nearly half (45%) had received prior chemotherapy. At a median follow-up of 8 years (range, 1-24 years), no patients died of retinoblastoma or developed metastatic disease. The post-PRT enucleation rate was low (18%), especially in patients with early-stage disease (11% for patients with International Classification for Intraocular Retinoblastoma [ICIR] stage A-B disease vs 23% for patients with ICIR stage C-D disease). Post-PRT ophthalmologic follow-up was available for 61% of the preserved eyes (30 of 49): 14 of 30 eyes (47%) had 20/40 visual acuity or better, 7 of 30 (23%) had moderate visual acuity (20/40-20/600), and 9 of 30 (30%) had little or no useful vision (worse than 20/600). Twelve of 60 treated eyes (20%) experienced a post-PRT event requiring intervention, with cataracts the most common (4 eyes). No patients developed an in-field second malignancy. CONCLUSIONS Long-term follow-up of retinoblastoma patients treated with PRT demonstrates that PRT can achieve high local control rates, even in advanced cases, and many patients retain useful vision in the treated eye. Treatment-related ocular side effects were uncommon, and no radiation-associated malignancies were observed.
Collapse
Affiliation(s)
- Kent W Mouw
- Harvard Radiation Oncology Program, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Roshan V Sethi
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yen-Lin E Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - John E Munzenrider
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Judith Adams
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Grabowski
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Shizuo Mukai
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
40
|
Venkatesan N, Deepa P, Vasudevan M, Khetan V, Reddy AM, Krishnakumar S. Integrated Analysis of Dysregulated miRNA-gene Expression in HMGA2-silenced Retinoblastoma Cells. Bioinform Biol Insights 2014; 8:177-91. [PMID: 25232279 PMCID: PMC4159370 DOI: 10.4137/bbi.s16958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 12/29/2022] Open
Abstract
Retinoblastoma (RB) is a primary childhood eye cancer. HMGA2 shows promise as a molecule for targeted therapy. The involvement of miRNAs in genome-level molecular dys-regulation in HMGA2-silenced RB cells is poorly understood. Through miRNA expression microarray profiling, and an integrated array analysis of the HMGA2-silenced RB cells, the dysregulated miRNAs and the miRNA-target relationships were modelled. Loop network analysis revealed a regulatory association between the transcription factor (SOX5) and the deregulated miRNAs (miR-29a, miR-9*, miR-9-3). Silencing of HMGA2 deregulated the vital oncomirs (miR-7, miR-331, miR-26a, miR-221, miR-17~92 and miR-106b∼25) in RB cells. From this list, the role of the miR-106b∼25 cluster was examined further for its expression in primary RB tumor tissues (n = 20). The regulatory targets of miR-106b∼25 cluster namely p21 (cyclin-dependent kinase inhibitor) and BIM (pro-apoptotic gene) were elevated, and apoptotic cell death was observed, in RB tumor cells treated with the specific antagomirs of the miR-106b∼25 cluster. Thus, suppression of miR-106b∼25 cluster controls RB tumor growth. Taken together, HMGA2 mediated anti-tumor effect present in RB is, in part, mediated through the miR-106b∼25 cluster.
Collapse
Affiliation(s)
- Nalini Venkatesan
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India. ; Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Pr Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) - Pilani, Rajasthan, India
| | | | - Vikas Khetan
- Sri Bhagawan Mahavir Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Ashwin M Reddy
- Department of Ophthalmology, Barts Health NHS Trust, London, UK
| | - Subramanian Krishnakumar
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
41
|
Thangavel C, Boopathi E, Ciment S, Liu Y, O'Neill R, Sharma A, McMahon SB, Mellert H, Addya S, Ertel A, Birbe R, Fortina P, Dicker AP, Knudsen KE, Den RB. The retinoblastoma tumor suppressor modulates DNA repair and radioresponsiveness. Clin Cancer Res 2014; 20:5468-5482. [PMID: 25165096 DOI: 10.1158/1078-0432.ccr-14-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Perturbations in the retinoblastoma pathway are over-represented in advanced prostate cancer; retinoblastoma loss promotes bypass of first-line hormone therapy. Conversely, preliminary studies suggested that retinoblastoma-deficient tumors may become sensitized to a subset of DNA-damaging agents. Here, the molecular and in vivo consequence of retinoblastoma status was analyzed in models of clinical relevance. EXPERIMENTAL DESIGN Experimental work was performed with multiple isogenic prostate cancer cell lines (hormone sensitive: LNCaP and LAPC4 cells and hormone resistant C42, 22Rv1 cells; stable knockdown of retinoblastoma using shRNA). Multiple mechanisms were interrogated including cell cycle, apoptosis, and DNA damage repair. Transcriptome analysis was performed, validated, and mechanisms discerned. Cell survival was measured using clonogenic cell survival assay and in vivo analysis was performed in nude mice with human derived tumor xenografts. RESULTS Loss of retinoblastoma enhanced the radioresponsiveness of both hormone-sensitive and castrate-resistant prostate cancer. Hypersensitivity to ionizing radiation was not mediated by cell cycle or p53. Retinoblastoma loss led to alteration in DNA damage repair and activation of the NF-κB pathway and subsequent cellular apoptosis through PLK3. In vivo xenografts of retinoblastoma-deficient tumors exhibited diminished tumor mass, lower PSA kinetics, and decreased tumor growth after treatment with ionizing radiation (P < 0.05). CONCLUSIONS Loss of retinoblastoma confers increased radiosensitivity in prostate cancer. This hypersensitization was mediated by alterations in apoptotic signaling. Combined, these not only provide insight into the molecular consequence of retinoblastoma loss, but also credential retinoblastoma status as a putative biomarker for predicting response to radiotherapy.
Collapse
Affiliation(s)
| | - Ettickan Boopathi
- Department of Surgery, Division of Urology, Glenolden, Pennsylvania, USA
| | - Steve Ciment
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yi Liu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raymond O'Neill
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ankur Sharma
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steve B McMahon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hestia Mellert
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Colorado, USA
| | - Sankar Addya
- Cancer Genomics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam Ertel
- Cancer Genomics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruth Birbe
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Cancer Genomics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Karen E Knudsen
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Villegas VM, Gold AS, Wildner A, Ehlies F, Murray TG. Genomic landscape of retinoblastoma. Clin Exp Ophthalmol 2014; 42:2-3. [PMID: 24433353 DOI: 10.1111/ceo.12277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Meng B, Wang Y, Li B. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells. Int J Mol Med 2014; 34:399-408. [PMID: 24939714 PMCID: PMC4094585 DOI: 10.3892/ijmm.2014.1812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the role of the transcription factor, PAX6, in the development of retinoblastoma. The expression of endogenous PAX6 was knocked down using PAX6-specific lentivirus in two human retinoblastoma cell lines, SO-Rb50 and Y79. Cell proliferation functional assays and apoptotic assays were performed on the cells in which PAX6 was knocked down. The results revealed that PAX6 knockdown efficiency was significant (P<0.01, n=3) in the SO-Rb50 and Y79 cells. The inhibition of PAX6 reduced tumor cell apoptosis (P<0.05, n=3), but induced cell cycle S phase arrest (SO-Rb50; P<0.05, n=3) and G2/M phase arrest (Y79; P<0.05, n=3). Western blot analysis indicated that the inhibition of PAX6 increased the levels of the anti-apoptotic proteins, Bcl-2, proliferating cell nuclear antigen (PCNA) and CDK1, but reduced the levels of the pro-apoptotic proteins, BAX and p21. In conclusion, our data demonstrate that the suppression of PAX6 increases proliferation and decreases apoptosis in human retinoblastoma cells by regulating several cell cycle and apoptosis biomarkers.
Collapse
Affiliation(s)
- Bo Meng
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Yisong Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Bin Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| |
Collapse
|
44
|
Kang J, Sergio CM, Sutherland RL, Musgrove EA. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer 2014; 14:32. [PMID: 24444383 PMCID: PMC3903446 DOI: 10.1186/1471-2407-14-32] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Although MYC is an attractive therapeutic target for breast cancer treatment, it has proven challenging to inhibit MYC directly, and clinically effective pharmaceutical agents targeting MYC are not yet available. An alternative approach is to identify genes that are synthetically lethal in MYC-dependent cancer. Recent studies have identified several cell cycle kinases as MYC synthetic-lethal genes. We therefore investigated the therapeutic potential of specific cyclin-dependent kinase (CDK) inhibition in MYC-driven breast cancer. Methods Using small interfering RNA (siRNA), MYC expression was depleted in 26 human breast cancer cell lines and cell proliferation evaluated by BrdU incorporation. MYC-dependent and MYC-independent cell lines were classified based on their sensitivity to siRNA-mediated MYC knockdown. We then inhibited CDKs including CDK4/6, CDK2 and CDK1 individually using either RNAi or small molecule inhibitors, and compared sensitivity to CDK inhibition with MYC dependence in breast cancer cells. Results Breast cancer cells displayed a wide range of sensitivity to siRNA-mediated MYC knockdown. The sensitivity was correlated with MYC protein expression and MYC phosphorylation level. Sensitivity to siRNA-mediated MYC knockdown did not parallel sensitivity to the CDK4/6 inhibitor PD0332991; instead MYC-independent cell lines were generally sensitive to PD0332991. Cell cycle arrest induced by MYC knockdown was accompanied by a decrease in CDK2 activity, but inactivation of CDK2 did not selectively affect the viability of MYC-dependent breast cancer cells. In contrast, CDK1 inactivation significantly induced apoptosis and reduced viability of MYC-dependent cells but not MYC- independent cells. This selective induction of apoptosis by CDK1 inhibitors was associated with up-regulation of the pro-apoptotic molecule BIM and was p53-independent. Conclusions Overall, these results suggest that further investigation of CDK1 inhibition as a potential therapy for MYC-dependent breast cancer is warranted.
Collapse
Affiliation(s)
| | | | | | - Elizabeth A Musgrove
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW An update on heritable eye disease will allow informed patient counseling and improved patient care. RECENT FINDINGS New loci and genes have been associated with identifiable heritable ocular traits. Molecular genetic analysis is available for many of these genes either as part of research or for clinical testing. The advent of gene array technologies has enabled screening of samples for known mutations in genes linked to various disorders. Exomic sequencing has proven to be particularly successful in research protocols in identifying the genetic causation of rare genetic traits by pooling patient resources and discovering new genes. Further, genetic analysis has led improvement in patient care and counselling, as exemplified by the continued advances in our treatment of retinoblastoma. SUMMARY Patients and families are commonly eager to participate in either research or clinical testing to improve their understanding of the cause and heritability of an ocular condition. Many patients hope that testing will then lead to appropriate treatments or cures. The success of gene therapy in the RPE65 form of Leber congenital amaurosis has provided a brilliant example of this hope; that a similar trial may become available to other patients and families burdened by genetic disease.
Collapse
|
46
|
Abstract
Advances in animal models of retinoblastoma have accelerated research in this field, aiding in understanding tumor progression and assessing therapeutic modalities. The distinct pattern of mutations and specific location of this unique intraocular tumor have paved the way for two types of models- those based on genetic mutations, and xenograft models. Retinoblastoma gene knockouts with an additional loss of p107, p130, p53 and using promoters of Nestin, Chx10, and Pax6 genes show histological phenotypic changes close to the human form of retinoblastoma. Conditional knockout in specific layers of the developing retina has thrown light on the origin of this tumor. The use of xenograft models has overcome the obstacle of time delay in the presentation of symptoms, which remains a crucial drawback of genetic models. With the advances in molecular and imaging technologies, the current research aims to develop models that mimic all the features of retinoblastoma inclusive of its initiation, progression and metastasis. The combination of genetic and xenograft models in retinoblastoma research has and will help to pave way for better understanding of retinoblastoma tumor biology and also in designing and testing effective diagnostic and treatment modalities.
Collapse
Affiliation(s)
- Rohini M Nair
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
47
|
Price EA, Price K, Kolkiewicz K, Hack S, Reddy MA, Hungerford JL, Kingston JE, Onadim Z. Spectrum of RB1 mutations identified in 403 retinoblastoma patients. J Med Genet 2013; 51:208-14. [PMID: 24225018 DOI: 10.1136/jmedgenet-2013-101821] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Retinoblastoma (RB) is a malignant, childhood tumour of the developing retina that occurs with an estimated frequency of 1 in 20 000. Identification of oncogenic mutations in the RB1 gene aids in the clinical management of families with a heritable predisposition to RB. Here we present the spectrum of genetic and epigenetic changes identified in 194 tumours and 209 blood samples, from 403 unrelated RB patients. METHODS Mutation screening was carried out across all 27 RB1 exons and their associated splice sites. Small coding sequence changes were detected using fluorescent conformation analysis followed by sequencing. Large exonic deletions were detected by quantitative fluorescent PCR. Methylation specific PCR of the RB1 promoter was performed to detect epigenetic alterations. Polymorphism analysis was used to determine loss of heterozygosity in tumour samples. RESULTS 95% of the expected mutations were identified in the tumour samples, with 16 samples exhibiting only one mutation, while two samples had no detectable RB1 mutation. 96% of bilateral/familial RB blood samples and 9.5% of unilateral sporadic blood samples, yielded mutations. 111 were novel mutations. CONCLUSIONS The full range of screening techniques is required to achieve a high screening sensitivity in RB patients.
Collapse
Affiliation(s)
- Elizabeth A Price
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hu F, Meng X, Tong Q, Liang L, Xiang R, Zhu T, Yang S. BMP-6 inhibits cell proliferation by targeting microRNA-192 in breast cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2379-90. [PMID: 24012720 DOI: 10.1016/j.bbadis.2013.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/19/2013] [Accepted: 08/28/2013] [Indexed: 01/21/2023]
Abstract
Although bone morphogenetic protein-6 (BMP-6) has been identified as a tumor suppressor associated with breast cancer differentiation and metastasis, the potential roles of BMP-6 in regulating cell cycle progression have not been fully examined. In the present study, we provide the novel finding that induction of BMP-6 in MDA-MB-231 breast cancer cells significantly inhibits cell proliferation by decreasing the number of cells in S phase of the cell cycle, resulting in inhibition of tumorigenesis in a nude mouse xenograft model. Further investigation indicated that BMP-6 up-regulates the expression of microRNA-192 (miR-192) in MDA-MB-231 cells. Elevated expression of miR-192 caused cell growth arrest, which is similar to the effect of BMP-6 induction. Importantly, depletion of endogenous miR-192 by miRNA inhibition significantly attenuated BMP-6-mediated repression of cell cycle progression. In breast cancer tissue, miR-192 expression is significantly down-regulated in tumor samples and positively correlates with the expression of BMP-6, demonstrating the inhibitory effect of BMP-6 on cell proliferation through miR-192 regulation. Additionally, using the RT(2) Profiler PCR Array, retinoblastoma 1 (RB1) was identified as a direct target of the BMP-6/miR-192 pathway in regulating cell proliferation in breast cancer. In conclusion, we have identified an important role for BMP-6/miR-192 signaling in the regulation of cell cycle progression in breast cancer. Furthermore, BMP-6/miR-192 was expressed at low levels in breast cancer specimens, indicating that this pathway might represent a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Fen Hu
- Medical College of Nankai University, Tianjin, China; College of Life Sciences, Hebei United University, Tangshan, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Neuron-NG2 cell synapses: novel functions for regulating NG2 cell proliferation and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402843. [PMID: 23984358 PMCID: PMC3747365 DOI: 10.1155/2013/402843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.
Collapse
|
50
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|