1
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena HI, De Backer J, Mosquera LM, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications. Am J Hum Genet 2024; 111:2219-2231. [PMID: 39226896 PMCID: PMC11480851 DOI: 10.1016/j.ajhg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, NE, USA
| | - Malenka M Bissell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Laura Muiño Mosquera
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodolfo Citro
- Cardiothoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole Exome Sequencing Uncovers the Genetic Complexity of Bicuspid Aortic Valve in Families with Early Onset Complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302406. [PMID: 38370698 PMCID: PMC10871469 DOI: 10.1101/2024.02.07.24302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
3
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
4
|
Hayashi K, Teramoto R, Nomura A, Asano Y, Beerens M, Kurata Y, Kobayashi I, Fujino N, Furusho H, Sakata K, Onoue K, Chiang DY, Kiviniemi TO, Buys E, Sips P, Burch ML, Zhao Y, Kelly AE, Namura M, Kita Y, Tsuchiya T, Kaku B, Oe K, Takeda Y, Konno T, Inoue M, Fujita T, Kato T, Funada A, Tada H, Hodatsu A, Nakanishi C, Sakamoto Y, Tsuda T, Nagata Y, Tanaka Y, Okada H, Usuda K, Cui S, Saito Y, MacRae CA, Takashima S, Yamagishi M, Kawashiri MA, Takamura M. Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases. Cardiovasc Res 2020; 116:2116-2130. [PMID: 31977013 DOI: 10.1093/cvr/cvaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. METHODS AND RESULTS We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analysed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as 'pathogenic' by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that two variants in KCNH2 and SCN5A, four variants in SCN10A, and one variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from 'Uncertain significance' to 'Likely pathogenic' in six probands. CONCLUSION Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD.
Collapse
Affiliation(s)
- Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Ryota Teramoto
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manu Beerens
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yasutaka Kurata
- Department of Physiology, Kanazawa Medical University, Uchinada, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroshi Furusho
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kenji Onoue
- Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - David Y Chiang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tuomas O Kiviniemi
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Buys
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick Sips
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Micah L Burch
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yanbin Zhao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy E Kelly
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masanobu Namura
- Department of Cardiology, Kanazawa Cardiovascular Hospital, Kanazawa, Japan
| | - Yoshihito Kita
- Department of Internal Medicine, Wajima Municipal Hospital, Wajima, Japan
| | - Taketsugu Tsuchiya
- Trans-catheter Cardiovascular Therapeutics, Kanazawa Medical University, Uchinada, Japan
| | - Bunji Kaku
- Division of Cardiovascular Medicine, Toyama Red Cross Hospital, Toyama, Japan
| | - Kotaro Oe
- Division of Internal Medicine, Saiseikai Kanazawa Hospital, Kanazawa, Japan
| | - Yuko Takeda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuo Konno
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masaru Inoue
- Department of Cardiology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Takashi Fujita
- Division of Cardiology, Kouseiren Takaoka Hospital, Takaoka, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Akira Funada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Akihiko Hodatsu
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Chiaki Nakanishi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | | | - Toyonobu Tsuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoji Nagata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshihiro Tanaka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Keisuke Usuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Shihe Cui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshihiko Saito
- Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masakazu Yamagishi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan.,Osaka University of Human Sciences, Settu, Japan
| | - Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
5
|
Kapoor A, Lee D, Zhu L, Soliman EZ, Grove ML, Boerwinkle E, Arking DE, Chakravarti A. Multiple SCN5A variant enhancers modulate its cardiac gene expression and the QT interval. Proc Natl Acad Sci U S A 2019; 116:10636-10645. [PMID: 31068470 PMCID: PMC6561183 DOI: 10.1073/pnas.1808734116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rationale for genome-wide association study (GWAS) results is sequence variation in cis-regulatory elements (CREs) modulating a target gene's expression as the major cause of trait variation. To understand the complete molecular landscape of one of these GWAS loci, we performed in vitro reporter screens in cardiomyocyte cell lines for CREs overlapping nearly all common variants associated with any of five independent QT interval (QTi)-associated GWAS hits at the SCN5A-SCN10A locus. We identified 13 causal CRE variants using allelic reporter activity, cardiomyocyte nuclear extract-based binding assays, overlap with human cardiac tissue DNaseI hypersensitive regions, and predicted impact of sequence variants on DNaseI sensitivity. Our analyses identified at least one high-confidence causal CRE variant for each of the five sentinel hits that could collectively predict SCN5A cardiac gene expression and QTi association. Although all 13 variants could explain SCN5A gene expression, the highest statistical significance was obtained with seven variants (inclusive of the five above). Thus, multiple, causal, mutually associated CRE variants can underlie GWAS signals.
Collapse
Affiliation(s)
- Ashish Kapoor
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030;
| | - Dongwon Lee
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| | - Luke Zhu
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Megan L Grove
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eric Boerwinkle
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016;
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
6
|
Di Stolfo G, Palumbo P, Castellana S, Mastroianno S, Biagini T, Palumbo O, Leone MP, De Luca G, Potenza DR, Mazza T, Russo AA, Carella M. Sudden cardiac death in J wave syndrome with short QT associated to a novel mutation in Nav 1.8 coding gene SCN10A: First case report for a possible pharmacogenomic role. J Electrocardiol 2018; 51:809-813. [DOI: 10.1016/j.jelectrocard.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
|
7
|
Abou Ziki MD, Seidelmann SB, Smith E, Atteya G, Jiang Y, Fernandes RG, Marieb MA, Akar JG, Mani A. Deleterious protein-altering mutations in the SCN10A voltage-gated sodium channel gene are associated with prolonged QT. Clin Genet 2018; 93:741-751. [PMID: 28407228 PMCID: PMC5640462 DOI: 10.1111/cge.13036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long QT syndrome (LQT) is a pro-arrhythmogenic condition with life-threatening complications. Fifteen genes have been associated with congenital LQT, however, the genetic causes remain unknown in more than 20% of cases. MATERIALS AND METHODS Eighteen patients with history of palpitations, pre-syncope, syncope and prolonged QT were referred to the Yale Cardiovascular Genetics Program. All subjects underwent whole-exome sequencing (WES) followed by confirmatory Sanger sequencing. Mutation burden analysis was carried out using WES data from 16 subjects with no identifiable cause of LQT. RESULTS Deleterious and novel SCN10A mutations were identified in 3 of the 16 patients (19%) with idiopathic LQT. These included 2 frameshifts and 1 missense variants (p.G810fs, p.R1259Q, and p.P1877fs). Further analysis identified 2 damaging SCN10A mutations with allele frequencies of approximately 0.2% (p.R14L and p.R1268Q) in 2 independent cases. None of the SCN10A mutation carriers had mutations in known arrhythmia genes. Damaging SCN10A mutations (p.R209H and p.R485C) were also identified in the 2 subjects on QT prolonging medications. CONCLUSION Our findings implicate SCN10A in LQT. The presence of frameshift mutations suggests loss-of-function as the underlying disease mechanism. The common association with atrial fibrillation suggests a unique mechanism of disease for this LQT gene.
Collapse
Affiliation(s)
- Maen D. Abou Ziki
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Sara B. Seidelmann
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Emily Smith
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Gourg Atteya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Yuexin Jiang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Rodolfo Gil Fernandes
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Mark A. Marieb
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Joseph G. Akar
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
| | - Arya Mani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510
- Deparetment of Genetics, Yale University School of Medicine, New Haven, CT, 06510
| |
Collapse
|
8
|
Stroud DM, Yang T, Bersell K, Kryshtal DO, Nagao S, Shaffer C, Short L, Hall L, Atack TC, Zhang W, Knollmann BC, Baudenbacher F, Roden DM. Contrasting Nav1.8 Activity in Scn10a-/- Ventricular Myocytes and the Intact Heart. J Am Heart Assoc 2016; 5:e002946. [PMID: 27806966 PMCID: PMC5210363 DOI: 10.1161/jaha.115.002946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genome-wide association studies have implicated variants in SCN10A, which encodes Nav1.8, as modulators of cardiac conduction. Follow-up work has indicated the SCN10A sequence includes an intronic enhancer for SCN5A. Yet the role of the Nav1.8 protein in the myocardium itself is still unclear. To investigate this, we use homozygous knockout mice (Scn10a-/-) generated by disruption of exons 4 and 5, leaving the Scn5a enhancer intact. METHODS AND RESULTS We previously reported that pharmacologic blockade of Nav1.8 in wild-type animals blunts action potential prolongation by ATX-II at slow drive rates (≤1 Hz). Here we present evidence of the same blunting in Scn10a-/- compared to wild-type ventricular myocytes, supporting the conclusion that Nav1.8 contributes to late sodium current at slow rates. In contrast to earlier studies, we found no differences in electrocardiographic parameters between genotypes. Low-dose ATX-II exposure in lightly anesthetized animals and Langendorff-perfused hearts prolonged QTc and generated arrhythmias to the same extent in wild-type and Scn10a-/-. RNA sequencing failed to identify full-length Scn10a transcripts in wild-type or knockout isolated ventricular myocytes. However, loss of late current in Scn10a-/- myocytes was replicated independently in a blinded set of experiments. CONCLUSIONS While Scn10a transcripts are not detectible in ventricular cardiomyocytes, gene deletion results in reproducible loss of late sodium current under extreme experimental conditions. However, there are no identifiable consequences of this Scn10a deletion in the intact mouse heart at usual rates. These findings argue that common variants in SCN10A that affect ventricular conduction do so by modulating SCN5A.
Collapse
Affiliation(s)
- Dina Myers Stroud
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Kevin Bersell
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Dymtro O Kryshtal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Satomi Nagao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Christian Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Laura Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lynn Hall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas C Atack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Wei Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Franz Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Inhibitory effects of neferine on Nav1.5 channels expressed in HEK293 cells. ACTA ACUST UNITED AC 2016; 36:487-493. [DOI: 10.1007/s11596-016-1613-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/01/2016] [Indexed: 01/16/2023]
|
10
|
Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2016; 33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen KH, Liu H, Yang L, Jin MW, Li GR. SKF-96365 strongly inhibits voltage-gated sodium current in rat ventricular myocytes. Pflugers Arch 2014; 467:1227-36. [PMID: 25017106 DOI: 10.1007/s00424-014-1565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
SKF-96365 (1-(beta-[3-(4-methoxy-phenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride) is a general TRPC channel antagonist commonly used to characterize the potential functions of TRPC channels in cardiovascular system. Recent reports showed that SKF-96365 induced a reduction in cardiac conduction. The present study investigates whether the reduced cardiac conduction caused by SKF-96365 is related to the blockade of voltage-gated sodium current (I Na) in rat ventricular myocytes using the whole-cell patch voltage-clamp technique. It was found that SKF-96365 inhibited I Na in rat ventricular myocytes in a concentration-dependent manner. The compound (1 μM) negatively shifted the potential of I Na availability by 9.5 mV, increased the closed-state inactivation of I Na, and slowed the recovery of I Na from inactivation. The inhibition of cardiac I Na by SKF-96365 was use-dependent and frequency-dependent, and the IC₅₀ was decreased from 1.36 μM at 0.5 Hz to 1.03, 0.81, 0.61, 0.56 μM at 1, 2, 5, 10 Hz, respectively. However, the selective TRPC3 antagonist Pyr3 decreased cardiac I Na by 8.5% at 10 μM with a weak use and frequency dependence. These results demonstrate that the TRPC channel antagonist SKF-96365 strongly blocks cardiac I Na in use-dependent and frequency-dependent manners. Caution should be taken for interpreting the alteration of cardiac electrical activity when SKF-96365 is used in native cells as a TRPC antagonist.
Collapse
Affiliation(s)
- Kui-Hao Chen
- Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|