1
|
Sun Z, Liu L, Chen J. Targeting non-histone methylation in gastrointestinal cancers: From biology to clinic. Eur J Med Chem 2024; 278:116802. [PMID: 39213938 DOI: 10.1016/j.ejmech.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Gastrointestinal (GI) cancers, encompassing a range of malignancies within the digestive tract, present significant challenges in both diagnosis and treatment, reflecting a dire need for innovative therapeutic strategies. This article delves into the profound influence of non-histone methylation on the pathogenesis and evolution of gastrointestinal (GI) cancers. Non-histone proteins, undergoing methylation by enzymes such as Protein Arginine Methyltransferases (PRMTs) and Lysine Methyltransferases (KMTs), play pivotal roles in cellular signaling, metabolism, chromatin remodeling, and other processes crucial for cancer development. This review illuminates the complex mechanisms by which non-histone methylation affects key aspects of tumor biology, including oncogenesis, growth, proliferation, invasion, migration, metabolic reprogramming, and immune escape in GI malignancies. Highlighting recent discoveries, this work underscores the importance of non-histone methylation in cancer biology and its potential as a target for innovative therapeutic strategies aimed at improving outcomes for patients with GI cancers.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
2
|
Martin PL, Pérez-Areales FJ, Rao SV, Walsh SJ, Carroll JS, Spring DR. Towards the Targeted Protein Degradation of PRMT1. ChemMedChem 2024; 19:e202400269. [PMID: 38724444 DOI: 10.1002/cmdc.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Indexed: 07/21/2024]
Abstract
Targeting the protein arginine methyltransferase 1 (PRMT1) has emerged as a promising therapeutic strategy in cancer treatment. The phase 1 clinical trial for GSK3368715, the first PRMT1 inhibitor to enter the clinic, was terminated early due to a lack of clinical efficacy, extensive treatment-emergent effects, and dose-limiting toxicities. The incidence of the latter two events may be associated with inhibition-driven pharmacology as a high and sustained concentration of inhibitor is required for therapeutic effect. The degradation of PRMT1 using a proteolysis targeting chimera (PROTAC) may be superior to inhibition as proceeds via event-driven pharmacology where a PROTAC acts catalytically at a low dose. PROTACs containing the same pharmacophore as GSK3368715, combined with a motif that recruits the VHL or CRBN E3-ligase, were synthesised. Suitable cell permeability and target engagement were shown for selected candidates by the detection of downstream effects of PRMT1 inhibition and by a NanoBRET assay for E3-ligase binding, however the candidates did not induce PRMT1 degradation. This paper is the first reported investigation of PRMT1 for targeted protein degradation and provides hypotheses and insights to assist the design of PROTACs for PRMT1 and other novel target proteins.
Collapse
Affiliation(s)
- Poppy L Martin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | | | - Shalini V Rao
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, CH2 ORE, United Kingdom
| | - Stephen J Walsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, CH2 ORE, United Kingdom
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Martinez S, Sentis S, Poulard C, Trédan O, Le Romancer M. Role of PRMT1 and PRMT5 in Breast Cancer. Int J Mol Sci 2024; 25:8854. [PMID: 39201539 PMCID: PMC11354362 DOI: 10.3390/ijms25168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Martinez
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Stéphanie Sentis
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Olivier Trédan
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Oncology Department, Centre Leon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|
4
|
Itonaga H, Mookhtiar AK, Greenblatt SM, Liu F, Martinez C, Bilbao D, Rains M, Hamard PJ, Sun J, Umeano AC, Duffort S, Chen C, Man N, Mas G, Tottone L, Totiger T, Bradley T, Taylor J, Schürer S, Nimer SD. Tyrosine phosphorylation of CARM1 promotes its enzymatic activity and alters its target specificity. Nat Commun 2024; 15:3415. [PMID: 38649367 PMCID: PMC11035800 DOI: 10.1038/s41467-024-47689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
An important epigenetic component of tyrosine kinase signaling is the phosphorylation of histones, and epigenetic readers, writers, and erasers. Phosphorylation of protein arginine methyltransferases (PRMTs), have been shown to enhance and impair their enzymatic activity. In this study, we show that the hyperactivation of Janus kinase 2 (JAK2) by the V617F mutation phosphorylates tyrosine residues (Y149 and Y334) in coactivator-associated arginine methyltransferase 1 (CARM1), an important target in hematologic malignancies, increasing its methyltransferase activity and altering its target specificity. While non-phosphorylatable CARM1 methylates some established substrates (e.g. BAF155 and PABP1), only phospho-CARM1 methylates the RUNX1 transcription factor, on R223 and R319. Furthermore, cells expressing non-phosphorylatable CARM1 have impaired cell-cycle progression and increased apoptosis, compared to cells expressing phosphorylatable, wild-type CARM1, with reduced expression of genes associated with G2/M cell cycle progression and anti-apoptosis. The presence of the JAK2-V617F mutant kinase renders acute myeloid leukemia (AML) cells less sensitive to CARM1 inhibition, and we show that the dual targeting of JAK2 and CARM1 is more effective than monotherapy in AML cells expressing phospho-CARM1. Thus, the phosphorylation of CARM1 by hyperactivated JAK2 regulates its methyltransferase activity, helps select its substrates, and is required for the maximal proliferation of malignant myeloid cells.
Collapse
Affiliation(s)
- Hidehiro Itonaga
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Adnan K Mookhtiar
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Sarah M Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Masai Rains
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Pierre-Jacques Hamard
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Center for Epigenetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Afoma C Umeano
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Gloria Mas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Luca Tottone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Tulasigeri Totiger
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Terrence Bradley
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, 33136, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
6
|
Ku B, Eisenbarth D, Baek S, Jeong TK, Kang JG, Hwang D, Noh MG, Choi C, Choi S, Seol T, Kim H, Kim YH, Woo SM, Kong SY, Lim DS. PRMT1 promotes pancreatic cancer development and resistance to chemotherapy. Cell Rep Med 2024; 5:101461. [PMID: 38460517 PMCID: PMC10983040 DOI: 10.1016/j.xcrm.2024.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/28/2023] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer, and novel treatment regimens are direly needed. Epigenetic regulation contributes to the development of various cancer types, but its role in the development of and potential as a therapeutic target for PDAC remains underexplored. Here, we show that PRMT1 is highly expressed in murine and human pancreatic cancer and is essential for cancer cell proliferation and tumorigenesis. Deletion of PRMT1 delays pancreatic cancer development in a KRAS-dependent mouse model, and multi-omics analyses reveal that PRMT1 depletion leads to global changes in chromatin accessibility and transcription, resulting in reduced glycolysis and a decrease in tumorigenic capacity. Pharmacological inhibition of PRMT1 in combination with gemcitabine has a synergistic effect on pancreatic tumor growth in vitro and in vivo. Collectively, our findings implicate PRMT1 as a key regulator of pancreatic cancer development and a promising target for combination therapy.
Collapse
Affiliation(s)
- Bomin Ku
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - David Eisenbarth
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seonguk Baek
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Tae-Keun Jeong
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Ju-Gyeong Kang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Daehee Hwang
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Myung-Giun Noh
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun-gun, Jeonnam 58128, Republic of Korea
| | - Sungwoo Choi
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Taejun Seol
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sang Myung Woo
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
8
|
Shen S, Zhou H, Xiao Z, Zhan S, Tuo Y, Chen D, Pang X, Wang Y, Wang J. PRMT1 in human neoplasm: cancer biology and potential therapeutic target. Cell Commun Signal 2024; 22:102. [PMID: 38326807 PMCID: PMC10851560 DOI: 10.1186/s12964-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.
Collapse
Affiliation(s)
- Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zongyu Xiao
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China
| | - Shaofen Zhan
- Department of Neurology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, 510317, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
9
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Tao M, Shi Y, Chen H, Li J, Wang Y, Ma X, Du L, Wang Y, Yang X, Hu Y, Zhou X, Zhong Q, Yan D, Qiu A, Zhuang S, Liu N. The disruptor of telomeric silencing 1-like (DOT1L) promotes peritoneal fibrosis through the upregulation and activation of protein tyrosine kinases. MOLECULAR BIOMEDICINE 2024; 5:3. [PMID: 38172378 PMCID: PMC10764708 DOI: 10.1186/s43556-023-00161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.
Collapse
Affiliation(s)
- Min Tao
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hui Chen
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jinqing Li
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yi Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaoyan Ma
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lin Du
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yishu Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xinyu Yang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yan Hu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xun Zhou
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qin Zhong
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Danying Yan
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Andong Qiu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
11
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
12
|
Bi B, Qiu M, Liu P, Wang Q, Wen Y, Li Y, Li B, Li Y, He Y, Zhao J. Protein post-translational modifications: A key factor in colorectal cancer resistance mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194977. [PMID: 37625568 DOI: 10.1016/j.bbagrm.2023.194977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Despite advances in treatment, drug resistance remains a critical impediment. Post-translational modifications (PTMs) regulate protein stability, localization, and activity, impacting vital cellular processes. Recent research has highlighted the essential role of PTMs in the development of CRC resistance. This review summarizes recent advancements in understanding PTMs' roles in CRC resistance, focusing on the latest discoveries. We discuss the functional impact of PTMs on signaling pathways and molecules involved in CRC resistance, progress in drug development, and potential therapeutic targets. We also summarize the primary enrichment methods for PTMs. Finally, we discuss current challenges and future directions, including the need for more comprehensive PTM analysis methods and PTM-targeted therapies. This review identifies potential therapeutic interventions for addressing medication resistance in CRC, proposes prospective therapeutic options, and gives an overview of the function of PTMs in CRC resistance.
Collapse
Affiliation(s)
- Bo Bi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Miaojuan Qiu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qiang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yongshu Li
- Hubei Normal University, College of Life Sciences Huangshi, Hubei, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Jing Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Dakroub R, Huard S, Hajj-Younes Y, Suresh S, Badran B, Fayyad-Kazan H, Dubois T. Therapeutic Advantage of Targeting PRMT5 in Combination with Chemotherapies or EGFR/HER2 Inhibitors in Triple-Negative Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:785-799. [PMID: 37954171 PMCID: PMC10637385 DOI: 10.2147/bctt.s430513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Purpose Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subgroup characterized by a high risk of resistance to chemotherapies and high relapse potential. TNBC shows inter-and intra-tumoral heterogeneity; more than half expresses high EGFR levels and about 30% are classified as HER2-low breast cancers. High PRMT5 mRNA levels are associated with poor prognosis in TNBC and inhibiting PRMT5 impairs the viability of subsets of TNBC cell lines and delays tumor growth in TNBC mice models. TNBC patients may therefore benefit from a treatment targeting PRMT5. The aim of this study was to assess the therapeutic benefit of combining a PRMT5 inhibitor with different chemotherapies used in the clinics to treat TNBC patients, or with FDA-approved inhibitors targeting the HER family members. Methods The drug combinations were performed using proliferation and colony formation assays on TNBC cell lines that were sensitive or resistant to EPZ015938, a PRMT5 inhibitor that has been evaluated in clinical trials. The chemotherapies analyzed were cisplatin, doxorubicin, camptothecin, and paclitaxel. The targeted therapies tested were erlotinib (EGFR inhibitor), neratinib (EGFR/HER2/HER4 inhibitor) and tucatinib (HER2 inhibitor). Results We found that PRMT5 inhibition synergized mostly with cisplatin, and to a lesser extent with doxorubicin or camptothecin, but not with paclitaxel, to impair TNBC cell proliferation. PRMT5 inhibition also synergized with erlotinib and neratinib in TNBC cell lines, especially in those overexpressing EGFR. Additionally, a synergistic interaction was observed with neratinib and tucatinib in a HER2-low TNBC cell line as well as in a HER2-positive breast cancer cell line. We noticed that synergy can be obtained in TNBC cell lines that were resistant to PRMT5 inhibition alone. Conclusion Altogether, our data highlight the therapeutic potential of targeting PRMT5 using combinatorial strategies for the treatment of subsets of TNBC patients.
Collapse
Affiliation(s)
- Rayan Dakroub
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Solène Huard
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Yara Hajj-Younes
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Samyuktha Suresh
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, 1003, Lebanon
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, Paris, 75005, France
| |
Collapse
|
14
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Yin S, Liu L, Gan W. PRMT1 and PRMT5: on the road of homologous recombination and non-homologous end joining. GENOME INSTABILITY & DISEASE 2023; 4:197-209. [PMID: 37663901 PMCID: PMC10470524 DOI: 10.1007/s42764-022-00095-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 09/05/2023]
Abstract
DNA double-strand breaks (DSBs) are widely accepted to be the most deleterious form of DNA lesions that pose a severe threat to genome integrity. Two predominant pathways are responsible for repair of DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR relies on a template to faithfully repair breaks, while NHEJ is a template-independent and error-prone repair mechanism. Multiple layers of regulation have been documented to dictate the balance between HR and NHEJ, such as cell cycle and post-translational modifications (PTMs). Arginine methylation is one of the most common PTMs, which is catalyzed by protein arginine methyltransferases (PRMTs). PRMT1 and PRMT5 are the predominate PRMTs that promote asymmetric dimethylarginine and symmetric dimethylarginine, respectively. They have emerged to be crucial regulators of DNA damage repair. In this review, we summarize current understanding and unaddressed questions of PRMT1 and PRMT5 in regulation of HR and NHEJ, providing insights into their roles in DSB repair pathway choice and the potential of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [PMID: 37569634 PMCID: PMC10418467 DOI: 10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal "leave some out" test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain;
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
17
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [DOI: https:/doi.org/10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal “leave some out” test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
18
|
Giannou AD, Kempski J, Zhang T, Lücke J, Shiri AM, Zazara DE, Belios I, Machicote A, Seeger P, Agalioti T, Tintelnot J, Sagebiel A, Tomczak M, Bauditz L, Bedke T, Kocheise L, Mercanoglu B, Fard-Aghaie M, Giorgakis E, Lykoudis PM, Pikouli A, Grass JK, Wahib R, Bardenhagen J, Brunswig B, Heumann A, Ghadban T, Duprée A, Tachezy M, Melling N, Arck PC, Stringa P, Gentilini MV, Gondolesi GE, Nakano R, Thomson AW, Perez D, Li J, Mann O, Izbicki JR, Gagliani N, Maroulis IC, Huber S. IL-22BP controls the progression of liver metastasis in colorectal cancer. Front Oncol 2023; 13:1170502. [PMID: 37324022 PMCID: PMC10265988 DOI: 10.3389/fonc.2023.1170502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.
Collapse
Affiliation(s)
- Anastasios D. Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Surgery, University of Patras Medical School, Patras, Greece
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E. Zazara
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioannis Belios
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andres Machicote
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph Tintelnot
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ll. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Sagebiel
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Tomczak
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Bauditz
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenz Kocheise
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emmanouil Giorgakis
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Division of Transplantation, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Panagis M. Lykoudis
- 3rd Department of Surgery, Attiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Anastasia Pikouli
- 3rd Department of Surgery, Attiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Julia-Kristin Grass
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Bardenhagen
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Brunswig
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Duprée
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C. Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo Stringa
- Department General Surgery, Liver, Pancreas and Intestinal Transplantation, Hospital Universitario, Fundacion Favaloro, Buenos Aires, Argentina
| | - Maria Virginia Gentilini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB, Concejo Nacional de Investigaciones Científicas y tecnológicas (CONICET), Universidad Favaloro), Laboratorio de Inmunología Asociada al Trasplante, Buenos Aires, Argentina
| | - Gabriel E. Gondolesi
- Department General Surgery, Liver, Pancreas and Intestinal Transplantation, Hospital Universitario, Fundacion Favaloro, Buenos Aires, Argentina
| | - Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Cao X, Guo Y, Feng Y, Liu X, Yao F, Chen T, Tian L, Kang X. Recognition Receptor for Methylated Arginine at the Single Molecular Level. Anal Chem 2023; 95:6989-6995. [PMID: 37083370 DOI: 10.1021/acs.analchem.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Among the various types of post-translational modifications (PTMs), methylation is the simple functionalized one that regulates the functions of proteins and affects interactions of protein-protein and protein-DNA/RNA, which will further influence diverse cellular processes. The methylation modification has only a slight effect on the size and hydrophobicity of proteins or peptides, and it cannot change their net charges at all, so the methods for recognizing methylated protein are still limited. Here, we designed a recognition receptor consisting of a α-hemolysin (α-HL) nanopore and polyamine decorated γ-cyclodextrin (am8γ-CD) to differentiate the methylation of peptide derived from a heterogeneous nuclear ribonucleoprotein at the single molecule level. The results indicate that the modification of a methyl group enhances the interaction between the peptide and the recognition receptor. The results of molecular simulations were consistent with the experiments; the methylated peptide interacts with the receptor strongly due to the more formation of hydrogen bonds. This proposed strategy also can be used to detect PTM in real biological samples and possesses the advantages of low-cost and high sensitivity and is label-free. Furthermore, the success in the construction of this recognition receptor will greatly facilitate the investigation of pathogenesis related to methylated arginine.
Collapse
Affiliation(s)
- Xueying Cao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yanhua Feng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Tingting Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
20
|
Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol 2023; 29:1911-1941. [PMID: 37155531 PMCID: PMC10122790 DOI: 10.3748/wjg.v29.i13.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common digestive malignancy across the world. Its first-line treatments applied in the routine clinical setting include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, resistance to therapy has been identified as the major clinical challenge that fails the treatment method, leading to recurrence and distant metastasis. An increasing number of studies have been attempting to explore the underlying mechanisms of the resistance of CRC cells to different therapies, which can be summarized into two aspects: (1) The intrinsic characters and adapted alterations of CRC cells before and during treatment that regulate the drug metabolism, drug transport, drug target, and the activation of signaling pathways; and (2) the suppressive features of the tumor microenvironment (TME). To combat the issue of therapeutic resistance, effective strategies are warranted with a focus on the restoration of CRC cells’ sensitivity to specific treatments as well as reprogramming impressive TME into stimulatory conditions. To date, nanotechnology seems promising with scope for improvement of drug mobility, treatment efficacy, and reduction of systemic toxicity. The instinctive advantages offered by nanomaterials enable the diversity of loading cargoes to increase drug concentration and targeting specificity, as well as offer a platform for trying the combination of different treatments to eventually prevent tumor recurrence, metastasis, and reversion of therapy resistance. The present review intends to summarize the known mechanisms of CRC resistance to chemotherapy, radiotherapy, immunotherapy, and targeted therapy, as well as the process of metastasis. We have also emphasized the recent application of nanomaterials in combating therapeutic resistance and preventing metastasis either by combining with other treatment approaches or alone. In summary, nanomedicine is an emerging technology with potential for CRC treatment; hence, efforts should be devoted to targeting cancer cells for the restoration of therapeutic sensitivity as well as reprogramming the TME. It is believed that the combined strategy will be beneficial to achieve synergistic outcomes contributing to control and management of CRC in the future.
Collapse
Affiliation(s)
- Sheng-Nan Ren
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zhan-Yi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Rui-Jie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Da-Ren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun 130021, Jilin Province, China
| | - Fang-Fang Chen
- Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Bo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xue-Dong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
21
|
Zhang L, He Y, Jiang Y, Wu Q, Liu Y, Xie Q, Zou Y, Wu J, Zhang C, Zhou Z, Bian XW, Jin G. PRMT1 reverts the immune escape of necroptotic colon cancer through RIP3 methylation. Cell Death Dis 2023; 14:233. [PMID: 37005412 PMCID: PMC10067857 DOI: 10.1038/s41419-023-05752-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Necroptosis plays a double-edged sword role in necroptotic cancer cell death and tumor immune escape. How cancer orchestrates necroptosis with immune escape and tumor progression remains largely unclear. We found that RIP3, the central activator of necroptosis, was methylated by PRMT1 methyltransferase at the amino acid of RIP3 R486 in human and the conserved amino acid R479 in mouse. The methylation of RIP3 by PRMT1 inhibited the interaction of RIP3 with RIP1 to suppress RIP1-RIP3 necrosome complex, thereby blocking RIP3 phosphorylation and necroptosis activation. Moreover, the methylation-deficiency RIP3 mutant promoted necroptosis, immune escape and colon cancer progression due to increasing tumor infiltrated myeloid-derived immune suppressor cells (MDSC), while PRMT1 reverted the immune escape of RIP3 necroptotic colon cancer. Importantly, we generated a RIP3 R486 di-methylation specific antibody (RIP3ADMA). Clinical patient samples analysis revealed that the protein levels of PRMT1 and RIP3ADMA were positively correlated in cancer tissues and both of them predicted the longer patient survival. Our study provides insights into the molecular mechanism of PRMT1-mediated RIP3 methylation in the regulation of necroptosis and colon cancer immunity, as well as reveals PRMT1 and RIP3ADMA as the valuable prognosis markers of colon cancer.
Collapse
Affiliation(s)
- Lian Zhang
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujiao He
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yi Jiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qi Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yanchen Liu
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qingqiang Xie
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuxiu Zou
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiaqian Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Guoxiang Jin
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
22
|
He Q, Qu M, Bao H, Xu Y, Shen T, Tan D, Barkat MQ, Xu C, Zeng LH, Wu X. Multiple post-translational modifications ensure EGFR functionality: Potential therapeutic targets to overcome its drug-resistance mutations. Cytokine Growth Factor Rev 2023; 70:41-53. [PMID: 36934069 DOI: 10.1016/j.cytogfr.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Epidermal growth factor receptor (EGFR) mutation is the most common driver mutation in non-small cell lung cancer (NSCLC). The first-line therapy for advanced NSCLC patients with EGFR-sensitive mutation is the EGFR tyrosine kinase inhibitor (EGFR-TKI). However, most NSCLC patients with EGFR mutation will develop resistant mutations in EGFR-TKI therapy. With further studies, resistance mechanisms represented by EGFR-T790M mutations have revealed the impact of EGFR mutations in situ on EGFR-TKIs sensitivity. The third-generation EGFR-TKIs inhibit both EGFR-sensitive mutations and T790M mutations. The emergence of novel mutations such as EGFR-C797S and EGFR-L718Q may decrease efficacy. Searching for new targets to overcome EGFR-TKI resistance becomes a key challenge. Therefore, an in-depth understanding of the regulatory mechanisms of EGFR is essential to find novel targets to overcome drug-resistant mutations in EGFR-TKIs. EGFR, as a receptor-type tyrosine kinase, undergoes homo/heterodimerization and autophosphorylation upon binding to ligands, which activates multiple downstream signaling pathways. Interestingly, there is growing evidence that the kinase activity of EGFR is affected not only by phosphorylation but also by various post-translational modifications (PTMs, such as S-palmitoylation, S-nitrosylation, Methylation, etc.). In this review, we systematically review the effects of different protein PTMs on EGFR kinase activity and its functionality and suggest that influencing EGFR kinase activity by modulating multiple EGFR sites are potential targets to overcome EGFR-TKIs resistance mutations.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
23
|
Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22. Immunity 2023; 56:125-142.e12. [PMID: 36630911 PMCID: PMC9839362 DOI: 10.1016/j.immuni.2022.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.
Collapse
|
24
|
Liu L, Lin B, Yin S, Ball LE, Delaney JR, Long DT, Gan W. Arginine methylation of BRD4 by PRMT2/4 governs transcription and DNA repair. SCIENCE ADVANCES 2022; 8:eadd8928. [PMID: 36475791 PMCID: PMC9728970 DOI: 10.1126/sciadv.add8928] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
BRD4 functions as an epigenetic reader and plays a crucial role in regulating transcription and genome stability. Dysregulation of BRD4 is frequently observed in various human cancers. However, the molecular details of BRD4 regulation remain largely unknown. Here, we report that PRMT2- and PRMT4-mediated arginine methylation is pivotal for BRD4 functions on transcription, DNA repair, and tumor growth. Specifically, PRMT2/4 interacts with and methylates BRD4 at R179, R181, and R183. This arginine methylation selectively controls a transcriptional program by promoting BRD4 recruitment to acetylated histones/chromatin. Moreover, BRD4 arginine methylation is induced by DNA damage and thereby promotes its binding to chromatin for DNA repair. Deficiency in BRD4 arginine methylation significantly suppresses tumor growth and sensitizes cells to BET inhibitors and DNA damaging agents. Therefore, our findings reveal an arginine methylation-dependent regulatory mechanism of BRD4 and highlight targeting PRMT2/4 for better antitumor effect of BET inhibitors and DNA damaging agents.
Collapse
Affiliation(s)
- Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Baicheng Lin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David T. Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Hsieh CY, Chang WC, Lin CC, Chen JH, Lin CY, Liu CH, Lin C, Hung MC. Combination treatment of arsenic trioxide and osimertinib in recurrent and metastatic head and neck squamous cell carcinoma. Am J Cancer Res 2022; 12:5049-5061. [PMID: 36504903 PMCID: PMC9729903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022] Open
Abstract
Recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) represents an advanced stage of the disease and frequently shows resistance to these current treatments, including platinum chemotherapy, cetuximab plus chemotherapy, and checkpoint inhibitors. EGFR overexpression and TP53 mutation are the most frequent genetic changes in patients with HNSCC. On the basis of this genetic feature, we proposed a combinatorial treatment using the EGFR tyrosine kinase inhibitor osimertinib (AZD) and arsenic trioxide (ATO) for compassionate use. The patient obtained treatment response and progression-free survival for about six months. In vitro mechanical verifications showed that ATO and AZD combination (ATO/AZD) significantly increased intracellular ROS levels and DNA damage. Additionally, ATO/AZD decreases the expression and activity of breast cancer type 1 susceptibility protein (BRCA1) and polo-like kinase 1 (PLK1), thereby impairing Rad51 recruitment to DNA double-strand lesion for repair and may ultimately cause tumor cell death. In conclusion, this study provides a concrete experience and an alternate strategy of ATO/AZD therapy for patients with R/M HNSCC.
Collapse
Affiliation(s)
- Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Jong-Hang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Chia-Hua Liu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Chen Lin
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan,Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan,College of Medicine, Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40402, Taiwan,Department of Biotechnology, Asia UniversityTaichung 40402, Taiwan
| |
Collapse
|
26
|
Wang J, Yang R, Cheng Y, Zhou Y, Zhang T, Wang S, Li H, Jiang W, Zhang X. Methylation of HBP1 by PRMT1 promotes tumor progression by regulating actin cytoskeleton remodeling. Oncogenesis 2022; 11:45. [PMID: 35941115 PMCID: PMC9360041 DOI: 10.1038/s41389-022-00421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
HBP1 is a sequence-specific transcription factor which generally considered as a crucial growth inhibitor. Posttranslational modification of HBP1 is vital for its function. In this study, we demonstrate that HBP1 is methylated at R378 by PRMT1, which decreases HBP1 protein stability by promoting its ubiquitination and proteasome-mediated degradation. PRMT1-mediated methylation of HBP1 alleviates the repressive effects of HBP1 on tumor metastasis and growth. GSN is identified as a novel target gene of HBP1. Methylation of HBP1 promotes actin cytoskeleton remodeling, glycolysis and tumor progression by downregulating GSN (a vital actin-binding protein) levels. The methylated HBP1-GSN axis is associated with the clinical outcomes of cancer patients. This investigation elucidates the mechanism of how methylated HBP1 facilitates actin cytoskeleton remodeling, thus attenuates its tumor-suppressive function and promotes tumor progression. Targeting methylated HBP1-GSN axis may provide a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Zhou
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Tongjia Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Shujie Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
27
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
28
|
Yang L, Bhattacharya A, Li Y, Sexton S, Ling X, Li F, Zhang Y. Depleting receptor tyrosine kinases EGFR and HER2 overcomes resistance to EGFR inhibitors in colorectal cancer. J Exp Clin Cancer Res 2022; 41:184. [PMID: 35650607 PMCID: PMC9161494 DOI: 10.1186/s13046-022-02389-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors, including cetuximab and panitumumab, are valuable therapeutics for colorectal cancer (CRC), but resistance to these inhibitors is common. The reason for such resistance is not well understood, which hampers development of better therapeutic strategies. Although activating mutations in KRAS, BRAF and PIK3CA are considered major drivers of CRC resistance to EGFR inhibitors, therapeutic targeting of these drug resistance drivers has not produced substantial clinical benefit. METHODS We exploited cell lines and mouse tumor models (cell line xenografts and patient derived xenografts) for experiments of genetic and pharmacologic depletion of EGFR and/or its family member HER2, including EGFR mutants, inhibition of EGFR ligand shedding, and biochemical analysis of signaling proteins, to delineate the mechanism of CRC resistance to EGFR inhibitors and to assess the therapeutic activity of PEPDG278D, which is a recombinant human protein that induces the degradation of both EGFR and HER2. RESULTS The sensitivity of CRC cells to cetuximab and panitumumab correlates with the ability of these drugs to induce EGFR downregulation. PEPDG278D strongly inhibits oncogenic signaling and growth of CRC cells by causing profound depletion of EGFR and HER2, regardless of activating mutations of KRAS, BRAF and PIK3CA. siRNA knockdown of EGFR or HER2 also inhibits CRC cells resistant to EGFR inhibitors. Tumors harboring mutated KRAS, BRAF and/or PIK3CA also overexpress EGFR ligands, further suggesting that EGFR signaling remains important to the tumors. While excessive tumor-generated high-affinity EGFR ligands block target engagement by PEPDG278D, aderbasib, an inhibitor of ADAM10 and ADAM17, enables PEPDG278D to exert strong antitumor activity by inhibiting ligand shedding. Moreover, adding fluorouracil, which is commonly used in CRC treatment, to the combination of PEPDG278D and aderbasib further enhances tumor inhibition. CONCLUSIONS Our study shows that CRC resistance to EGFR inhibitors results primarily from the inability of the inhibitors to downregulate their target and that a PEPDG278D-based combination treatment overcomes the resistance.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Arup Bhattacharya
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yun Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sandra Sexton
- Department of Animal Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yuesheng Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
29
|
Secomandi E, Salwa A, Vidoni C, Ferraresi A, Follo C, Isidoro C. High Expression of the Lysosomal Protease Cathepsin D Confers Better Prognosis in Neuroblastoma Patients by Contrasting EGF-Induced Neuroblastoma Cell Growth. Int J Mol Sci 2022; 23:4782. [PMID: 35563171 PMCID: PMC9101173 DOI: 10.3390/ijms23094782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Neuroblastoma is a malignant extracranial solid tumor arising from the sympathoadrenal lineage of the neural crest and is often associated with N-MYC amplification. Cathepsin D has been associated with chemoresistance in N-MYC-overexpressing neuroblastomas. Increased EGFR expression also has been associated with the aggressive behavior of neuroblastomas. This work aimed to understand the mechanisms linking EGFR stimulation and cathepsin D expression with neuroblastoma progression and prognosis. Gene correlation analysis in pediatric neuroblastoma patients revealed that individuals bearing a high EGFR transcript level have a good prognosis only when CTSD (the gene coding for the lysosomal protease Cathepsin D, CD) is highly expressed. Low CTSD expression was associated with poor clinical outcome. CTSD expression was negatively correlated with CCNB2, CCNA2, CDK1 and CDK6 genes involved in cell cycle division. We investigated the biochemical pathways downstream to EGFR stimulation in human SH-SY5Y neuroblastoma cells engineered for overexpressing or silencing of CD expression. Cathepsin D overexpression decreased the proliferative potential of neuroblastoma cells through downregulation of the pro-oncogenic MAPK signaling pathway. EGFR stimulation downregulated cathepsin D expression, thus favoring cell cycle division. Our data suggest that chemotherapeutics that inhibit the EGFR pathway, along with stimulators of cathepsin D synthesis and activity, could benefit neuroblastoma prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy; (E.S.); (A.S.); (C.V.); (A.F.); (C.F.)
| |
Collapse
|
30
|
Fedoriw A, Shi L, O'Brien S, Smitheman KN, Wang Y, Hou J, Sherk C, Rajapurkar S, Laraio J, Williams LJ, Xu C, Han G, Feng Q, Bedford MT, Wang L, Barbash O, Kruger RG, Hwu P, Mohammad HP, Peng W. Inhibiting Type I Arginine Methyltransferase Activity Promotes T Cell-Mediated Antitumor Immune Responses. Cancer Immunol Res 2022; 10:420-436. [PMID: 35181787 DOI: 10.1158/2326-6066.cir-21-0614] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Protein arginine methyltransferases (PRMT) are a widely expressed class of enzymes responsible for catalyzing arginine methylation on numerous protein substrates. Among them, type I PRMTs are responsible for generating asymmetric dimethylarginine. By controlling multiple basic cellular processes, such as DNA damage responses, transcriptional regulation, and mRNA splicing, type I PRMTs contribute to cancer initiation and progression. A type I PRMT inhibitor, GSK3368715, has been developed and has entered clinical trials for solid and hematologic malignancies. Although type I PRMTs have been reported to play roles in modulating immune cell function, the immunologic role of tumor-intrinsic pathways controlled by type I PRMTs remains uncharacterized. Here, our The Cancer Genome Atlas dataset analysis revealed that expression of type I PRMTs associated with poor clinical response and decreased immune infiltration in patients with melanoma. In cancer cell lines, inhibition of type I PRMTs induced an IFN gene signature, amplified responses to IFN and innate immune signaling, and decreased expression of the immunosuppressive cytokine VEGF. In immunocompetent mouse tumor models, including a model of T-cell exclusion that represents a common mechanism of anti-programmed cell death protein 1 (PD-1) resistance in humans, type I PRMT inhibition increased T-cell infiltration, produced durable responses dependent on CD8+ T cells, and enhanced efficacy of anti-PD-1 therapy. These data indicate that type I PRMT inhibition exhibits immunomodulatory properties and synergizes with immune checkpoint blockade (ICB) to induce durable antitumor responses in a T cell-dependent manner, suggesting that type I PRMT inhibition can potentiate an antitumor immunity in refractory settings.
Collapse
Affiliation(s)
- Andrew Fedoriw
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Leilei Shi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shane O'Brien
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | | | - Yunfei Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Christian Sherk
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Satyajit Rajapurkar
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Jenny Laraio
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Leila J Williams
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chunyu Xu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qin Feng
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Olena Barbash
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Ryan G Kruger
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Helai P Mohammad
- Tumor Cell Targeting Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| |
Collapse
|
31
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
32
|
Suresh S, Huard S, Brisson A, Némati F, Dakroub R, Poulard C, Ye M, Martel E, Reyes C, Silvestre DC, Meseure D, Nicolas A, Gentien D, Fayyad-Kazan H, Le Romancer M, Decaudin D, Roman-Roman S, Dubois T. PRMT1 Regulates EGFR and Wnt Signaling Pathways and Is a Promising Target for Combinatorial Treatment of Breast Cancer. Cancers (Basel) 2022; 14:cancers14020306. [PMID: 35053470 PMCID: PMC8774276 DOI: 10.3390/cancers14020306] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Patients with triple-negative breast cancer (TNBC) respond well to chemotherapy initially but are prone to relapse. Searching for new therapeutic targets, we found that PRMT1 is highly expressed in TNBC tumor samples and is essential for breast cancer cell survival. Furthermore, this study proposes that targeting PRMT1 in combination with chemotherapies could improve the survival outcome of TNBC patients. Abstract Identifying new therapeutic strategies for triple-negative breast cancer (TNBC) patients is a priority as these patients are highly prone to relapse after chemotherapy. Here, we found that protein arginine methyltransferase 1 (PRMT1) is highly expressed in all breast cancer subtypes. PRMT1 depletion decreases cell survival by inducing DNA damage and apoptosis in various breast cancer cell lines. Transcriptomic analysis and chromatin immunoprecipitation revealed that PRMT1 regulates the epidermal growth factor receptor (EGFR) and the Wnt signaling pathways, reported to be activated in TNBC. PRMT1 enzymatic activity is also required to stimulate the canonical Wnt pathway. Type I PRMT inhibitors decrease breast cancer cell proliferation and show anti-tumor activity in a TNBC xenograft model. These inhibitors display synergistic interactions with some chemotherapies used to treat TNBC patients as well as erlotinib, an EGFR inhibitor. Therefore, targeting PRMT1 in combination with these chemotherapies may improve existing treatments for TNBC patients.
Collapse
Affiliation(s)
- Samyuktha Suresh
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
| | - Solène Huard
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
| | - Amélie Brisson
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
| | - Fariba Némati
- Pre-Clinical Investigation Laboratory, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (F.N.); (D.D.)
| | - Rayan Dakroub
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Coralie Poulard
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69000 Lyon, France; (C.P.); (M.L.R.)
| | - Mengliang Ye
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
| | - Elise Martel
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005 Paris, France; (E.M.); (D.M.); (A.N.)
| | - Cécile Reyes
- Genomics Core Facility, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (C.R.); (D.G.)
| | - David C. Silvestre
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
| | - Didier Meseure
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005 Paris, France; (E.M.); (D.M.); (A.N.)
| | - André Nicolas
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005 Paris, France; (E.M.); (D.M.); (A.N.)
| | - David Gentien
- Genomics Core Facility, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (C.R.); (D.G.)
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Muriel Le Romancer
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69000 Lyon, France; (C.P.); (M.L.R.)
| | - Didier Decaudin
- Pre-Clinical Investigation Laboratory, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (F.N.); (D.D.)
| | - Sergio Roman-Roman
- Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France;
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 75005 Paris, France; (S.S.); (S.H.); (A.B.); (R.D.); (M.Y.); (D.C.S.)
- Correspondence: ; Tel.: +33-1-56246250
| |
Collapse
|
33
|
Zhang J, Rojas S, Singh S, Musich PR, Gutierrez M, Yao Z, Thewke D, Jiang Y. Wnt2 Contributes to the Development of Atherosclerosis. Front Cardiovasc Med 2021; 8:751720. [PMID: 34901211 PMCID: PMC8652052 DOI: 10.3389/fcvm.2021.751720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis, is a chronic inflammatory disease, characterized by the narrowing of the arteries resulting from the formation of intimal plaques in the wall of arteries. Yet the molecular mechanisms responsible for maintaining the development and progression of atherosclerotic lesions have not been fully defined. In this study, we show that TGF-β activates the endothelial-to-mesenchymal transition (EndMT) in cultured human aortic endothelial cells (HAECs) and this transition is dependent on the key executor of the Wnt signaling pathway in vitro. This study presents the first evidence describing the mechanistic details of the TGF-β-induced EndMT signaling pathway in HAECs by documenting the cellular transition to the mesenchymal phenotype including the expression of mesenchymal markers α-SMA and PDGFRα, and the loss of endothelial markers including VE-cadherin and CD31. Furthermore, a short hairpin RNA (shRNA) screening revealed that Wnt2 signaling is required for TGF-β-mediated EndMT of HAECs. Also, we found that LDLR−/− mice fed on a high-fat western-type diet (21% fat, 0.2% cholesterol) expressed high levels of Wnt2 protein in atherosclerotic lesions, confirming that this signaling pathway is involved in atherosclerosis in vivo. These findings suggest that Wnt2 may contribute to atherosclerotic plaque development and this study will render Wnt2 as a potential target for therapeutic intervention aiming at controlling atherosclerosis.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Samuel Rojas
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Phillip R Musich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Gutierrez
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Zhiqiang Yao
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Douglas Thewke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
34
|
Li Z, Wang D, Chen X, Wang W, Wang P, Hou P, Li M, Chu S, Qiao S, Zheng J, Bai J. PRMT1-mediated EZH2 methylation promotes breast cancer cell proliferation and tumorigenesis. Cell Death Dis 2021; 12:1080. [PMID: 34775498 PMCID: PMC8590688 DOI: 10.1038/s41419-021-04381-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023]
Abstract
Protein arginine methyltransferase 1 (PRMT1) is able to promote breast cancer cell proliferation. However, the detailed mechanisms of PRMT1-mediated breast cancer cell proliferation are largely unknown. In this study, we reveal that PRMT1-mediated methylation of EZH2 at the R342 site (meR342-EZH2) has a great effect on PRMT1-induced cell proliferation. We also demonstrate that meR342-EZH2 can accelerate breast cancer cell proliferation in vitro and in vivo. Further, we show that meR342-EZH2 promotes cell cycle progression by repressing P16 and P21 transcription expression. In terms of mechanism, we illustrate that meR342-EZH2 facilitates EZH2 binding with SUZ12 and PRC2 assembly by preventing AMPKα1-mediated phosphorylation of pT311-EZH2, which results in suppression of P16 and P21 transcription by enhancing EZH2 expression and H3K27me3 enrichment at P16 and P21 promoters. Finally, we validate that the expression of PRMT1 and meR342-EZH2 is negatively correlated with pT311-EZH2 expression. Our findings suggest that meR342-EZH2 may become a novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Diandian Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuxi Qiao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
35
|
Structure, Activity, and Function of PRMT1. Life (Basel) 2021; 11:life11111147. [PMID: 34833023 PMCID: PMC8619983 DOI: 10.3390/life11111147] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.
Collapse
|
36
|
Zhou J, Ji Q, Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:328. [PMID: 34663410 PMCID: PMC8522158 DOI: 10.1186/s13046-021-02130-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022]
Abstract
Cetuximab and panitumumab are monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) that are effective agents for metastatic colorectal cancer (mCRC). Cetuximab can prolong survival by 8.2 months in RAS wild-type (WT) mCRC patients. Unfortunately, resistance to targeted therapy impairs clinical use and efficiency. The mechanisms of resistance refer to intrinsic and extrinsic alterations of tumours. Multiple therapeutic strategies have been investigated extensively to overcome resistance to anti-EGFR mAbs. The intrinsic mechanisms include EGFR ligand overexpression, EGFR alteration, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activation, metabolic remodelling, microsatellite instability and autophagy. For intrinsic mechanisms, therapies mainly cover the following: new EGFR-targeted inhibitors, a combination of multitargeted inhibitors, and metabolic regulators. In addition, new cytotoxic drugs and small molecule compounds increase the efficiency of cetuximab. Extrinsic alterations mainly disrupt the tumour microenvironment, specifically immune cells, cancer-associated fibroblasts (CAFs) and angiogenesis. The directions include the modification or activation of immune cells and suppression of CAFs and anti-VEGFR agents. In this review, we focus on the mechanisms of resistance to anti-EGFR monoclonal antibodies (anti-EGFR mAbs) and discuss diverse approaches to reverse resistance to this therapy in hopes of identifying more mCRC treatment possibilities.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
37
|
PRMT1 Confers Resistance to Olaparib via Modulating MYC Signaling in Triple-Negative Breast Cancer. J Pers Med 2021; 11:jpm11101009. [PMID: 34683150 PMCID: PMC8539542 DOI: 10.3390/jpm11101009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
Treatment of triple-negative breast cancer (TNBC) remains an unmet clinical need owing to its lack of an efficient therapeutic target. The targeting of DNA repair by poly(ADP-ribose) polymerase (PARP) inhibitors has shown benefit for patients with the BRCA variation. However, sensitivities to the PARP inhibitors were reported regardless of BRCA status. Thus, exploring the underlying mechanisms is imperative. Herein, we identified that breast cancer cells with an elevated expression of protein arginine methyl transferase 1 (PRMT1) was associated with therapeutic sensitivity to the PARP inhibitor olaparib. The results of cell viability and colony formation assays indicated that the suppression of PRMT1 by small hairpin RNA or by the chemical inhibitor increased sensitivity to olaparib in human TNBC MDA-MB-231 and BT549 cells. Bioinformatic analysis revealed that PRMT1 expression was significantly associated with the MYC signature, and TNBC cells with higher PRMT1 and the MYC signature were associated with therapeutic sensitivity to olaparib. Mechanistic studies further demonstrated that knockdown of PRMT1 reduced the c-Myc protein level and downregulated the expression of MYC downstream targets, whereas overexpression of PRMT1 enhanced c-Myc protein expression. Moreover, the overexpression of PRMT1 promoted c-Myc protein stability, and the inhibition of PRMT1 downregulated c-Myc protein stability. Accordingly, the knockdown of PRMT1 inhibited homologous recombination gene expression. These data indicate that PRMT1 is instrumental in regulating DNA repair, at least in part, by modulating c-Myc signaling. Our data highlighted the PRMT1/c-Myc network as a potential therapeutic target in patients with TNBC.
Collapse
|
38
|
Marsden AJ, Riley DRJ, Barry A, Khalil JS, Guinn BA, Kemp NT, Rivero F, Beltran-Alvarez P. Inhibition of Arginine Methylation Impairs Platelet Function. ACS Pharmacol Transl Sci 2021; 4:1567-1577. [PMID: 34661075 DOI: 10.1021/acsptsci.1c00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the μM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbβ3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.
Collapse
Affiliation(s)
| | - David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Neil T Kemp
- Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Hull HU6 7RX, U.K
| | | |
Collapse
|
39
|
Arginine methylation by PRMT2 promotes IFN-β production through TLR4/IRF3 signaling pathway. Mol Immunol 2021; 139:202-210. [PMID: 34583098 DOI: 10.1016/j.molimm.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
A balance between the positive and negative regulation of toll-like receptor (TLR) signaling pathways is required to avoid detrimental and inappropriate inflammatory responses. Although some protein post-translational modifications (PTMs) such as phosphorylation and ubiquitination have been demonstrated to potently modulate innate immune responses, the role of methylation, an important PTM, control of TLR4 signaling pathway remains unclear. In this study, we found that protein arginine methyltransferase 1, 2 and 3 (PRMT1, 2 and 3) were recruited to methylate TLR4-CD (cytoplasmic domain) after lipopolysaccharide (LPS) stimulation respectively, but the effect of PRMT2 on arginine methylation of TLR4-CD is the most significant among above three PRMTs, which prompted us to focus on PRMT2. Reduction of PRMT2 expression down-regulated arginine (R) methylation level of TLR4 with or without LPS treatment. Methionine 115 (M115) mediated PRMT2 catalyzed-arginine methylation of TLR4 on R731 and R812. Furthermore, PRMT1, 2 and 3 was recruited to methylate interferon regulatory factor 3 (IRF3) after LPS stimulation respectively, but the effect of PRMT2 on arginine methylation of IRF3 is the most significant among the above three PRMTs. Arginine methylation of TLR4 on R812 or arginine methylation of IRF3 on R285 mediated the interaction between TLR4 and IRF3 respectively. Arginine methylation of IRF3 on R285 induced by LPS led to its dimerization and promoted its translocation from the cytoplasm to the nucleus. In addition, the enhancement of arginine methylation of TLR4 induced by PRMT1 or 2 increased IRF3 transcription activity with or without LPS treatment, while PRMT2 with histidine 112 glutamine (H112Q) or methionine 115 isoleucine (M115I) mutation and TLR4 with arginine 812 lysine (R812K) mutation decreased it. Arginine methylation of TLR4 on R812 or PRMT2 enhanced interferon-β (IFN-β) production. Our study reveals a critical role for PRMT2 and protein arginine methylation in the enhancement of IFN-β production via TLR4/IRF3 signaling pathway and may provide a therapeutic strategy to control endotoxemia.
Collapse
|
40
|
Yan Z, Wu H, Liu H, Zhao G, Zhang H, Zhuang W, Liu F, Zheng Y, Liu B, Zhang L, Gao C. The protein arginine methyltransferase PRMT1 promotes TBK1 activation through asymmetric arginine methylation. Cell Rep 2021; 36:109731. [PMID: 34551290 DOI: 10.1016/j.celrep.2021.109731] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
TBK1 is an essential kinase for the innate immune response against viral infection. However, the key molecular mechanisms regulating the TBK1 activation remain elusive. Here, we identify PRMT1, a type I protein arginine methyltransferase, as an essential regulator of TBK1 activation. PRMT1 directly interacts with TBK1 and catalyzes asymmetric methylation of R54, R134, and R228 on TBK1. This modification enhances TBK1 oligomerization after viral infection, which subsequently promotes TBK1 phosphorylation and downstream type I interferon production. More important, myeloid-specific Prmt1 knockout mice are more susceptible to infection with DNA and RNA viruses than Prmt1fl/fl mice. Our findings reveal insights into the molecular regulation of TBK1 activation and demonstrate the essential function of protein arginine methylation in innate antiviral immunity.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haifeng Wu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hansen Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guimin Zhao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Honghai Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wanxin Zhuang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
41
|
Epidermal Growth Factor Receptor Expression in the Corneal Epithelium. Cells 2021; 10:cells10092409. [PMID: 34572058 PMCID: PMC8470622 DOI: 10.3390/cells10092409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023] Open
Abstract
A properly functioning cornea is critical to clear vision and healthy eyes. As the most anterior portion of the eye, it plays an essential role in refracting light onto the retina and as an anatomical barrier to the environment. Proper vision requires that all layers be properly formed and fully intact. In this article, we discuss the role of the epidermal growth factor receptor (EGFR) in maintaining and restoring the outermost layer of the cornea, the epithelium. It has been known for some time that the addition of epidermal growth factor (EGF) promotes the restoration of the corneal epithelium and patients using EGFR inhibitors as anti-cancer therapies are at increased risk of corneal erosions. However, the use of EGF in the clinic has been limited by downregulation of the receptor. More recent advances in EGFR signaling and trafficking in corneal epithelial cells have provided new insights in how to overcome receptor desensitization. We examine new strategies for overcoming the limitations of high ligand and receptor expression that alter trafficking of the ligand:receptor complex to sustain receptor signaling.
Collapse
|
42
|
Petrillo A, Salati M, Trapani D, Ghidini M. Circulating Tumor DNA as a Biomarker for Outcomes Prediction in Colorectal Cancer Patients. Curr Drug Targets 2021; 22:1010-1020. [PMID: 33155906 DOI: 10.2174/1389450121999201103194248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022]
Abstract
Circulating tumour DNA (ctDNA) is a novel tool that has been investigated in several types of tumours, including colorectal cancer (CRC). In fact, the techniques based on liquid biopsies are proposed as appealing non-invasive alternatives to tissue biopsy, adding more insights into tumour molecular profile, heterogeneity and for cancer detection and monitoring. Additionally, some analysis showed that in CRC patients, ctDNA seems to act as a biomarker able to predict the outcome (prognostic role) and the response to treatments (predictive role). In particular, in the early stage CRC (stage I-III), it could represent a time marker of adjuvant therapy as well as a marker of minimal residual disease and recurrence risk in addition to the already recognized risk factors. In metastatic CRC, the analysis of molecular tumour profile by ctDNA has shown to have high concordance with the tissue biopsy at diagnosis. Additionally, some studies demonstrated that ctDNA level during the treatment was linked with the early response to treatment and prognosis. Finally, the quantitative analysis of ctDNA and copy number alterations may be useful in order to detect resistance to therapy at the time of progression of disease and to help in finding new therapeutic targets.
Collapse
Affiliation(s)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
43
|
Jiang L, Liao J, Liu J, Wei Q, Wang Y. Geranylgeranylacetone promotes human osteosarcoma cell apoptosis by inducing the degradation of PRMT1 through the E3 ubiquitin ligase CHIP. J Cell Mol Med 2021; 25:7961-7972. [PMID: 34155784 PMCID: PMC8358878 DOI: 10.1111/jcmm.16725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Geranylgeranylacetone (GGA), an inducer of heat shock proteins, exerts anticancer activity in some tumours. However, the effect of GGA on human osteosarcoma (OS) has not been reported. This work is designed to evaluate the effect of GGA on the proliferation and apoptosis of human OS cells and to explore the underlying mechanisms. It was found that GGA markedly inhibited the proliferation and induced apoptosis of U-2 OS cells in a dose-dependent manner and also up-regulated the expression of heat shock protein 70 (Hsp70). The degradation and ubiquitination of protein arginine N-methyltransferase 1 (PRMT1) were obviously enhanced in U-2 OS cells with CHIP overexpression and GGA treatment. The expression of PRMT1 was reversed in GGA-treated cell after CHIP knockdown. The turnover of PRMT1 was obviously faster in cells overexpressing CHIP than that in control cells. The methylation and activity of STAT3 were induced by PRMT1, resulting in the inhibition of FAS transcription. Overexpression of PRMT1 reversed the effect of GGA on activation of apoptosis-related proteins and U-2 OS cell apoptosis. The expressions of PRMT1 were significantly up-regulated in OS tissues compared with the adjacent normal tissues and benign bone tumours. In conclusion, GGA promotes the degradation of PRMT1 through the Hsp70-CHIP-mediated proteasome pathway, thereby inducing the FAS-triggered cell apoptosis. Inhibition of PRMT1 may be a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Guccione E, Schwarz M, Di Tullio F, Mzoughi S. Cancer synthetic vulnerabilities to protein arginine methyltransferase inhibitors. Curr Opin Pharmacol 2021; 59:33-42. [PMID: 34052526 DOI: 10.1016/j.coph.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Protein arginine methylation is an abundant post-translational modification involved in the modulation of essential cellular processes ranging from transcription, post-transcriptional RNA metabolism, and propagation of signaling cascades to the regulation of the DNA damage response. Excitingly for the field, in the past few years there have been remarkable advances in the development of molecular tools and clinical compounds able to selectively and potently inhibit protein arginine methyltransferase (PRMT) functions. In this review, we first discuss how the somatic mutations that confer advantages to cancer cells are often associated with vulnerabilities that can be exploited by PRMTs' inhibition. In a second part, we discuss strategies to uncover synthetic lethal combinations between existing therapies and PRMT inhibitors.
Collapse
Affiliation(s)
- Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Megan Schwarz
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Federico Di Tullio
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Mzoughi
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
46
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
47
|
Yao B, Gui T, Zeng X, Deng Y, Wang Z, Wang Y, Yang D, Li Q, Xu P, Hu R, Li X, Chen B, Wang J, Zen K, Li H, Davis MJ, Herold MJ, Pan HF, Jiang ZW, Huang DCS, Liu M, Ju J, Zhao Q. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med 2021; 13:58. [PMID: 33853662 PMCID: PMC8048298 DOI: 10.1186/s13073-021-00871-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aberrant changes in epigenetic mechanisms such as histone modifications play an important role in cancer progression. PRMT1 which triggers asymmetric dimethylation of histone H4 on arginine 3 (H4R3me2a) is upregulated in human colorectal cancer (CRC) and is essential for cell proliferation. However, how this dysregulated modification might contribute to malignant transitions of CRC remains poorly understood. METHODS In this study, we integrated biochemical assays including protein interaction studies and chromatin immunoprecipitation (ChIP), cellular analysis including cell viability, proliferation, colony formation, and migration assays, clinical sample analysis, microarray experiments, and ChIP-Seq data to investigate the potential genomic recognition pattern of H4R3me2s in CRC cells and its effect on CRC progression. RESULTS We show that PRMT1 and SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, act cooperatively to promote colorectal cancer (CRC) progression. We find that SMARCA4 is a novel effector molecule of PRMT1-mediated H4R3me2a. Mechanistically, we show that H4R3me2a directly recruited SMARCA4 to promote the proliferative, colony-formative, and migratory abilities of CRC cells by enhancing EGFR signaling. We found that EGFR and TNS4 were major direct downstream transcriptional targets of PRMT1 and SMARCA4 in colon cells, and acted in a PRMT1 methyltransferase activity-dependent manner to promote CRC cell proliferation. In vivo, knockdown or inhibition of PRMT1 profoundly attenuated the growth of CRC cells in the C57BL/6 J-ApcMin/+ CRC mice model. Importantly, elevated expression of PRMT1 or SMARCA4 in CRC patients were positively correlated with expression of EGFR and TNS4, and CRC patients had shorter overall survival. These findings reveal a critical interplay between epigenetic and transcriptional control during CRC progression, suggesting that SMARCA4 is a novel key epigenetic modulator of CRC. Our findings thus highlight PRMT1/SMARCA4 inhibition as a potential therapeutic intervention strategy for CRC. CONCLUSION PRMT1-mediated H4R3me2a recruits SMARCA4, which promotes colorectal cancer progression by enhancing EGFR signaling.
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Tao Gui
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Dongjun Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hua-Feng Pan
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Wei Jiang
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
48
|
Evaluation of Methylation Profiles of An Epidermal Growth Factor Receptor Gene in a Head and Neck Squamous Cell Carcinoma Patient Group. Balkan J Med Genet 2021; 23:65-72. [PMID: 33816074 PMCID: PMC8009575 DOI: 10.2478/bjmg-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the epidermal growth factor receptor (EGFR) gene has shown an important impact on the development of head and neck cancers due to its important regulation role on multiple cell signaling pathways. The aim of this study was to investigate the methylation pattern of the promoter region of the EGFR gene between head and neck squamous cell carcinoma (HNSCC) patients and a control group. Forty-seven unrelated HNSCC patients, clinically diagnosed at the Department of Otorhinolaryngology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey, and 48 unrelated healthy volunteers from different geographic regions of Turkey, were included in this study. Methylation status of the promoter region of the EGFR gene was detected by methylation-specific-polymerase chain reaction (MS-PCR). The correlation between EGFR gene promoter methylation profiles and clinical characteristics were examined using the χ2 test. Methylation was observed in 79.0% of HNSCC patients, whereas this ratio was 90.0% in healthy individuals. The results show that promoter region methylation of the EGFR gene was not associated with HNSCC development in the studied Turkish patient group. In addition, the methylation status of the EGFR gene promoter was not found to be related to age, gender or tumor stage.
Collapse
|
49
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
50
|
Updated Insights on EGFR Signaling Pathways in Glioma. Int J Mol Sci 2021; 22:ijms22020587. [PMID: 33435537 PMCID: PMC7827907 DOI: 10.3390/ijms22020587] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, due to recent advances in molecular biology, the pathogenesis of glioblastoma is better understood. For the newly diagnosed, the current standard of care is represented by resection followed by radiotherapy and temozolomide administration, but because median overall survival remains poor, new diagnosis and treatment strategies are needed. Due to the quick progression, even with aggressive multimodal treatment, glioblastoma remains almost incurable. It is known that epidermal growth factor receptor (EGFR) amplification is a characteristic of the classical subtype of glioma. However, targeted therapies against this type of receptor have not yet shown a clear clinical benefit. Many factors contribute to resistance, such as ineffective blood-brain barrier penetration, heterogeneity, mutations, as well as compensatory signaling pathways. A better understanding of the EGFR signaling network, and its interrelations with other pathways, are essential to clarify the mechanisms of resistance and create better therapeutic agents.
Collapse
|