1
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Cheung KL, Zhao L, Sharma R, Ghosh AA, Appiah M, Sun Y, Jaganathan A, Hu Y, LeJeune A, Xu F, Han X, Wang X, Zhang F, Ren C, Walsh MJ, Xiong H, Tsankov A, Zhou MM. Class IIa HDAC4 and HDAC7 cooperatively regulate gene transcription in Th17 cell differentiation. Proc Natl Acad Sci U S A 2024; 121:e2312111121. [PMID: 38657041 PMCID: PMC11067014 DOI: 10.1073/pnas.2312111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.
Collapse
Affiliation(s)
- Ka Lung Cheung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Li Zhao
- Institute of Epigenetic Medicine of the First Hospital, Jilin University, Changchun130061, China
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Anurupa Abhijit Ghosh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Michael Appiah
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yuan Hu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alannah LeJeune
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Feihong Xu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Xinye Han
- Institute of Epigenetic Medicine of the First Hospital, Jilin University, Changchun130061, China
| | - Xueting Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Fan Zhang
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alexander Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
3
|
Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, Shakeri F, Nasirzadeh F, Khalesi B, Nabi-Afjadi M, Zalpoor H, Mard-Soltani M, Payandeh Z. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett 2022; 27:52. [PMID: 35764927 PMCID: PMC9238060 DOI: 10.1186/s11658-022-00344-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Breast cancer is defined as a biological and molecular heterogeneous disorder that originates from breast cells. Genetic predisposition is the most important factor giving rise to this malignancy. The most notable mutations in breast cancer occur in the BRCA1 and BRCA2 genes. Owing to disease heterogeneity, lack of therapeutic target, anti-cancer drug resistance, residual disease, and recurrence, researchers are faced with challenges in developing strategies to treat patients with breast cancer. Results It has recently been reported that epigenetic processes such as DNA methylation and histone modification, as well as microRNAs (miRNAs), have potently contributed to the pathophysiology, diagnosis, and treatment of breast cancer. These observations have persuaded researchers to move their therapeutic approaches beyond the genetic framework toward the epigenetic concept. Conclusion Herein we discuss the molecular and epigenetic mechanisms underlying breast cancer progression and resistance as well as various aspects of epigenetic-based therapies as monotherapy and combined with immunotherapy.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fateme Jalalifar
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Parisa Osati
- Chemical Engineering Department, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateh Shakeri
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Farhad Nasirzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
4
|
Lin GL, Tsai LHJ, Kuppen PJK, Chan MWY. Firing up Cold Tumors-Targeting the Epigenetic Machinery to Enhance Cancer Immunotherapy. EPIGENOMES 2021; 5:11. [PMID: 34968298 PMCID: PMC8594683 DOI: 10.3390/epigenomes5020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer immunotherapy using monoclonal antibodies targeting immune checkpoint proteins, such as PD-L1 or PD-1 (i [...].
Collapse
Affiliation(s)
- Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
| | - Leah H J Tsai
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
| | - Peter J K Kuppen
- Department of Surgical Oncology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan
| |
Collapse
|
5
|
Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol 2021; 12:626172. [PMID: 33912156 PMCID: PMC8071870 DOI: 10.3389/fimmu.2021.626172] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
6
|
Di Giorgio E, Wang L, Xiong Y, Akimova T, Christensen LM, Han R, Samanta A, Trevisanut M, Bhatti TR, Beier UH, Hancock WW. MEF2D sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. J Clin Invest 2021; 130:6242-6260. [PMID: 32790649 DOI: 10.1172/jci135486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor MEF2D is important in the regulation of differentiation and adaptive responses in many cell types. We found that among T cells, MEF2D gained new functions in Foxp3+ T regulatory (Treg) cells due to its interactions with the transcription factor Foxp3 and its release from canonical partners, like histone/protein deacetylases. Though not necessary for the generation and maintenance of Tregs, MEF2D was required for the expression of IL-10, CTLA4, and Icos, and for the acquisition of an effector Treg phenotype. At these loci, MEF2D acted both synergistically and additively to Foxp3, and downstream of Blimp1. Mice with the conditional deletion in Tregs of the gene encoding MEF2D were unable to maintain long-term allograft survival despite costimulation blockade, had enhanced antitumor immunity in syngeneic models, but displayed only minor evidence of autoimmunity when maintained under normal conditions. The role played by MEF2D in sustaining effector Foxp3+ Treg functions without abrogating their basal actions suggests its suitability for drug discovery efforts in cancer therapy.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lanette M Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rongxiang Han
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matteo Trevisanut
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Tricia R Bhatti
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Combinatorial Epigenetic and Immunotherapy in Breast Cancer Management: A Literature Review. EPIGENOMES 2020; 4:epigenomes4040027. [PMID: 34968306 PMCID: PMC8594694 DOI: 10.3390/epigenomes4040027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is one of the leading causes of death among cancer patients worldwide. To date, there are several drugs that have been developed for breast cancer therapy. In the 21st century, immunotherapy is considered a pioneering method for improving the management of malignancies; however, breast cancer is an exception. According to the immunoediting model, many immunosuppressive cells contribute to immunological quiescence. Therefore, there is an urgent need to enhance the therapeutic efficacy of breast cancer treatments. In the last few years, numerous combinatorial therapies involving immune checkpoint blockade have been demonstrated that effectively improve clinical outcomes in breast cancer and combining these with methods of targeting epigenetic regulators is also an innovative strategy. Nevertheless, few studies have discussed the benefits of epi-drugs in non-cancerous cells. In this review, we give a brief overview of ongoing clinical trials involving combinatorial immunotherapy with epi-drugs in breast cancer and discuss the role of epi-drugs in the tumor microenvironment, including the results of recent research.
Collapse
|
8
|
Epigenome-metabolome-microbiome axis in health and IBD. Curr Opin Microbiol 2020; 56:97-108. [PMID: 32920333 DOI: 10.1016/j.mib.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Environmental triggers in the context of genetic susceptibility drive phenotypes of complex immune disorders such as Inflammatory bowel disease (IBD). One such trigger of IBD is perturbations in enteric commensal bacteria, fungi or viruses that shape both immune and neuronal state. The epigenome acts as an interface between microbiota and context-specific gene expression and is thus emerging as a third key contributor to IBD. Here we review evidence that the host epigenome plays a significant role in orchestrating the bidirectional crosstalk between mammals and their commensal microorganisms. We discuss disruption of chromatin regulatory regions and epigenetic enzyme mutants as a causative factor in IBD patients and mouse models of intestinal inflammation and consider the possible translation of this knowledge. Furthermore, we present emerging insights into the intricate connection between the microbiome and epigenetic enzyme activity via host or bacterial metabolites and how these interactions fine-tune the microorganism-host relationship.
Collapse
|
9
|
Huang J, Wang S, Jia Y, Zhang Y, Dai X, Li B. Targeting FOXP3 complex ensemble in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:143-168. [PMID: 32312420 DOI: 10.1016/bs.apcsb.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Forkhead Box P3 (FOXP3) is a key transcriptional regulator of regulatory T cells (Tregs), especially for its function of immune suppression. The special immune suppression function of Tregs plays an important role in maintaining immune homeostasis, and is related to several diseases including cancer, and autoimmune diseases. At the same time, FOXP3 takes a place in a large transcriptional complex, whose stability and functions can be controlled by various post-translational modification. More and more researches have suggested that targeting FOXP3 or its partners might be a feasible solution to immunotherapy. In this review, we focus on the transcription factor FOXP3 in Tregs, Treg functions in diseases and the FOXP3 targets.
Collapse
Affiliation(s)
- Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin Jia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Chadha S, Wang L, Hancock WW, Beier UH. Sirtuin-1 in immunotherapy: A Janus-headed target. J Leukoc Biol 2019; 106:337-343. [PMID: 30605226 PMCID: PMC7477756 DOI: 10.1002/jlb.2ru1118-422r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022] Open
Abstract
Sirtuin-1 (Sirt1), a member of the NAD-dependent sirtuin family of histone/protein deacetylases (HDAC), is an important target for immunotherapy due to its role in deacetylating the transcription factors Foxp3 and thymic retinoid acid receptor related orphan receptor gamma (RORγt). Sirt1 inhibition can increase Foxp3 acetylation and promote the production and functions of Foxp3+ T-regulatory (Treg) cells, whereas the acetylation of RORγt decreases its transcriptional activity DNA binding and decreases the differentiation of proinflammatory Th17 cells. Pharmacologic inhibitors of Sirt1 increase allograft survival and decrease autoimmune colitis and experimental allergic encephalomyelitis. However, in contrast to its role in T cells, Sirt1 has anti-inflammatory effects in myeloid cells, and, context dependent, in Th17 cells. Here, inhibition of Sirt1 can have proinflammatory effects. In addition to effects arising from the central role of Sirt1 in cellular metabolism and NAD-dependent reactions, such proinflammatory effects further complicate the potential of Sirt1 for therapeutic immunosuppression. This review aims to reconcile the opposing literature on pro- and anti-inflammatory effects of Sirt1, provides an overview of the role of Sir1 in the immune system, and discusses the pros and cons associated with inhibiting Sirt1 for control of inflammation and immune responses.
Collapse
Affiliation(s)
- Sakshum Chadha
- Division of Nephrology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf H. Beier
- Division of Nephrology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Ryba-Stanisławowska M, Sakowska J, Zieliński M, Ławrynowicz U, Trzonkowski P. Regulatory T cells: the future of autoimmune disease treatment. Expert Rev Clin Immunol 2019; 15:777-789. [PMID: 31104510 DOI: 10.1080/1744666x.2019.1620602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: CD4 + T regulatory cells (Tregs) have been described as the most potent immunosuppressive cells in the human body. They have been found to control autoimmunity, and clinical attempts have been made to apply them to treat autoimmune diseases. Some specific pathways utilized by Tregs in the regulation of immune response or Tregs directly as cellular products are tested in the clinic. Areas covered: Here, we present recent advances in the research on the biology and clinical applications of Tregs in the treatment of autoimmune diseases. Expert opinion: Regulatory T cells seem to be a promising tool for the treatment of autoimmune diseases. The development of both cell-based therapies and modern pharmacotherapies which affect Tregs may strongly improve the treatment of autoimmune disorders. Growing knowledge about Treg biology together with the latest biotechnology tools may give an opportunity for personalized therapies in these conditions.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Justyna Sakowska
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Maciej Zieliński
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Urszula Ławrynowicz
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Piotr Trzonkowski
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| |
Collapse
|
12
|
Lieber AD, Beier UH, Xiao H, Wilkins BJ, Jiao J, Li XS, Schugar RC, Strauch CM, Wang Z, Brown JM, Hazen SL, Bokulich NA, Ruggles KV, Akimova T, Hancock WW, Blaser MJ. Loss of HDAC6 alters gut microbiota and worsens obesity. FASEB J 2019; 33:1098-1109. [PMID: 30102568 PMCID: PMC6355060 DOI: 10.1096/fj.201701586r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
Alterations in gut microbiota are known to affect intestinal inflammation and obesity. Antibiotic treatment can affect weight gain by elimination of histone deacetylase (HDAC) inhibitor-producing microbes, which are anti-inflammatory by augmenting regulatory T (Treg) cells. We asked whether mice that lack HDAC6 and have potent suppressive Treg cells are protected from microbiota-induced accelerated weight gain. We crossed wild-type and HDAC6-deficient mice and subjected the offspring to perinatal penicillin, inducing weight gain via microbiota disturbance. We observed that male HDAC6-deficient mice were not protected and developed profoundly accelerated weight gain. The antibiotic-exposed HDAC6-deficient mice showed a mixed immune phenotype with increased CD4+ and CD8+ T-cell activation yet maintained the enhanced Treg cell-suppressive function phenotype characteristic of HDAC6-deficient mice. 16S rRNA sequencing of mouse fecal samples reveals that their microbiota diverged with time, with HDAC6 deletion altering microbiome composition. On a high-fat diet, HDAC6-deficient mice were depleted in representatives of the S24-7 family and Lactobacillus but enriched with Bacteroides and Parabacteroides; these changes are associated with obesity. Our findings further our understanding of the influence of HDACs on microbiome composition and are important for the development of HDAC6 inhibitors in the treatment of human diseases.-Lieber, A. D., Beier, U. H., Xiao, H., Wilkins, B. J., Jiao, J., Li, X. S., Schugar, R. C., Strauch, C. M., Wang, Z., Brown, J. M., Hazen, S. L., Bokulich, N. A., Ruggles, K. V., Akimova, T., Hancock, W. W., Blaser, M. J. Loss of HDAC6 alters gut microbiota and worsens obesity.
Collapse
Affiliation(s)
- Arnon D. Lieber
- Department of Medicine New York University School of Medicine (NYUSM), New York, New York, USA
- Department of Microbiology, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Ulf H. Beier
- Division of Nephrology, Department of Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haiyan Xiao
- Division of Nephrology, Department of Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin J. Wilkins
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Jiao
- Division of Nephrology, Department of Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinmin S. Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rebecca C. Schugar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher M. Strauch
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas A. Bokulich
- Department of Medicine New York University School of Medicine (NYUSM), New York, New York, USA
- Department of Microbiology, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Kelly V. Ruggles
- Applied Bioinformatics Laboratories, New York University School of Medicine (NYUSM), New York, New York, USA
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin J. Blaser
- Department of Medicine New York University School of Medicine (NYUSM), New York, New York, USA
- Department of Microbiology, New York University School of Medicine (NYUSM), New York, New York, USA
- New York Harbor Department of Veterans Affairs Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Behera J, Kelly KE, Voor MJ, Metreveli N, Tyagi SC, Tyagi N. Hydrogen Sulfide Promotes Bone Homeostasis by Balancing Inflammatory Cytokine Signaling in CBS-Deficient Mice through an Epigenetic Mechanism. Sci Rep 2018; 8:15226. [PMID: 30323246 PMCID: PMC6189133 DOI: 10.1038/s41598-018-33149-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown hyperhomocysteinemia (HHcy) to have a detrimental effect on bone remodeling, which is associated with osteoporosis. During transsulfuration, Hcy is metabolized into hydrogen sulfide (H2S), a gasotransmitter molecule known to regulate bone formation. Therefore, in the present study, we examined whether H2S ameliorates HHcy induced epigenetic and molecular alterations leading to osteoporotic bone loss. To test this mechanism, we employed cystathionine-beta-synthase heterozygote knockout mice, fed with a methionine rich diet (CBS+/− +Met), supplemented with H2S-donor NaHS for 8 weeks. Treatment with NaHS, normalizes plasma H2S, and completely prevents trabecular bone loss in CBS+/− mice. Our data showed that HHcy caused inhibition of HDAC3 activity and subsequent inflammation by imbalancing redox homeostasis. The mechanistic study revealed that inflammatory cytokines (IL-6, TNF-α) are transcriptionally activated by an acetylated lysine residue in histone (H3K27ac) of chromatin by binding to its promoter and subsequently regulating gene expression. A blockade of HDAC3 inhibition in CBS+/− mice by HDAC activator ITSA-1, led to the remodeling of histone landscapes in the genome and thereby attenuated histone acetylation-dependent inflammatory signaling. We also confirmed that RUNX2 was sulfhydrated by administration of NaHS. Collectively, restoration of H2S may provide a novel treatment for CBS-deficiency induced metabolic osteoporosis.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Kimberly E Kelly
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Michael J Voor
- Department of Orthopaedic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292, USA.,Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Naira Metreveli
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Suresh C Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
14
|
Reduced Activity of HDAC3 and Increased Acetylation of Histones H3 in Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis. J Immunol Res 2018; 2018:7313515. [PMID: 30402512 PMCID: PMC6192092 DOI: 10.1155/2018/7313515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant histone acetylation and deacetylation are increasingly thought to play important roles in the pathogenesis of rheumatoid arthritis (RA). However, limited data from studies about the activity of histone deacetylases (HDACs) and histone acetyltransferase (HAT) in RA are controversial. Those conflicting results may be caused by sample size, medication, and age- and sex-matched controls. The aim of this study is to investigate the expression and activity of class I HDACs (1-3.8) and their effects on histone acetylation in peripheral blood mononuclear cells (PBMCs) from RA patients. The expression of class I HDACs in PBMCs from RA patients was decreased in both mRNA and protein levels in comparison with HCs. The nuclear HAT activities were dramatically increased. Further, we found HDAC3 activity to be the most significantly reduced in overall reduction of HDACs in the RA group. The extent of total histone H3, but not H4, acetylation in PBMCs from RA patients was increased compared to that in healthy controls (HCs) (p < 0.01). In RA PBMCs, the activity and expression of class I HDACs are decreased, which is accompanied with enhanced HAT activity. An altered balance between HDAC and HAT activity was found in RA PBMCs.
Collapse
|
15
|
Pili R, Quinn DI, Hammers HJ, Monk P, George S, Dorff TB, Olencki T, Shen L, Orillion A, Lamonica D, Fragomeni RS, Szabo Z, Hutson A, Groman A, Perkins SM, Piekarz R, Carducci MA. Immunomodulation by Entinostat in Renal Cell Carcinoma Patients Receiving High-Dose Interleukin 2: A Multicenter, Single-Arm, Phase I/II Trial (NCI-CTEP#7870). Clin Cancer Res 2017; 23:7199-7208. [PMID: 28939740 PMCID: PMC5712266 DOI: 10.1158/1078-0432.ccr-17-1178] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 01/05/2023]
Abstract
Purpose: On the basis of preclinical data suggesting that the class I selective HDAC inhibitor entinostat exerts a synergistic antitumor effect in combination with high-dose IL2 in a renal cell carcinoma model by downregulating Foxp3 expression and function of regulatory T cells (Treg), we conducted a phase I/II clinical study with entinostat and high-dose IL2 in patients with metastatic clear cell renal cell carcinoma (ccRCC).Experimental Design: Clear cell histology, no prior treatments, and being sufficiently fit to receive high-dose IL2 were the main eligibility criteria. The phase I portion consisted of two dose levels of entinostat (3 and 5 mg, orally every 14 days) and a fixed standard dose of IL2 (600,000 U/kg i.v.). Each cycle was 85 days. The primary endpoint was objective response rate and toxicity. Secondary endpoints included progression-free survival and overall survival.Results: Forty-seven patients were enrolled. At a median follow-up of 21.9 months, the objective response rate was 37% [95% confidence interval (CI), 22%-53%], the median progression-free survival was 13.8 months (95% CI, 6.0-18.8), and the median overall survival was 65.3 months (95% CI, 52.6.-65.3). The most common grade 3/4 toxicities were hypophosphatemia (16%), lymphopenia (15%), and hypocalcemia (7%), and all were transient. Decreased Tregs were observed following treatment with entinostat, and lower numbers were associated with response (P = 0.03).Conclusions: This trial suggests a promising clinical activity for entinostat in combination with high-dose IL2 in ccRCC patients and provides the first example of an epigenetic agent being rationally combined with immunotherapy. Clin Cancer Res; 23(23); 7199-208. ©2017 AACR.
Collapse
Affiliation(s)
- Roberto Pili
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana.
| | - David I Quinn
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Hans J Hammers
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Paul Monk
- The Ohio State University, Columbus, Ohio
| | - Saby George
- Roswell Park Cancer Institute, Buffalo, New York
| | - Tanya B Dorff
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Li Shen
- Roswell Park Cancer Institute, Buffalo, New York
| | | | | | - Roberto S Fragomeni
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Zsolt Szabo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Alan Hutson
- Roswell Park Cancer Institute, Buffalo, New York
| | | | - Susan M Perkins
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Richard Piekarz
- Cancer Therapy Evaluation Program, NCI, NI H, Bethesda, Maryland
| | - Michael A Carducci
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
16
|
Woo V, Alenghat T. Host-microbiota interactions: epigenomic regulation. Curr Opin Immunol 2017; 44:52-60. [PMID: 28103497 DOI: 10.1016/j.coi.2016.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
The coevolution of mammalian hosts and their commensal microbiota has led to the development of complex symbiotic relationships between resident microbes and mammalian cells. Epigenomic modifications enable host cells to alter gene expression without modifying the genetic code, and therefore represent potent mechanisms by which mammalian cells can transcriptionally respond, transiently or stably, to environmental cues. Advances in genome-wide approaches are accelerating our appreciation of microbial influences on host physiology, and increasing evidence highlights that epigenomics represent a level of regulation by which the host integrates and responds to microbial signals. In particular, bacterial-derived short chain fatty acids have emerged as one clear link between how the microbiota intersects with host epigenomic pathways. Here we review recent findings describing crosstalk between the microbiota and epigenomic pathways in multiple mammalian cell populations. Further, we discuss interesting links that suggest that the scope of our understanding of epigenomic regulation in the host-microbiota relationship is still in its infancy.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
Haery L, Thompson RC, Gilmore TD. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 2015; 6:184-213. [PMID: 26124919 PMCID: PMC4482241 DOI: 10.18632/genesandcancer.65] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas.
Collapse
Affiliation(s)
- Leila Haery
- Department of Biology, Boston University, Boston, MA, USA
| | | | | |
Collapse
|