1
|
Klinngam W, Rungkamoltip P, Wongwanakul R, Joothamongkhon J, Du-A-Man S, Khongkow M, Asawapirom U, Iempridee T, Ruktanonchai U. Skin Rejuvenation Efficacy and Safety Evaluation of Kaempferia parviflora Standardized Extract (BG100) in Human 3D Skin Models and Clinical Trial. Biomolecules 2024; 14:776. [PMID: 39062490 PMCID: PMC11274994 DOI: 10.3390/biom14070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Polymethoxyflavones from Kaempferia parviflora rhizomes have been shown to effectively combat aging in skin cells and tissues by inhibiting senescence, reducing oxidative stress, and enhancing skin structure and function. This study assessed the anti-aging effects and safety of standardized K. parviflora extract (BG100), enriched with polymethoxyflavones including 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone, 3,5,7-trimethoxyflavone, and 3,5,7,4'-tetramethoxyflavone. We evaluated BG100's impact on skin rejuvenation and antioxidant properties using photoaged human 3D full-thickness skin models. The potential for skin irritation and sensitization was also assessed through studies on reconstructed human epidermis and clinical trials. Additionally, in vitro genotoxicity testing was performed following OECD guidelines. Results indicate that BG100 promotes collagen and hyaluronic acid production, reduces oxidative stress, and minimizes DNA damage in photoaged full-thickness 3D skin models. Furthermore, it exhibited non-irritating and non-sensitizing properties, as supported by tests on reconstructed human epidermis and clinical settings. BG100 also passed in vitro genotoxicity tests, adhering to OECD guidelines. These results underscore BG100's potential as a highly effective and safe, natural anti-aging agent, suitable for inclusion in cosmeceutical and nutraceutical products aimed at promoting skin rejuvenation.
Collapse
Affiliation(s)
- Wannita Klinngam
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jaruwan Joothamongkhon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sakkarin Du-A-Man
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Udom Asawapirom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Brown A, Furmanczyk M, Ramos D, Ribes A, Pons L, Bustos J, de Henestrosa ARF, Granger C, Jourdan E. Natural Retinol Analogs Potentiate the Effects of Retinal on Aged and Photodamaged Skin: Results from In Vitro to Clinical Studies. Dermatol Ther (Heidelb) 2023; 13:2299-2317. [PMID: 37615835 PMCID: PMC10539272 DOI: 10.1007/s13555-023-01004-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION Plants are a source of natural ingredients with retinol-like properties that can deliver anti-aging benefits without the side effects typically associated with retinoid use. We hypothesized that by combining two such analogs, bakuchiol (BAK) and Vigna aconitifolia extract (VAE), with the potent retinoid retinal (RAL), the anti-photoaging potential of RAL could be enhanced without compromising its skin irritation profile. The purpose of this study was to demonstrate that BAK and VAE potentiate the anti-photoaging activity of RAL. METHODS Gene expression profiling of full-thickness reconstructed skin was first used to examine the impact of BAK or VAE in combination with RAL on skin biology. Next, the irritative potential of this combination, and its capacity to reverse key signs of photoaging in an ex vivo model was assessed. Finally, a proof-of-concept open label clinical study was performed to evaluate the anti-photoaging capacity and skin compatibility of a cosmetic formulation (tri-retinoid complex; 3RC) containing this complex in combination with other well characterized anti-photoaging ingredients. RESULTS In vitro profiling suggested that combining 0.1% RAL with BAK or VAE potentiates the effect of RAL on keratinocyte differentiation and skin barrier function without affecting its skin irritation profile. When formulated with other anti-photoaging ingredients, such as niacinamide and melatonin, 3RC reversed ultraviolet radiation-induced deficits in structural components of the dermal extracellular matrix, including hyaluronic acid and collagen. In vivo, it led to a reversal of clinical signs of age and photodamage, with statistically significant improvement to skin firmness (+5.6%), skin elasticity (+13.9%), wrinkle count (-43.2%), and skin tone homogeneity (+7.0%), observed within 28 days of once nightly use. Notably, the number of crow's feet wrinkles was reduced in 100% of subjects. Furthermore, 3RC was very well tolerated. CONCLUSION These data suggest that 3RC is a highly effective and well-tolerated treatment for photoaging.
Collapse
Affiliation(s)
- Anthony Brown
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain.
| | - Marta Furmanczyk
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
| | - David Ramos
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
| | - Adrià Ribes
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
| | - Laia Pons
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
| | - Javier Bustos
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
| | | | - Corinne Granger
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
- Stella Polaris Europe, Paris, France
| | - Eric Jourdan
- Innovation and Development, ISDIN, Carrer de Provençals 33, 08019, Barcelona, Spain
| |
Collapse
|
3
|
Turk CB, Baykara Ulusan M, Döş YM, Manav Baş V, Sarikaya Tellal E, Koku Aksu AE. The Effects of Oral Isotretinoin on Atrophic Acne Scars Measured by Shear-wave Elastography: An Observational, Single-center Study. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:46-51. [PMID: 37720196 PMCID: PMC10503936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background Although the effects of oral isotretinoin (OI) on acne vulgaris and preventing further acne scars have been well-documented, the specific impact of OI alone on pre-existing atrophic acne scars (AAS) remains unclear. No clinical study has objectively evaluated the effect of OI on AAS yet. Objective We sought to investigate the OI effect on AAS quantitatively and reliably by shear-wave elastography (SWE). Methods This work is a single-center, prospective and observational study. Thirty patients with moderate and severe acne vulgaris accompanied by AAS were included. We started the OI with a standard dose regime. On Days 0 and 90 of treatment, patients' global acne grading system (GAGS) and the Goodman and Baron's Qualitative Global Scar Rating System (GSRS) were evaluated. The dermal thickness, subcutaneous tissue thickness, scar size, and scar and subcutaneous tissue's elastic modules were measured on both cheeks of each patient by SWE. Results The improvement in GSRS stages and GAGS scores in 90 days were statistically significant (respectively; p=0.029, <0.001). Scar size and dermal thickness decreased, while the subcutaneous tissue thickness and the elastic modulus of scar and subcutaneous tissue increased in bilateral cheeks. The thickness changes in the right side dermis, and subcutaneous tissue on both sides were noteworthy (p<0.05). Conclusion Besides its well-known effect on acne vulgaris, OI also could be an effective treatment option for reducing scar size and severity while improving skin elasticity. SWE may help follow skin and scar properties.
Collapse
Affiliation(s)
- Cemre Busra Turk
- Dr. Turk is with the Wellman Center for Photomedicine at Massachusetts General Hospital in Boston, Massachusetts
- Additionally, Dr. Turk is with the Department of Dermatology at Harvard Medical School in Boston, Massachusetts
| | - Melis Baykara Ulusan
- Dr. Baykara Ulusan is with the University of Health Sciences Istanbul Training and Research Hospital's Radiology Clinic in Istanbul, Turkey
| | - Yusuf Mert Döş
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| | - Vildan Manav Baş
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| | - Ebru Sarikaya Tellal
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| | - Ayse Esra Koku Aksu
- Drs. Döş, Manav Baş, Sarıkaya Tellal, and Koku Aksu are with the University of Health Sciences Istanbul Training and Research Hospital's Dermatology Clinic in Istanbul, Turkey
| |
Collapse
|
4
|
Akoto T, Cai J, Nicholas S, McCord H, Estes AJ, Xu H, Karamichos D, Liu Y. Unravelling the Impact of Cyclic Mechanical Stretch in Keratoconus-A Transcriptomic Profiling Study. Int J Mol Sci 2023; 24:7437. [PMID: 37108600 PMCID: PMC10139219 DOI: 10.3390/ijms24087437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Biomechanical and molecular stresses may contribute to the pathogenesis of keratoconus (KC). We aimed to profile the transcriptomic changes in healthy primary human corneal (HCF) and KC-derived cells (HKC) combined with TGFβ1 treatment and cyclic mechanical stretch (CMS), mimicking the pathophysiological condition in KC. HCFs (n = 4) and HKCs (n = 4) were cultured in flexible-bottom collagen-coated 6-well plates treated with 0, 5, and 10 ng/mL of TGFβ1 with or without 15% CMS (1 cycle/s, 24 h) using a computer-controlled Flexcell FX-6000T Tension system. We used stranded total RNA-Seq to profile expression changes in 48 HCF/HKC samples (100 bp PE, 70-90 million reads per sample), followed by bioinformatics analysis using an established pipeline with Partek Flow software. A multi-factor ANOVA model, including KC, TGFβ1 treatment, and CMS, was used to identify differentially expressed genes (DEGs, |fold change| ≥ 1.5, FDR ≤ 0.1, CPM ≥ 10 in ≥1 sample) in HKCs (n = 24) vs. HCFs (n = 24) and those responsive to TGFβ1 and/or CMS. PANTHER classification system and the DAVID bioinformatics resources were used to identify significantly enriched pathways (FDR ≤ 0.05). Using multi-factorial ANOVA analyses, 479 DEGs were identified in HKCs vs. HCFs including TGFβ1 treatment and CMS as cofactors. Among these DEGs, 199 KC-altered genes were responsive to TGFβ1, thirteen were responsive to CMS, and six were responsive to TGFβ1 and CMS. Pathway analyses using PANTHER and DAVID indicated the enrichment of genes involved in numerous KC-relevant functions, including but not limited to degradation of extracellular matrix, inflammatory response, apoptotic processes, WNT signaling, collagen fibril organization, and cytoskeletal structure organization. TGFβ1-responsive KC DEGs were also enriched in these. CMS-responsive KC-altered genes such as OBSCN, CLU, HDAC5, AK4, ITGA10, and F2RL1 were identified. Some KC-altered genes, such as CLU and F2RL1, were identified to be responsive to both TGFβ1 and CMS. For the first time, our multi-factorial RNA-Seq study has identified many KC-relevant genes and pathways in HKCs with TGFβ1 treatment under CMS, suggesting a potential role of TGFβ1 and biomechanical stretch in KC development.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Hayden McCord
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Kraokaew P, Manohong P, Prasertsuksri P, Jattujan P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Ethyl Acetate Extract of Marine Algae, Halymenia durvillei, Provides Photoprotection against UV-Exposure in L929 and HaCaT Cells. Mar Drugs 2022; 20:707. [PMID: 36421985 PMCID: PMC9696495 DOI: 10.3390/md20110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2023] Open
Abstract
Halymenia durvillei is a red alga distributed along the coasts of Southeast Asian countries including Thailand. Previous studies have shown that an ethyl acetate fraction of H. durvillei (HDEA), containing major compounds including n-hexadecanoic acid, 2-butyl-5-hexyloctahydro-1H-indene, 3-(hydroxyacetyl) indole and indole-3-carboxylic acid, possesses high antioxidant and anti-lung cancer activities. The present study demonstrated that HDEA could protect mouse skin fibroblasts (L929) and human immortalized keratinocytes (HaCaT) against photoaging due to ultraviolet A and B (UVA and UVB) by reducing intracellular reactive oxygen species (ROS) and expressions of matrix metalloproteinases (MMP1 and MMP3), as well as increasing Nrf2 nuclear translocation, upregulations of mRNA transcripts of antioxidant enzymes, including superoxide dismutase (SOD), heme oxygenase (HMOX) and glutathione S-transferase pi1 (GSTP1), and procollagen synthesis. The results indicate that HDEA has the potential to protect skin cells from UV irradiation through the activation of the Nrf2 pathway, which leads to decreasing intracellular ROS and MMP production, along with the restoration of skin collagen.
Collapse
Affiliation(s)
- Pichnaree Kraokaew
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | | | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nakhon Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Montakan Tamtin
- Kung Krabean Bay Royal Development Center, Department of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Ma J, Teng Y, Huang Y, Tao X, Fan Y. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front Pharmacol 2022; 13:864331. [PMID: 36278173 PMCID: PMC9582953 DOI: 10.3389/fphar.2022.864331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photoaging is characterized by a chronic inflammatory response to UV light. One of the most prominent features of cutaneous photoaging is wrinkling, which is due primarily to a loss of collagen fibers and deposits of abnormal degenerative elastotic material within the dermis (actinic elastosis). These changes are thought to be mediated by inflammation, with subsequent upregulation of extracellular matrix-degrading proteases and down-regulation of collagen synthesis. Autophagy is a vital homeostatic cellular process of either clearing surplus or damaged cell components notably lipids and proteins or recycling the content of the cells’ cytoplasm to promote cell survival and adaptive responses during starvation and other oxidative and/or genotoxic stress conditions. Autophagy may also become a means of supplying nutrients to maintain a high cellular proliferation rate when needed. It has been suggested that loss of autophagy leads to both photodamage and the initiation of photoaging in UV exposed skin. Moreover, UV radiation of sunlight is capable of regulating a number of autophagy-linked genes. This review will focus on the protective effect of autophagy in the skin cells damaged by UV radiation. We hope to draw attention to the significance of autophagy regulation in the prevention and treatment of skin photoaging.
Collapse
|
7
|
Mu J, Chen H, Ye M, Zhang X, Ma H. Acacetin resists UVA photoaging by mediating the SIRT3/ROS/MAPKs pathway. J Cell Mol Med 2022; 26:4624-4628. [PMID: 35765710 PMCID: PMC9357640 DOI: 10.1111/jcmm.17415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Ultraviolet A (UVA) radiation is a major contributor to the pathogenesis of skin photoaging, and the aim of this study was to investigate the effect of Acacetin on skin photoaging in UVA‐irradiated mice and human dermal fibroblasts (HDF). Healthy dorsal depilated rats were irradiated with UVA 30 J/cm2 daily, every other day, for 1 month. Acacetin (40, 80 mg kg/day) was coated to the bare skin of the rats' backs 1 h before UVA irradiation. HDF were treated different concentrations of Acacetin (5, 10, 20 μg/ml) and then irradiated with UVA (20 J/cm2). Acacetin was found to be effective in ameliorating UVA‐induced oxidative stress and cell death. Acacetin also prevented the UVA‐induced decrease of SIRT3, reduced the activation of mitogen‐activated protein kinases (MAPKs, p‐38 and p‐JNK) and blocked the down‐regulated activation of oxidative stress in matrix metalloproteinases (MMPs). In addition, Acacetin increased the expressions of collagen‐promoting proteins (TGF‐β and Smad3). Finally, the SIRT3 inhibitor 3‐TYP blocked all protective effects of Acacetin, indicating that the protective effect of Acacetin against UVA photoaging is SIRT3‐dependent. Acacetin effectively mitigated photoaging by targeting the promotion of SIRT3, inhibiting the UVA‐induced increases in MMPs and pro‐inflammatory factors, and promoting TGF‐β and Smad3.
Collapse
Affiliation(s)
- Jing Mu
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Hong Chen
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Mengyi Ye
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Huisheng Ma
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Yuksel Egrilmez M, Kocturk S, Aktan S, Oktay G, Resmi H, Simsek Keskin H, Guner Akdogan G, Ozkan S. Melatonin Prevents UVB-Induced Skin Photoaging by Inhibiting Oxidative Damage and MMP Expression through JNK/AP-1 Signaling Pathway in Human Dermal Fibroblasts. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070950. [PMID: 35888040 PMCID: PMC9322074 DOI: 10.3390/life12070950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Exposure to ultraviolet (UV) irradiation causes damage to the skin and induces photoaging. UV irradiation stimulates production of reactive oxygen/nitrogen species, which results in activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) in fibroblasts. MAPKs are responsible for activation of activator protein-1 (AP-1), which subsequently upregulates expression of matrix metalloproteinases (MMPs). Melatonin is a potent free radical scavenger which is known to have photoprotective effects. The aim of this study is to investigate the underlying molecular mechanisms for the photoprotective effects of melatonin in UVB-irradiated primary human dermal fibroblasts (HDFs) in terms of EGFR activation, oxidative/nitrosative damage, JNK/AP-1 activation, MMP activities, and the levels of tissue inhibitors of metalloproteinase-1 (TIMP-1) and type I procollagen (PIP-C). In this study, HDFs were pretreated with 1 μM of melatonin and then irradiated with 0.1 J/cm2 of UVB. Changes in the molecules were analyzed at different time points. Melatonin inhibited UVB-induced oxidative/nitrosative stress damage by reducing malondialdehyde, the ratio of oxidized/reduced glutathione, and nitrotyrosine. Melatonin downregulated UV-induced activation of EGFR and the JNK/AP-1 signaling pathway. UVB-induced activities of MMP-1 and MMP-3 were decreased and levels of TIMP-1 and PIP-C were increased by melatonin. These findings suggest that melatonin can protect against the adverse effects of UVB radiation by inhibiting MMP-1 and MMP-3 activity and increasing TIMP-1 and PIP-C levels, probably through the suppression of oxidative/nitrosative damage, EGFR, and JNK/AP-1 activation in HDFs.
Collapse
Affiliation(s)
- Mehtap Yuksel Egrilmez
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Correspondence:
| | - Semra Kocturk
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Sebnem Aktan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.A.); (S.O.)
| | - Gulgun Oktay
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Halil Resmi
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Hatice Simsek Keskin
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Gul Guner Akdogan
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
- Faculty of Medicine, Izmir University of Economics, Izmir 35330, Turkey
| | - Sebnem Ozkan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.A.); (S.O.)
| |
Collapse
|
9
|
Costello L, Dicolandrea T, Tasseff R, Isfort R, Bascom C, von Zglinicki T, Przyborski S. Tissue engineering strategies to bioengineer the ageing skin phenotype in vitro. Aging Cell 2022; 21:e13550. [PMID: 35037366 PMCID: PMC8844123 DOI: 10.1111/acel.13550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Human skin ageing is a complex and heterogeneous process, which is influenced by genetically determined intrinsic factors and accelerated by cumulative exposure to extrinsic stressors. In the current world ageing demographic, there is a requirement for a bioengineered ageing skin model, to further the understanding of the intricate molecular mechanisms of skin ageing, and provide a distinct and biologically relevant platform for testing actives and formulations. There have been many recent advances in the development of skin models that recapitulate aspects of the ageing phenotype in vitro. This review encompasses the features of skin ageing, the molecular mechanisms that drive the ageing phenotype, and tissue engineering strategies that have been utilised to bioengineer ageing skin in vitro.
Collapse
Affiliation(s)
| | | | - Ryan Tasseff
- Procter and GambleMason Business CenterCincinnatiOhioUSA
| | - Robert Isfort
- Procter and GambleMason Business CenterCincinnatiOhioUSA
| | - Charlie Bascom
- Procter and GambleMason Business CenterCincinnatiOhioUSA
| | - Thomas von Zglinicki
- Institute for Cell and Molecular SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Stefan Przyborski
- Department of BiosciencesDurham UniversityDurhamUK
- Reprocell EuropeGlasgow, DurhamUK
| |
Collapse
|
10
|
Wang J, Qiu H, Xu Y, Gao Y, Tan P, Zhao R, Liu Z, Tang Y, Zhu X, Bao C, Wang H, Lin H, Zhang X. The biological effect of recombinant humanized collagen on damaged skin induced by UV-photoaging: An in vivo study. Bioact Mater 2021; 11:154-165. [PMID: 34938920 PMCID: PMC8665261 DOI: 10.1016/j.bioactmat.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 01/04/2023] Open
Abstract
The application of medical devices to repair skin damage is clinically accepted and natural polymer enjoys an important role in this field, such as collagen or hyaluronic acid, etc. However, the biosafety and efficacy of these implants are still challenged. In this study, a skin damage animal model was prepared by UV-photoaging and recombinant humanized type III collagen (rhCol III) was applied as a bioactive material to implant in vivo to study its biological effect, comparing with saline and uncrosslinked hyaluronic acid (HA). Animal skin conditions were non-invasively and dynamically monitored during the 8 weeks experiment. Histological observation, specific gene expression and other molecular biological methods were applied by the end of the animal experiment. The results indicated that rhCol III could alleviate the skin photoaging caused by UV radiation, including reduce the thickening of epidermis and dermis, increase the secretion of Collagen I (Col I) and Collagen III (Col III) and remodel of extracellular matrix (ECM). Although the cell-material interaction and mechanism need more investigation, the effect of rhCol III on damaged skin was discussed from influence on cells, reconstruction of ECM, and stimulus of small biological molecules based on current results. In conclusion, our findings provided rigorous biosafety information of rhCol III and approved its potential in skin repair and regeneration. Although enormous efforts still need to be made to achieve successful translation from bench to clinic, the recombinant humanized collagen showed superiorities from both safety and efficacy aspects. Investigated the biological effect of recombinant humanized collagen type III (rhCol III) in vivo. Provided the safety and efficacy evidence for rhCol III in skin damage repair. Preliminary mechanism discussion on the biological effect of rhCol III.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - He Qiu
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peijie Tan
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Zhao
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yajun Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chongyun Bao
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
- Corresponding author.
| | - Hang Wang
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
- Corresponding author.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
- Corresponding author. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
11
|
Protective Effect of Fat-Tissue-Derived Products against Ultraviolet Irradiation-Induced Photoaging in Mouse Skin. Plast Reconstr Surg 2021; 148:1290-1299. [PMID: 34644267 DOI: 10.1097/prs.0000000000008562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Exposure to ultraviolet radiation causes erythema, inflammation, and photoaging. Mechanical micronization of adipose tissue can concentrate functional cells and has great potential as an alternative for regenerative medicine. Stromal vascular fraction gel is produced by means of a series of mechanical processes of lipoaspirates and can be injected intradermally. This study aimed to assess the therapeutic effect of stromal vascular fraction gel on photoaging skin. METHODS A photoaging model was established in nude mice. Photoaging mice received treatments of stromal vascular fraction gel, fat, tretinoin, or phosphate-buffered saline. Photoaging skin was characterized by histologic and immunohistochemical analyses. Expression of collagen synthesis-related or photoaging-related genes was assessed. RESULTS Stromal vascular fraction gel, fat, and tretinoin reversed photoaging, whereas stromal vascular fraction gel demonstrated the greatest therapeutic effect. Treatment with stromal vascular fraction gel restored intradermal fat tissue content and increased dermal collagen density. Injection of stromal vascular fraction gel had the strongest effect on stimulating fibroblasts and increasing the expression of transforming growth factor β1 (TGF-β1), propeptide of type-I procollagen, and Smad 2, decreasing the expression of Smad 3, compared with fat and tretinoin. Expression of photoaging-related genes was significantly reduced, whereas expression of fibulin-5 was significantly increased after stromal vascular fraction gel treatment. CONCLUSIONS Stromal vascular fraction gel demonstrated remarkable therapeutic effects in reversing photoaging skin. Stromal vascular fraction gel can be injected intradermally and survive within dermal layer after grafting. This product increased TGF-β1expression and activated fibroblasts to produce propeptide of type I procollagen, thus increasing the amount of collagen I, leading to thickening of the dermis of photoaging skin.
Collapse
|
12
|
Abstract
Nutrition and dietary supplements have been used to promote a youthful appearance for millennia. Despite high public demand for these products, evidence supporting their efficacy is limited and often inconsistent. We discuss the structural and functional changes that occur in the skin during the aging process. We also review evidence supporting the use of nutritional supplements commonly used to promote a youthful appearance, including essential fatty acids, coenzyme Q, collagen peptides, curcumin, polyphenols, flavonoids, probiotics, silymarin, and vitamins A, C, D, and E. We also consider the role of advanced glycosylated end products, antiinflammatory diets, and caloric restriction in delaying premature skin aging. Although evidence supporting the use of some dietary interventions is promising, further long-term studies in humans are required to fully understand their effects on the promotion of a youthful appearance.
Collapse
Affiliation(s)
- Sonal Muzumdar
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Katalin Ferenczi
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
13
|
Uesugi‐Uchida S, Oyama N, Yoshida Y, Hasegawa M. Efficacy of topical adapalene monotherapy for symptomatic relief in a long‐standing vulvar syringoma: A case report and literature review with treatment update. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2021. [DOI: 10.1002/cia2.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Saori Uesugi‐Uchida
- Department of Dermatology Division of Medical Sciences University of Fukui Fukui Japan
| | - Noritaka Oyama
- Department of Dermatology Division of Medical Sciences University of Fukui Fukui Japan
| | - Yoshio Yoshida
- Department of Gynecology Division of Medical Sciences University of Fukui Fukui Japan
| | - Minoru Hasegawa
- Department of Dermatology Division of Medical Sciences University of Fukui Fukui Japan
| |
Collapse
|
14
|
Navabhatra A, Maniratanachote R, Yingngam B. Antiphotoaging properties of Zingiber montanum essential oil isolated by solvent-free microwave extraction against ultraviolet B-irradiated human dermal fibroblasts. Toxicol Res 2021; 38:235-248. [PMID: 35419276 PMCID: PMC8960501 DOI: 10.1007/s43188-021-00107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
Maintaining youthful skin from photoaging with natural products, including essential oils, is a vital strategy that has piqued the interest of researchers in the pharmaceutical and cosmetic industries. This research aimed to investigate the protective properties of Zingiber montanum (J. Koenig) Link ex A. Dietr. essential oil against ultraviolet B (UVB)-induced skin damage and photoaging in normal human dermal fibroblast (HDFn) cells. The essential oil was extracted from fresh plant rhizomes using solvent-free microwave extraction. Its antiphotoaging properties in HDFn cells were investigated using reactive oxygen species (ROS)-scavenging, wound healing, matrix metalloproteinases (MMP-1, MMP-3, and MMP-9) expression, procollagen synthesis, and elastase and tyrosinase inhibitory assays. The results showed that the test oil exhibited no significant toxicity in HDFn at concentrations up to 10 mg/mL, with cell viability exceeding 90%. Following UVB irradiation at 30 mJ/cm2, Z. montanum oil demonstrated time and concentration-dependent ROS radical scavenging capabilities. In a cell migration assay, the essential oil demonstrated wound-healing properties. Z. montanum oil suppressed the expression of MMPs and enhanced the synthesis of type I procollagen at a concentration of 0.1-1 mg/mL. In addition, 0.1-1 mg/mL Z. montanum oil inhibited elastase activity in a concentration-dependent manner but did not affect tyrosinase activity. From these findings, the essential oil of Z. montanum could have potential applications in developing cosmeceutical products to prevent skin photoaging.
Collapse
|
15
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
16
|
Shin JY, Park JH, Che DN, Kang HJ, Cho BO, Lim YT, Jang SI. Protective effects of halophyte complex extract against UVB-induced damage in human keratinocytes and the skin of hairless mice. Exp Ther Med 2021; 22:682. [PMID: 33986847 PMCID: PMC8111875 DOI: 10.3892/etm.2021.10114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Limonium tetragonum, Triglochin maritimum, Artemisia scoparia and red ginseng have been used as folk remedies for treating a variety of diseases. In the current study, the protective effects of halophyte and red ginseng against ultraviolet (UV)-induced skin damage were investigated. Halophyte red ginseng complex extract (HRCE) was prepared and its effects on UV-B irradiated human keratinocytes and mouse skin were studied through ELISA, Western blotting immunofluorescence and histological staining. HRCE inhibited peroxide-induced damage in human keratinocytes. HRCE also inhibited UVB-induced collagen and elastin degradation in human keratinocytes and mouse skin. In addition, HRCE inhibited mast cell infiltration in the skin of mice irradiated with UVB light. This effect was likely due to HRCE inhibiting the activation of MAPK and NF-κB. By protecting the skin from UVB-induced skin damage, HRCE has the potential to be used in the treatment and prevention of UV-induced skin damage and photoaging.
Collapse
Affiliation(s)
- Jae Young Shin
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.,Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Republic of Korea
| | - Ji Hyeon Park
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Republic of Korea
| | - Denis Nchang Che
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Republic of Korea
| | - Byoung Ok Cho
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Republic of Korea.,Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Republic of Korea
| | - Yi Teak Lim
- Jinandang Farming Association Corporation, Jinan-gun, Jeollabuk-do 55442, Republic of Korea
| | - Seon Il Jang
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Republic of Korea.,Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Republic of Korea
| |
Collapse
|
17
|
Xiang Y, Qin Z, Yang Y, Fisher GJ, Quan T. Age-related elevation of HGF is driven by the reduction of fibroblast size in a YAP/TAZ/CCN2 axis-dependent manner. J Dermatol Sci 2021; 102:36-46. [PMID: 33648801 DOI: 10.1016/j.jdermsci.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aged human skin is primarily attributable to the loss of collagen. Hepatocyte growth factor (HGF) acts as an anti-fibrotic factor by suppression of collagen production. In aged human skin, HGF is elevated in dermal fibroblasts and thus contributes to dermal aging (thin dermis) by suppression of collagen production. OBJECTIVE We aimed to investigate the underlying mechanisms of age-related elevation of HGF expression. METHODS Collagen fibrils in the aged skin dermis are fragmented and disorganized, which impairs collagen-fibroblast interaction, resulting in reduced fibroblast spreading and size. To explore the connection between reduced dermal fibroblast size and age-related elevation of HGF expression, we manipulate dermal fibroblast size, and cell-size dependent regulation of HGF was investigated by laser capture microdissection, immunostaining, capillary electrophoresis immunoassay, and quantitative RT-PCR. RESULTS We found that reduced fibroblast size is responsible for age-related elevation of HGF expression. Further investigation indicated that cell size-dependent upregulation of HGF expression was mediated by impeded YAP/TAZ nuclear translocation and their target gene, CCN2. Conversely, restoration of dermal fibroblast size rapidly reversed cell-size-dependent upregulation of HGF in a YAP/TAZ-dependent manner. Finally, we confirmed that elevated HGF expression is accompanied by the reduced expression of YAP/TAZ and CCN2 in the aged human skin in vivo. CONCLUSION Age-related elevation of HGF is driven by the reduction of fibroblast size in a YAP/TAZ/CCN2 axis-dependent manner. These data reveal a novel mechanism by which reduction of fibroblast size upregulates HGF expression, which in turn contributes to loss of collagen, a prominent feature of aged human skin.
Collapse
Affiliation(s)
- Yaping Xiang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yan Yang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary J Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol. Pharmaceutics 2020; 12:pharmaceutics12090845. [PMID: 32899309 PMCID: PMC7560103 DOI: 10.3390/pharmaceutics12090845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
Orobol is one of the major soy isoflavones, and has been reported to have various pharmacological activities, including an anti-skin-aging effect. However, since it has low solubility in water and physicochemical instability, the formulation of orobol for delivery into the dermal layer of the skin could be challenging. The objective of this study was to prepare lipid nanoparticles formulations of orobol to enhance its stability as well as its deposition into the skin. Formulations of orobol-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were characterized in terms of their mean particle size, entrapment efficiency, and morphology. The nano-sized spherical NLCs formulations maintained the stability of orobol for up to 28 days. Moreover, the NLCs formulation significantly increased the in vitro deposition of orobol into both Strat-M membranes and human cadaver skin compared with the other formulations. Additionally, the NLCs formulation did not cause significant skin irritation in clinical study. These results demonstrate that a shea butter-based NLC formulation could be a promising and safe carrier system for improving the stability of orobol and enhancing its topical skin delivery.
Collapse
|
19
|
Tancrède-Bohin E, Baldeweck T, Brizion S, Decencière E, Victorin S, Ngo B, Raynaud E, Souverain L, Bagot M, Pena AM. In vivo multiphoton imaging for non-invasive time course assessment of retinoids effects on human skin. Skin Res Technol 2020; 26:794-803. [PMID: 32713074 PMCID: PMC7754381 DOI: 10.1111/srt.12877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
Background In vivo multiphoton imaging and automatic 3D image processing tools provide quantitative information on human skin constituents. These multiphoton‐based tools allowed evidencing retinoids epidermal effects in the occlusive patch test protocol developed for antiaging products screening. This study aimed at investigating their relevance for non‐invasive, time course assessment of retinoids cutaneous effects under real‐life conditions for one year. Materials and Methods Thirty women, 55‐65 y, applied either retinol (RO 0.3%) or retinoic acid (RA 0.025%) on one forearm dorsal side versus a control product on the other forearm once a day for 1 year. In vivo multiphoton imaging was performed every three months, and biopsies were taken after 1 year. Epidermal thickness and dermal‐epidermal junction undulation were estimated in 3D with multiphoton and in 2D with histology, whereas global melanin density and its z‐epidermal distribution were estimated using 3D multiphoton image processing tools. Results Main results after one year were as follows: a) epidermal thickening with RO (+30%); b) slight increase in dermal‐epidermal junction undulation with RO; c) slight decrease in 3D melanin density with RA; d) limitation of the melanin ascent observed with seasonality and time within supra‐basal layers with both retinoids, using multiphoton 3D‐melanin z‐epidermal profile. Conclusions With a novel 3D descriptor of melanin z‐epidermal distribution, in vivo multiphoton imaging allows demonstrating that daily usage of retinoids counteracts aging by acting not only on epidermal morphology, but also on melanin that is shown to accumulate in the supra‐basal layers with time.
Collapse
Affiliation(s)
- Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Clichy, France.,Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| | | | | | - Etienne Decencière
- Center for Mathematical Morphology, MINES ParisTech - PSL Research University, Fontainebleau, France
| | | | - Blandine Ngo
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Luc Souverain
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Martine Bagot
- Service de Dermatologie, Hôpital Saint-Louis, Paris, France.,Inserm U976, Hôpital Saint-Louis, Université de Paris, Paris, France
| | - Ana-Maria Pena
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
20
|
WANG X, GONG X, ZHANG H, ZHU W, JIANG Z, SHI Y, LI L. In vitro anti-aging activities of ginkgo biloba leaf extract and its chemical constituents. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.02219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoyue WANG
- Beijing Technology and Business University, China
| | - Xiaoyan GONG
- Beijing Technology and Business University, China
| | - Huina ZHANG
- Beijing Technology and Business University, China
| | | | | | - Yujing SHI
- China Academy of Chinese Medical Sciences, China
| | - Li LI
- Beijing Technology and Business University, China
| |
Collapse
|
21
|
Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging (Albany NY) 2020; 11:1619-1632. [PMID: 30888968 PMCID: PMC6461173 DOI: 10.18632/aging.101813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Skin aging is an intricate biological process consisting of intrinsic and extrinsic alterations of epidermal and dermal structures. Retinoids play an important role in epidermal cell growth and differentiation and are beneficial to counteract skin aging. Cellular retinoic acid binding protein-II (CRABP-II) selectively binds all trans-retinoic acid, the most active retinoid metabolite, contributing to regulate intracytoplasmic retinoid trafficking and keratinocyte differentiation. Immunohistochemistry revealed a reduced epidermal and dermal CRABP-II expression in aged human and mouse skin. To better clarify the role of CRABP-II, we investigated age-related skin changes in CRABP-II knock-out mice. We documented an early reduction of keratinocyte layers, proliferation and differentiation rate, dermal and hypodermal thickness, pilosebaceous units and dermal vascularity in CRABP-II knock-out compared with wild-type mice. Ultrastructural investigation documented reduced number and secretion of epidermal lamellar bodies in CRABP-II knock-out compared with wild-type mice. Cultured CRABP-II knock-out-derived dermal fibroblasts proliferated less and showed reduced levels of TGF-β signal-related genes, Col1A1, Col1A2, and increased MMP2 transcripts compared with those from wild-type. Our data strongly support the hypothesis that a reduction of CRABP-II expression accelerates and promotes skin aging, and suggest CRABP-II as a novel target to improve the efficacy of retinoid-mediated anti-aging therapies.
Collapse
|
22
|
Afra TP, Razmi T M, Narang T, Dogra S, Kumar A. Topical Tazarotene Gel, 0.1%, as a Novel Treatment Approach for Atrophic Postacne Scars: A Randomized Active-Controlled Clinical Trial. JAMA FACIAL PLAST SU 2020; 21:125-132. [PMID: 30452511 DOI: 10.1001/jamafacial.2018.1404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Evidence is robust for the effectiveness of microneedle therapy in the management of postacne atrophic scarring. A home-based topical treatment with an efficacy comparable to microneedling would be a useful addition in the armamentarium of acne scar management. Objective To compare the efficacy of topical tazarotene gel, 0.1%, with microneedling therapy in the management of moderate to severe atrophic acne scars. Design, Setting, and Participants Prospective, observer-blinded, active-controlled, randomized clinical trial with 6 months of follow-up conducted between June 2, 2017, and February 28, 2018, at a tertiary care hospital in India. Thirty-six patients with grade 2 to 4 facial atrophic postacne scars and without a history of procedural treatment of acne scars within the previous year were recruited. Analyses were conducted using data from the evaluable population. Interventions Both halves of each participant's face were randomized to receive either microneedling or topical tazarotene therapy. Microneedling was conducted on 1 side of the face with a dermaroller having a needle length of 1.5 mm for a total of 4 sessions during the course of 3 months. Participants were instructed to apply topical tazarotene gel, 0.1%, to the other side of the face once every night during this same period. Main Outcomes and Measures Patients were followed up at 3 and 6 months by a blinded observer, and improvements in acne scar severity based on Goodman and Baron quantitative and qualitative scores and a subjective independent dermatologist score (range, 0-10, with higher scores indicating better improvement) were assessed. Patient satisfaction was assessed using a patient global assessment score (ranging from 0 for no response to 10 for maximum improvement) at these follow-up visits. Results There were 36 participants (13 men and 23 women; mean [range] age, 23.4 [18-30] years), and the median (interquartile range [IQR]) duration of acne was 6 (4-8) years. For the 34 participants included in the complete data analyses, the median (IQR) quantitative score for acne scar severity at the 6-month follow-up visit following treatment with either tazarotene (from a baseline of 8.0 [6.0-9.8] to 5.0 [3.0-6.0]) or microneedling (from a baseline of 7.0 [6.0-10.8] to 4.5 [3.0-6.0]) indicated significant improvement (P < .001) that was comparable for both treatments (median [IQR] change in severity score from baseline, 2.5 [2.0-4.0] vs 3.0 [2.0-4.0]; P = .42). By contrast, median qualitative acne scar scores were the same for both treatment groups at baseline and did not significantly change following either treatment. Conclusions and Relevance The present clinical trial showed comparable outcomes of both treatments for the overall improvement of quantitative facial acne scar severity. Level of Evidence 1. Trial Registration ClinicalTrials.gov identifier: NCT03170596.
Collapse
Affiliation(s)
- T P Afra
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Muhammed Razmi T
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashok Kumar
- National Institute of Nursing Education, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
23
|
Narda M, Brown A, Muscatelli-Groux B, Grimaud JA, Granger C. Epidermal and Dermal Hallmarks of Photoaging are Prevented by Treatment with Night Serum Containing Melatonin, Bakuchiol, and Ascorbyl Tetraisopalmitate: In Vitro and Ex Vivo Studies. Dermatol Ther (Heidelb) 2020; 10:191-202. [PMID: 31900804 PMCID: PMC6994585 DOI: 10.1007/s13555-019-00349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Photoaging is a complex process that is chiefly the result of oxidative stress caused by ultraviolet (UV)-generated reactive oxygen species. To counter this process, we developed a 3-in-1 night facial serum (3-in-1 NFS) containing a combination of direct and indirect antioxidants and polyphenols that is designed to attenuate UV-generated free radicals and stimulate dermal protein synthesis. In clinical trials 3-in-1 NFS improved the appearance of photoaged skin. In this study we sought to identify some of the main histologic changes responsible for this. METHODS We performed an immunolabeling analysis of some of the salient epidermal and dermal proteins in 3-in-1 NFS-treated primary epidermal keratinocytes (HEKs) and dermal fibroblasts (HDFs) in vitro, and in UV-exposed skin explants ex vivo. Numbers of apoptotic sunburn cells following exposure of 3-in-1 NFS-treated skin explants to UV radiation were also determined. RESULTS We demonstrate that 3-in-1 NFS increases levels of filaggrin and aquaporin 3 in HEKs, and levels of collagen I and collagen III in HDFs in vitro. Levels of precursor procollagen type I and tropoelastin were increased in ex vivo skin explants. Numbers of apoptotic sunburn cells were significantly reduced in UV-exposed skin explants. These effects were only observed with the combination of ingredients in 3-in-1 NFS, suggesting that they have a synergistic effect on photoaged skin biology. CONCLUSION Our results show that some of the histological hallmarks of photoaging are improved with the use of 3-in-1 NFS.
Collapse
|
24
|
Liu Y, Su G, Wang S, Sun B, Zheng L, Zhao M. A highly absorbable peptide GLPY derived from elastin protect fibroblasts against UV damage via suppressing Ca2+ influx and ameliorating the loss of collagen and elastin. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Liposomal Vitamin D 3 as an Anti-aging Agent for the Skin. Pharmaceutics 2019; 11:pharmaceutics11070311. [PMID: 31277236 PMCID: PMC6680917 DOI: 10.3390/pharmaceutics11070311] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Vitamin D3 is an effective skin protective substance to prevent photoaging. Liposomes were used as a carrier to deliver vitamin D3 to improve the stability and to enhance the treatment effect of vitamin D3. The stability of vitamin D3 liposomes, average cumulative penetration, and retention of vitamin D3 in the skin were then evaluated and compared with free vitamin D3. Finally, the treatment effect of vitamin D3 liposomes in a rat photoaging model was appraised and Haematoxylin-Eosin (H&E) staining was used to assess the histology changes of the skin after vitamin D3 liposome treatment. The results indicated that liposomes could significantly improve the stability of vitamin D3. The average skin retention of vitamin D3 liposomes was 1.65 times that of the vitamin D3 solution. Vitamin D3 liposomes could repair the surface morphology of skin in the photoaging model and promote the production of new collagen fibers. Vitamin D3 liposomes as a potential skin care agent could significantly improve skin appearance and repair damage in the histology of photoaging.
Collapse
|
26
|
Liu Y, Zheng L, Xu J, Sun‐waterhouse D, Sun B, Su G, Zhao M. Identification of novel peptides with high stability against
in vitro
hydrolysis from bovine elastin hydrolysates and evaluation of their elastase inhibitory activity. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Lin Zheng
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jucai Xu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Dongxiao Sun‐waterhouse
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University Beijing 100048 China
| | - Guowan Su
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
| | - Mouming Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center Guangzhou 510650 China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University Beijing 100048 China
| |
Collapse
|
27
|
Marionnet C, Bernerd F. In Vitro Skin Models for the Evaluation of Sunscreen-Based Skin Photoprotection: Molecular Methodologies and Opportunities. Curr Med Chem 2019; 26:1874-1890. [DOI: 10.2174/0929867324666170303124247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Identifying and understanding the biological events that occur following ultraviolet
(UV) exposure are mandatory to elucidate the biological and clinical consequences of sun exposure,
and to provide efficient and adequate photoprotection strategies. The main UVinduced
biological features (markers related to sunburn, cancer, photoaging immunosuppression,
pigmentation), characterized in human skin in vivo, could be reproduced in adapted
models of reconstructed skin in vitro, attesting their high relevance in the field of photobiology.
In turn, 3D skin models were useful to discover precise biological pathways involved in
UV response and were predictive of in vivo situation. Although they did not follow a strict
validation process for the determination of protection factors, they enabled to evidence important
concepts in photoprotection. Indeed, the use of reconstructed skin model highlighted the
importance of broad spectrum sunscreen use to protect essential cellular functions, and biologically
proved that SPF value was not predictive of the level of protection in the UVA
wavelength domain. New biological approaches, such as transcriptomic or proteomic studies
as well as quantitative and qualitative determination of DNA damage, will indisputably increase
the added value of such systems for sunscreen efficiency evaluation.
Collapse
|
28
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
29
|
Stout R, Birch-Machin M. Mitochondria's Role in Skin Ageing. BIOLOGY 2019; 8:E29. [PMID: 31083540 PMCID: PMC6627661 DOI: 10.3390/biology8020029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products.
Collapse
Affiliation(s)
- Roisin Stout
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mark Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
30
|
Koçtürk S, Yüksel Egrilmez M, Aktan Ş, Oktay G, Resmi H, Şimşek Keskin H, Sert Serdar B, Erkmen T, Güner Akdogan G, Özkan Ş. Melatonin attenuates the detrimental effects of UVA irradiation in human dermal fibroblasts by suppressing oxidative damage and MAPK/AP-1 signal pathway in vitro. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 35:221-231. [PMID: 30739336 DOI: 10.1111/phpp.12456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND People living in Mediterranean countries are mostly exposed to solar ultraviolet (UV) radiation that damages skin and results in photoaging which involves activation of epidermal growth factor receptor (EGFR) and downstream signal transduction through mitogen-activated protein kinases (MAPKs) in fibroblasts. Generation of reactive oxygen/nitrogen species by UV radiation is also critical for EGFR and MAPKs activation. MAPKs are responsible for activation of AP-1 subunits in the nucleus which induce matrix metalloproteinases. Melatonin, along with its metabolites, are known to be the most effective free radical scavenger and protective agent due to its ability to react with various radicals, lipophilic/hydrophilic structures. OBJECTIVES In this study, we investigated the effects of melatonin on UVA-irradiated primary human dermal fibroblasts (HDFs) by following the alteration of molecules from cell membrane to the nucleus and oxidative/nitrosative damage status of the cells in a time-dependent manner which have not been clearly elucidated yet. METHODS To mimic UVA dosage in Mediterranean countries, HDFs were exposed to UVA with sub-cytotoxic dosage (20 J/cm2 ) after pretreatment with melatonin (1 μmol/L) for 1 hour. Changes in the activation of the molecules and oxidative/nitrosative stress damage were analyzed at different time points. RESULTS Our results clearly show that melatonin decreases UVA-induced oxidative/nitrosative stress damage in HDFs. It also suppresses phosphorylation of EGFR, activation of MAPK/AP-1 signal transduction pathway and production of matrix metalloproteinases in a time-dependent manner. CONCLUSION Melatonin can be used as a protective agent for skin damage against intracellular detrimental effects of relatively high dosage of UVA irradiation.
Collapse
Affiliation(s)
- Semra Koçtürk
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Mehtap Yüksel Egrilmez
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey
| | - Şebnem Aktan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Gülgün Oktay
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Resmi
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Hatice Şimşek Keskin
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Belgin Sert Serdar
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Tugba Erkmen
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Gül Güner Akdogan
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.,Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Şebnem Özkan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
31
|
Limbert G, Masen MA, Pond D, Graham HK, Sherratt MJ, Jobanputra R, McBride A. Biotribology of the ageing skin—Why we should care. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biotri.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Abstract
Laboratory monitoring for patients on isotretinoin should include creatinine kinase in athletic males and the more liver-specific gamma glutamyltransferase. There is mounting evidence that acne pathophysiology includes a barrier defect and subsequent microbiome disruption. Avoidance of acne scars with early and aggressive treatment is a more efficient and cost-effective option than subsequent treatment. Laser and light treatments for acne and acne scars are plentiful but poorly supported by evidence-based medicine. The acne pipeline is rich with new chemical entities, new formulations, and combinations of older agents. The gold standard for acne therapy may be changing its face.
Collapse
Affiliation(s)
- Justin W Marson
- Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane W, Piscataway, NJ 08854, USA
| | - Hilary E Baldwin
- The Acne Treatment and Research Center of the DermGroup, 310 Madison Avenue, Morristown, NJ 07960, USA; Rutgers Robert Wood Johnson Medical Center, Piscataway, NJ 08820, USA.
| |
Collapse
|
33
|
Fang G, Hong L, Liu C, Yang Q, Zhang Q, Li Y, Li B, Wu D, Wu W, Shi H. Oxidative status of cardinal ligament in pelvic organ prolapse. Exp Ther Med 2018; 16:3293-3302. [PMID: 30250520 PMCID: PMC6143997 DOI: 10.3892/etm.2018.6633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Pelvic organ prolapse (POP) is a common and distressing health problem in adult women, but the pathophysiological mechanism is yet to be fully elucidated. Previous studies have indicated that oxidative stress may be associated with POP. Thus, the aim of the present study was to investigate the oxidative status of pelvic supportive tissue in POP and further demonstrate that oxidative stress is associated with the pathogenesis of POP. A total of 60 samples were collected from females undergoing hysterectomy for POP or cervical intraepithelial neoplasia (CIN). This included 16 females with POP II, 24 females with POP III–IV (according to the POP-Q system) and 20 females with CIN II–III as the control group. Immunohistochemistry was utilized to measure the expression of oxidative biomarkers, 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE). Major antioxidative enzymes, mitochondrial superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx1) were measured through reverse transcription-quantitative polymerase chain reaction, western blotting and enzyme activity assays. The results demonstrated that in the cardinal ligament, the expression of 8-OHdG and 4-HNE was higher in the POP III–IV group compared with the POP II group and control group. The MnSOD and GPx1 protein level and enzyme activity were lower in the POP III–IV group compared with the POP II or the control group, while the mRNA expression level of MnSOD and GPx1 was increased. In conclusion, oxidative damage is increased in the pelvic supportive ligament of female patients with POP and the antioxidative defense capacity is decreased. These results support previous findings that oxidative stress is involved in the pathogenesis of POP.
Collapse
Affiliation(s)
- Gui Fang
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qifan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Debin Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenying Wu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hua Shi
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
34
|
Protective Effect of Octylmethoxycinnamate against UV-Induced Photoaging in Hairless Mouse via the Regulation of Matrix Metalloproteinases. Int J Mol Sci 2018; 19:ijms19071836. [PMID: 29932111 PMCID: PMC6073923 DOI: 10.3390/ijms19071836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet (UV) irradiation damages skin and produces symptoms of photoaging, such as thickening, rough texture, wrinkles, and pigmentation. However, the cellular and molecular mechanisms underlying photoaging induced by chronic UV irradiation are not yet fully understood. Matrix metalloproteinases (MMPs) have been reported to be involved in the response to UV irradiation. In this study, we examined the effects of the sunscreen agent Octylmethoxycinnamate (OMC) on photoaging of the skin induced by chronic UV exposure in hairless albino Crl:SKH1-Hrhr (SKH-1) mice. We demonstrated that the expression of MMPs was elevated by UV irradiation, whereas the topical application of OMC inhibited the upregulation of MMPs. Furthermore, UV-induced wrinkle formation was decreased by OMC treatment. These results suggest that OMC is a potential agent for the prevention and treatment of skin photoaging.
Collapse
|
35
|
Gao W, Wang YS, Qu ZY, Hwang E, Ngo HTT, Wang YP, Bae J, Yi TH. Orobanche cernua
Loefling Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem Photobiol 2018; 94:733-743. [DOI: 10.1111/php.12908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Gao
- College of Life Sciences; Kyung Hee University; Yongin-si Gyeonggi-do Korea
| | - Yu-shuai Wang
- College of Life Sciences; Kyung Hee University; Yongin-si Gyeonggi-do Korea
| | - Zheng-yi Qu
- Institute of Special Wild Economic Animals and Plants; Chinese Academy of Agricultural Sciences; Changchun China
| | - Eunson Hwang
- College of Life Sciences; Kyung Hee University; Yongin-si Gyeonggi-do Korea
| | - Hien T. T. Ngo
- College of Life Sciences; Kyung Hee University; Yongin-si Gyeonggi-do Korea
| | - Ying-ping Wang
- Institute of Special Wild Economic Animals and Plants; Chinese Academy of Agricultural Sciences; Changchun China
| | - Jahyun Bae
- SD Biotechnologies Co. Ltd. #301 Seoul Hightech Venture Center; Gangseo-gu Seoul Korea
| | - Tae-hoo Yi
- College of Life Sciences; Kyung Hee University; Yongin-si Gyeonggi-do Korea
| |
Collapse
|
36
|
Sanclemente G, Ruiz-Cañas V, Miranda J, Ferrín A, Ramirez P, Hernandez G. Photodynamic Therapy Interventions in Facial Photodamage: A Systematic Review. ACTAS DERMO-SIFILIOGRAFICAS 2018; 109:218-229. [DOI: 10.1016/j.ad.2017.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 10/18/2022] Open
|
37
|
Sanclemente G, Ruiz-Cañas V, Miranda J, Ferrín A, Ramirez P, Hernandez G. Photodynamic Therapy Interventions in Facial Photodamage: A Systematic Review. ACTAS DERMO-SIFILIOGRAFICAS 2018. [DOI: 10.1016/j.adengl.2017.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
38
|
Loss MJ, Leung S, Chien A, Kerrouche N, Fischer AH, Kang S. Adapalene 0.3% Gel Shows Efficacy for the Treatment of Atrophic Acne Scars. Dermatol Ther (Heidelb) 2018; 8:245-257. [PMID: 29549598 PMCID: PMC6002315 DOI: 10.1007/s13555-018-0231-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction Scarring is an unfortunate clinical outcome of acne. Current treatment options for atrophic acne scars are dominated by non-pharmacological, invasive procedures which may not be suitable or affordable to all patients. This phase II, single-center, open-label, exploratory study assessed the efficacy, safety and subject-reported outcomes of adapalene 0.3% gel in the treatment of atrophic acne scars. Methods The study included subjects aged 18–50 years with past history of acne and moderate to severe facial atrophic acne scars. Subjects received adapalene 0.3% gel once daily for the first 4 weeks and twice daily for the following 20 weeks. Assessments were performed at baseline, day 10 and weeks 4, 8, 16 and 24, and at post-treatment follow-ups (weeks 36 and 48–72). Results At week 24, investigator and subject assessments reported improvement in skin texture/atrophic scars in 50% and > 80% of subjects, respectively. Subjects were satisfied with the treatment and reported improvements in quality of life. Conclusion Daily use of adapalene 0.3% gel for the treatment of atrophic acne scars showed promising clinical efficacy, a favorable tolerability profile, and improvement in quality of life. Funding Nestlé Skin Health–Galderma R&D. Trial Registration ClinicalTrials.gov Identifier NCT01213199.
Collapse
Affiliation(s)
- Manisha J Loss
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Sherry Leung
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anna Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nabil Kerrouche
- Nestlé Skin Health-Galderma R&D, Sophia Antipolis, Biot, France
| | - Alexander H Fischer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Han M, Bae JS, Ban JJ, Shin HS, Lee DH, Chung JH. Black rice (Oryza sativa L.) extract modulates ultraviolet-induced expression of matrix metalloproteinases and procollagen in a skin cell model. Int J Mol Med 2018; 41:3073-3080. [PMID: 29484380 DOI: 10.3892/ijmm.2018.3508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Exposure of the skin to ultraviolet (UV) radiation causes extracellular matrix (ECM) collapse in the dermis, owing to an increase in matrix metalloproteinase (MMP) production in both the epidermis and dermis, and a decrease in type I collagen expression in the dermis. Recently, black rice (Oryza sativa L.) was reported to have a wide range of pharmacological effects in various settings. However, the effects of black rice extract (BRE) on UV‑irradiated skin cells have not yet been characterized. BRE treatment did not affect cell morphology and viability of HaCaT and human dermal fibroblasts (HDF). We demonstrated that BRE downregulated basal and UV‑induced MMP‑1 expression in HaCaT cells. Furthermore, BRE significantly increased type I procollagen expression, and decreased MMP‑1 and MMP‑3 expression in UV‑irradiated HDF. The underlying mechanisms of these results involve a decrease in p38 and c‑Jun N‑terminal kinase activity, and suppression of UV‑induced activation of activator protein‑1 (AP‑1). BRE reduced UV‑induced reactive oxygen species production in HaCaT cells in a dose‑dependent manner. Indeed, mass spectrometry revealed that BRE contained antioxidative flavonoid components such as cyanidin‑3‑O‑β‑D‑glycoside and taxifolin‑7‑O‑glucoside. These findings suggest that BRE attenuates UV‑induced ECM damage by modulating mitogen‑activated protein kinase and AP‑1 signaling, and could be used as an active ingredient for preventing photoaging of the skin.
Collapse
Affiliation(s)
- Mira Han
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110‑744, Republic of Korea
| | - Jung-Soo Bae
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110‑744, Republic of Korea
| | - Jae-Jun Ban
- Department of Dermatology, Seoul National University College of Medicine, Seoul 110‑744, Republic of Korea
| | - Hee Soon Shin
- Korea Food Research Institute, Seongnam‑si, Gyeonggi‑do 463‑746, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 110‑744, Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110‑744, Republic of Korea
| |
Collapse
|
40
|
Myricetin, a potent natural agent for treatment of diabetic skin damage by modulating TIMP/MMPs balance and oxidative stress. Oncotarget 2018; 7:71754-71760. [PMID: 27765936 PMCID: PMC5342119 DOI: 10.18632/oncotarget.12330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022] Open
Abstract
Foot ulceration is a major cause of morbidity in patients with diabetes, and abnormal peripheral neuropathy often results in hospitalization. Up-regulation of matrix metalloproteinases and down-regulation of tissue inhibitor of metalloproteinase 1 are noted to be distinctive biological functions of diabetic dermal fibroblasts. The aim of this study was to evaluate the biological effects of modified retinoids on diabetic fibroblasts. Myricetin, a natural compound, balances the TIMP1/MMP ratio and oxidative stress in diabetic fibroblasts. Our results indicate that myricetin significantly ameliorates the effects of diabetes on dermal fibroblasts. In addition, we found that the oxidative stress imbalance induced by a high glucose concentration plays an important role in the changes to dermal fibroblasts that occur in diabetes. Our findings support the hypothesis that myricetin has the potential to repair faulty skin function arising from diabetes.
Collapse
|
41
|
Jobe NP, Živicová V, Mifková A, Rösel D, Dvořánková B, Kodet O, Strnad H, Kolář M, Šedo A, Smetana K, Strnadová K, Brábek J, Lacina L. Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem Cell Biol 2018; 149:503-516. [PMID: 29435761 DOI: 10.1007/s00418-018-1650-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Melanoma represents a malignant disease with steadily increasing incidence. UV-irradiation is a recognized key factor in melanoma initiation. Therefore, the efficient prevention of UV tissue damage bears a critical potential for melanoma prevention. In this study, we tested the effect of UV irradiation of normal keratinocytes and their consequent interaction with normal and cancer-associated fibroblasts isolated from melanoma, respectively. Using this model of UV influenced microenvironment, we measured melanoma cell migration in 3-D collagen gels. These interactions were studied using DNA microarray technology, immunofluorescence staining, single cell electrophoresis assay, viability (dead/life) cell detection methods, and migration analysis. We observed that three 10 mJ/cm2 fractions at equal intervals over 72 h applied on keratinocytes lead to a 50% increase (p < 0.05) in in vitro invasion of melanoma cells. The introduction cancer-associated fibroblasts to such model further significantly stimulated melanoma cells in vitro invasiveness to a higher extent than normal fibroblasts. A panel of candidate gene products responsible for facilitation of melanoma cells invasion was defined with emphasis on IL-6, IL-8, and CXCL-1. In conclusion, this study demonstrates a synergistic effect between cancer microenvironment and UV irradiation in melanoma invasiveness under in vitro condition.
Collapse
Affiliation(s)
- Njainday Pulo Jobe
- Department of Cell Biology, Faculty of Sciences, Charles University in Prague, Viničná 7, 120 00, Prague 2, Czech Republic.,Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic.,Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Jan Waldenströms gata 35, 21421, Malmö, Sweden
| | - Veronika Živicová
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic.,Department of Otorhinolaryngology, Head and Neck Surgery, 1st Faculty of Medicine, Charles University, V Úvalu 5, Prague 5, Czech Republic
| | - Alžběta Mifková
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic.,Department of Otorhinolaryngology, Head and Neck Surgery, 1st Faculty of Medicine, Charles University, V Úvalu 5, Prague 5, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Sciences, Charles University in Prague, Viničná 7, 120 00, Prague 2, Czech Republic.,Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic
| | - Barbora Dvořánková
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic.,Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic
| | - Ondřej Kodet
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic.,Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic.,Department of Dermatovenereology, 1st Faculty of Medicine, Charles University, U Nemocnice 2, Prague 2, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic vvi, Vídeňská 1083, Prague 4, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic vvi, Vídeňská 1083, Prague 4, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University, U Nemocnice 5, Prague 2, Czech Republic
| | - Karel Smetana
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic.,Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic
| | - Karolina Strnadová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic.,Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Sciences, Charles University in Prague, Viničná 7, 120 00, Prague 2, Czech Republic.,Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic
| | - Lukáš Lacina
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Průmyslová 595, Vestec u Prahy, Prague, Czech Republic. .,Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Czech Republic. .,Department of Dermatovenereology, 1st Faculty of Medicine, Charles University, U Nemocnice 2, Prague 2, Czech Republic.
| |
Collapse
|
42
|
Hwang E, Ngo HT, Seo SA, Park B, Zhang M, Gao W, Hoo Yi T. Urtica thunbergiana prevents UVB-induced premature skin aging by regulating the transcription factor NFATc1: An in vitro and in vivo study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Qin Z, Worthen CA, Quan T. Cell-size-dependent upregulation of HGF expression in dermal fibroblasts: Impact on human skin connective tissue aging. J Dermatol Sci 2017; 88:289-297. [PMID: 28826691 DOI: 10.1016/j.jdermsci.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Aged human skin is primarily attributable to loss of collagen, the main structural component of skin. Hepatocyte growth factor (HGF) acts as an anti-fibrotic factor by suppression of collagen production. It is not known whether HGF is involved in age-related collagen deficit in human skin. OBJECTIVE The objective of this study was to investigate the expression of HGF in human skin, and the underlying mechanisms of age-related elevation of HGF expression. METHODS The expression of HGF in young (25±5years, six subjects) and aged (75±6years, six subjects) human skin was determined by laser capture microdissection (LCM) coupled real-time PCR and immunohistology. The underlying mechanisms of age-related elevation of HGF were investigated by reducing dermal fibroblast size, which is a prominent feature of aged skin fibroblast in vivo. RESULTS HGF is predominantly expressed in human skin dermal fibroblasts, the major cells responsible for collagen production, and is significantly elevated in aged human skin in vivo. Mechanistically, reduced fibroblast size, which is a prominent feature of aged skin fibroblasts in vivo, is responsible for age-related elevation of HGF expression. Cell-size-dependent upregulation of HGF expression is driven by increased c-Jun and impaired TGF-β signaling. Restoration of fibroblast size normalizes increased c-Jun expression and impaired TGF-β signaling, and thus reversed the elevated HGF expression. Finally, we confirmed that application of retinoid (ROL), which has been shown to improve aged human skin, significantly reduced elevated HGF mRNA expression in aged human skin in vivo (78±4years, six subjects). CONCLUSION These data reveal a novel mechanism by which reduction of fibroblast size upregulates HGF expression, which in turn contributes to loss of collagen, a prominent feature of aged skin.
Collapse
Affiliation(s)
- Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christal A Worthen
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Nakyai W, Saraphanchotiwitthaya A, Viennet C, Humbert P, Viyoch J. An In Vitro
Model for Fibroblast Photoaging Comparing Single and Repeated UVA Irradiations. Photochem Photobiol 2017; 93:1462-1471. [DOI: 10.1111/php.12801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Wongnapa Nakyai
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry; Naresuan University; Phitsanulok Thailand
| | - Aurasorn Saraphanchotiwitthaya
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry; Naresuan University; Phitsanulok Thailand
| | - Céline Viennet
- Engineering and Cutaneous Biology Laboratory; INSERM UMR 1098; University of Franche-Comte; Besancon France
| | - Philippe Humbert
- Engineering and Cutaneous Biology Laboratory; INSERM UMR 1098; University of Franche-Comte; Besancon France
- Department of Dermatology; University Hospital; Besancon France
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology; Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry; Naresuan University; Phitsanulok Thailand
| |
Collapse
|
45
|
Kang SM, Han S, Oh JH, Lee YM, Park CH, Shin CY, Lee DH, Chung JH. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses. J Dermatol Sci 2017; 88:126-133. [PMID: 28551094 DOI: 10.1016/j.jdermsci.2017.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. OBJECTIVE We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. METHODS We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr705, and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. RESULTS TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. CONCLUSION The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging.
Collapse
Affiliation(s)
- So Min Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Sangbum Han
- Department of Biomedical Sciences, Seoul National University Graduate School, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Young Mee Lee
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Chang-Yup Shin
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Peng Y, Song X, Zheng Y, Wang X, Lai W. Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts. Biochem Biophys Res Commun 2017; 486:277-284. [PMID: 28286269 DOI: 10.1016/j.bbrc.2017.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
Production of type I collagen declines is a main characteristic during photoaging, but the mechanism is still not fully understood. Circular RNAs (circRNAs) are a class of newly identified non-coding RNAs with regulatory potency by sequestering miRNAs like a sponge. It's more stable than linear RNAs, and would be a useful tool for regulation of gene expression. However, the role of circRNAs in collagen expression during photoaging is still unclear. Here we performed deep sequencing of RNA generated from UVA irradiated and no irradiated human dermal fibroblasts (HDFs) and identified 29 significantly differentially expressed circRNAs (fold change ≥ 1.5, P < 0.05), 12 circRNAs were up-regulated and 17 circRNAs were down-regulated.3 most differentially expressed circRNAs were verified by qRT-PCR and the down-regulated circCOL3A1-859267 exhibited the most significantly altered in photoaged HDFs. Overexpression of circCOL3A1-859267 inhibited UVA-induced decrease of type I collagen expression and silencing of it reduced type I collagen intensity. Via a bioinformatic method, 44 miRNAs were predicted to binding with circCOL3A1-859267, 5 of them have been confirmed or predicted to interact with type I collagen. This study show that circCOL3A1-859267 regulate type I collagen expression in photoaged HDFs, suggesting it may be a novel target for interfering photoaging.
Collapse
Affiliation(s)
- Yating Peng
- Department of Dermatology and Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaojing Song
- Department of Dermatology and Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yue Zheng
- Department of Dermatology and Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xinyi Wang
- Department of Dermatology and Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Lai
- Department of Dermatology and Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
47
|
Matsushita T, Date M, Kano M, Mizumaki K, Tennichi M, Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K. Blockade of p38 Mitogen-Activated Protein Kinase Inhibits Murine Sclerodermatous Chronic Graft-versus-Host Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:841-850. [PMID: 28189565 DOI: 10.1016/j.ajpath.2016.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023]
Abstract
Bone marrow transplantation (BMT) of B10.D2 mice into sublethally irradiated BALB/c mice across minor histocompatibility loci is a well-established animal model for human sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) and systemic sclerosis (SSc). The p38 mitogen-activated protein kinase (MAPK) pathway is a key regulator of inflammation and cytokine production. Furthermore, the activation of p38 MAPK plays an important role in collagen production in SSc. We investigated the effects of p38 MAPK inhibitor, VX-702, on Scl-cGVHD mice. VX-702 was orally administered to Scl-cGVHD mice from day 7 to 35 after BMT. We compared skin fibrosis of Scl-cGVHD mice between the VX-702-treated group and control group. Allogeneic BMT increased the phosphorylation of p38 MAPK in the skin. The administration of VX-702 attenuated the skin fibrosis of Scl-cGVHD compared to the control mice. Immunohistochemical staining showed that VX-702 suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the dermis of Scl-cGVHD mice compared to the control mice. VX-702 attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines, such as IL-6 and IL-13, in the skin of Scl-cGVHD mice. In addition, VX-702 directly inhibited collagen production from fibroblasts in vitro. VX-702 was shown to be a promising candidate for use in treating patients with Scl-cGVHD and SSc.
Collapse
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Mutsumi Date
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miyu Kano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kie Mizumaki
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadahiro Kobayashi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Hasegawa
- Department of Dermatology, University of Fukui, Fukui, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
48
|
Dreno B, Tan J, Rivier M, Martel P, Bissonnette R. Adapalene 0.1%/benzoyl peroxide 2.5% gel reduces the risk of atrophic scar formation in moderate inflammatory acne: a split-face randomized controlled trial. J Eur Acad Dermatol Venereol 2016; 31:737-742. [DOI: 10.1111/jdv.14026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 01/12/2023]
Affiliation(s)
| | - J. Tan
- Windsor Clinical Research Inc. and Western University; Windsor ON Canada
| | - M. Rivier
- Galderma R&D; Sophia Antipolis France
| | - P. Martel
- Galderma R&D; Sophia Antipolis France
| | | |
Collapse
|
49
|
Yakaew S, Itsarasook K, Ngoenkam J, Jessadayannamaetha A, Viyoch J, Ungsurungsie M. Ethanol extract of Terminalia chebula fruit protects against UVB-induced skin damage. PHARMACEUTICAL BIOLOGY 2016; 54:2701-2707. [PMID: 27222341 DOI: 10.1080/13880209.2016.1179768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT The fruit of Terminalia chebula Retz. (Combretaceae) has been used for several therapeutic purposes in Thai folk medicines. Currently, the ethanol extracts containing antioxidant compounds have shown the ability to promote collagen synthesis. OBJECTIVE This purpose of this work was to study the effects of the ethanol extract from T. chebula fruit on the inhibition of cutaneous photodamage. MATERIALS AND METHODS The viability of human skin fibroblasts after incubation with T. chebula at concentration 0.5-50 μg/mL for 24, 48 and 72 h was assessed by using sodium 3'-[(phenyl-amino)-carbonyl]-3,4,tetrazolium-bis(4-methoxy-6-notro)benzene-sulphonic acid hydrate (XTT). The levels of type I procollagen and matrix metalloproteinases (MMP)-1 and MMP-13 produced by UVB-irradiated fibroblasts were determined by ELISA. Skin thickness and collagen content caused by long-term UVB irradiation in male ICR mice were determined from haematoxylin and eosin stained tissue sections and spectrophotometric measurement of hydroxyproline. RESULTS The extract (0.5-50 μg/mL) had no effect on cell viability or morphology of the human fibroblasts. In vitro studies showed that the T. chebula extract reduced the UVB-induced MMP-1 and MMP-13 expression, whereas an increased production of type I procollagen was observed. In a UVB-irradiated animal model, male ICR mice with hair shaved were chronically exposed to UVB which lead to epidermal thickness and loss of hydroxyproline. However, these effects were fully prevented by the topical application of the T. chebula ethanol extract. DISCUSSION AND CONCLUSION These data suggested that the T. chebula ethanol fruit extract is an efficacious pharmaceutical protectant of skin against photodamage.
Collapse
Affiliation(s)
- Swanya Yakaew
- a Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry , Naresuan University , Phitsanulok , Thailand
| | - Khwunjit Itsarasook
- b Department of Cosmetic Science, Faculty of Science and Technology , Suan Dusit Rajabhat University , Bangkok , Thailand
| | - Jatuporn Ngoenkam
- c Department of Microbiology and Parasitology, Faculty of Medical Science , Naresuan University , Phitsanulok , Thailand
| | - Arum Jessadayannamaetha
- d Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry , Naresuan University , Phitsanulok , Thailand
| | - Jarupa Viyoch
- a Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry , Naresuan University , Phitsanulok , Thailand
| | - Malyn Ungsurungsie
- e Research & Development Division , S & J International Enterprises Public Company Limited , Bangkok , Thailand
| |
Collapse
|
50
|
Koh EK, Kim JE, Go J, Song SH, Sung JE, Son HJ, Jung YJ, Kim BH, Jung YS, Hwang DY. Protective effects of the antioxidant extract collected from Styela clava tunics on UV radiation-induced skin aging in hairless mice. Int J Mol Med 2016; 38:1565-1577. [DOI: 10.3892/ijmm.2016.2740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/19/2016] [Indexed: 11/06/2022] Open
|