1
|
Wu D, Hong L, Xu S, Zhong Z, Gong Q, Wang Q, Yan L. Integrating network pharmacology and experimental validation via PPAR signaling to ameliorate rheumatoid arthritis: Insights from Corydalis Decumbentis Rhizoma (Xiatianwu). Fitoterapia 2025; 183:106541. [PMID: 40239773 DOI: 10.1016/j.fitote.2025.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Corydalis Decumbentis Rhizoma (Xiatianwu, XTW) exhibits a positive effect in treating rheumatoid arthritis (RA). However, the precise molecular mechanisms underlying its effects remain unclear. In this study, TNF-α was used to induce inflammation and establish and in vitro RA model. Network pharmacology was employed to identify the important active components and targets in the treatment of XTW on RA. CCK-8 was used to investigate the cell viability. GW9662 (a PPARG antagonist) was applied to validate the network pharmacology prediction. ELISA was used to measure pro-inflammatory cytokines (IL-6, IL-1β, and INF-γ) and oxidative stress markers (MMP-2, MDA, and ROS). HPLC-MS was conducted to validate the four important active ingredients (bicuculline, ferulic acid, berberine, and jatrorrhizine) in XTW. Western blotting was carried out to detect the protein levels of PPAR-γ. In vitro experiments demonstrated that XTW exerted dose-dependent anti-RA effects by downregulating pro-inflammatory cytokines and oxidative stress markers. Through Network pharmacology, three targets (RXRA, PPARG, and PPARA) and four active ingredients (bicuculline, ferulic acid, berberine, and jatrorrhizine) were demonstrated important in the treatment of XTW on RA. Besides, PPAR signaling pathway may be a therapeutic target for XTW treating RA. Further experiments confirmed that XTW administration significantly inhibited inflammation and oxidative stress by upregulating the PPAR signaling pathway. In conclusion, XTW modulates RXRA, PPARG, and PPARA through the PPAR signaling pathway, thereby mitigating inflammation and oxidative stress in RA.
Collapse
Affiliation(s)
- Dongjiao Wu
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Lu Hong
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China.
| | - Shuyi Xu
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhao Zhong
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Qiongyao Gong
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Qi Wang
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Linjun Yan
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| |
Collapse
|
2
|
Yang W, Liu C, Li Z, Cui M. Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy. Sci Rep 2025; 15:10618. [PMID: 40148470 PMCID: PMC11950375 DOI: 10.1038/s41598-025-94053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are confined to a single analytical approach, which limits the comprehensive understanding of the pathogenesis and potential therapeutic targets of these diseases. In light of this, we propose the hypothesis that genetic variations in specific plasma proteins have a causal relationship with immune-related bone diseases through the MR mechanism, and that key therapeutic targets can be accurately identified using an integrated multi-omic analysis approach. This study comprehensively applied a variety of analytical methods. Firstly, the protein quantitative trait locus (pQTLs) data from two large plasma protein databases and the Genome-Wide Association Study (GWAS) data of nine immune-related bone diseases were used for Mendelian randomization (MR) analysis. At the same time, we employed the Summary-based Mendelian Randomization (SMR) method, combined with the Bayesian colocalization analysis method of coding genes, as well as the Linkage Disequilibrium Score Regression (LDSC) analysis method based on genetic correlation analysis, as methods to verify the genetic association between genes and complex diseases, thus comprehensively obtaining positive results. In addition, a Phenome-wide Association Study (PheWAS) was conducted on significantly positive genes, and their expression patterns in different tissues were also explored. Subsequently, we integrated Protein-Protein Interaction (PPI) network analysis, Gene Ontology (GO) analysis. Finally, based on the above analytical methods, drug prediction and molecular docking studies were carried out with the aim of accurately identifying key therapeutic targets. Through a comprehensive analysis using four methods, namely the Mendelian randomization (MR) analysis study, Summary-based Mendelian Randomization (SMR) analysis study, Bayesian colocalization analysis study, and Linkage Disequilibrium Score Regression (LDSC) analysis study. We found that through MR, SMR, and combined with Bayesian colocalization analysis, an association was found between rheumatoid arthritis (RA) and HDGF. Using the combination of MR and Bayesian colocalization analysis, as well as LDSC analysis, it was concluded that RA was related to CCL19 and TNFRSF14. Based on the methods of MR and Bayesian colocalization, an association was found between GPT and Crohn's disease-related arthritis, and associations were found between BTN1A1, EVI5, OGA, TNFRSF14 and multiple sclerosis (MS), and associations were found between ICAM5, CCDC50, IL17RD, UBLCP1 and psoriatic arthritis (PsA). Specifically, in the MR analysis of RA, HDGF (P_ivw = 0.0338, OR = 1.0373, 95%CI = 1.0028-1.0730), CCL19 (P_ivw = 0.0004, OR = 0.3885, 95%CI = 0.2299-0.6566), TNFRSF14 (P_ivw = 0.0007, OR = 0.6947, 95%CI = 0.5634-0.8566); in the MR analysis of MS, BTN1A1 (P_ivw = 0.0000, OR = 0.6101, 95%CI = 0.4813-0.7733), EVI5 (P_ivw = 0.0000, OR = 0.3032, 95%CI = 0.1981-0.4642), OGA (P_ivw = 0.0005, OR = 0.4599, 95%CI = 0.2966-0.7131), TNFRSF14 (P_ivw = 0.0002, OR = 0.4026, 95%CI = 0.2505-0.6471); in the MR analysis of PsA, ICAM5 (P_ivw = 0.0281, OR = 1.1742, 95%CI = 1.0174-1.3552), CCDC50 (P_ivw = 0.0092, OR = 0.7359, 95%CI = 0.5843-0.9269), IL17RD (P_ivw = 0.0006, OR = 0.7887, 95%CI = 0.6886-0.9034), UBLCP1 (P_ivw = 0.0021, OR = 0.6901, 95%CI = 0.5448-0.8741); in the MR analysis of Crohn's disease-related arthritis, GPT (P_ivw = 0.0006, OR = 0.0057, 95%CI = 0.0003-0.1111). In the Bayesian colocalization analysis of RA, HDGF (H4 = 0.8426), CCL19 (H4 = 0.9762), TNFRSF14 (H4 = 0.8016); in the Bayesian colocalization analysis of MS, BTN1A1 (H4 = 0.7660), EVI5 (H4 = 0.9800), OGA (H4 = 0.8569), TNFRSF14 (H4 = 0.8904); in the Bayesian colocalization analysis of PsA, ICAM5 (H4 = 0.9476), CCDC50 (H4 = 0.9091), IL17RD (H4 = 0.9301), UBLCP1 (H4 = 0.8862); in the Bayesian colocalization analysis of Crohn's disease-related arthritis, GPT (H4 = 0.8126). In the SMR analysis of RA, HDGF (p_SMR = 0.0338, p_HEIDI = 0.0628). In the LDSC analysis of RA, CCL19 (P = 0.0000), TNFRSF14 (P = 0.0258). By comprehensively analyzing plasma proteomic and transcriptomic data, we successfully identified key therapeutic targets for various clinical subtypes of immune-associated bone diseases. Our findings indicate that the significant positive genes associated with RA include HDGF, CCL19, and TNFRSF14; the positive gene linked to Crohn-related arthropathy is GPT; for MS, the positive genes are BTN1A1, EVI5, OGA, and TNFRSF14; and for PsA, the positive genes are ICAM5, CCDC50, IL17RD, and UBLCP1. Through this comprehensive analytical approach, we have screened potential therapeutic targets for different clinical subtypes of immune-related bone diseases. This research not only enhances our understanding of the pathogenesis of these conditions but also provides a solid theoretical foundation for subsequent drug development and clinical treatment, with the potential to yield significant advancements in the management of patients with immune-related bone diseases.
Collapse
Affiliation(s)
- Wei Yang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chenglin Liu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Miao Cui
- Capital Medical University, No.10, Xitoutiao, You'anmenwai, Beijing, 100069, Fengtai District, China.
| |
Collapse
|
3
|
Mustonen AM, Malinen M, Paakinaho V, Lehenkari P, Palosaari S, Kärjä V, Nieminen P. RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159576. [PMID: 39489461 DOI: 10.1016/j.bbalip.2024.159576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are inflammatory joint diseases that share partly similar symptoms but have different, inadequately understood pathogeneses. Adipose tissues, including intra-articular infrapatellar fat pad (IFP), may contribute to their development. Analysis of differentially expressed genes (DEGs) in IFPs could improve the diagnostics of these conditions and help to develop novel treatment strategies. The aim was to identify potentially crucial genes and pathways discriminating OA and RA IFPs using RNA sequencing analysis. We aimed to distinguish genetically distinct patient groups as a starting point for further translational studies with the eventual goal of personalized medicine. Samples were collected from arthritic knees during total knee arthroplasty of sex- and age-matched OA and seropositive RA patients (n = 5-6/group). Metabolic pathways of interest were investigated by whole transcriptome sequencing, and DEGs were analyzed with univariate tests, hierarchical clustering (HC), and pathway analyses. There was significant interindividual variation in mRNA expression patterns, but distinct subgroups of OA and RA patients emerged that reacted similarly to their disease states based on HC. Compared to OA, RA samples showed 703 genes to be upregulated and 691 genes to be downregulated. Signaling pathway analyses indicated that these DEGs had common pathways in lipid metabolism, fatty acid biosynthesis and degradation, adipocytokine and insulin signaling, inflammatory response, and extracellular matrix organization. The divergent mRNA expression profiles in RA and OA suggest contribution of IFP to the regulation of synovial inflammatory processes and articular cartilage degradation and could provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Paraatikenttä 7, FI-45100 Kouvola, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Petri Lehenkari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029 OYS, Finland.
| | - Sanna Palosaari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
4
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
6
|
Su T, Yin X, Ren J, Lang Y, Zhang W, Cui L. Causal relationship between gut microbiota and myasthenia gravis: a bidirectional mendelian randomization study. Cell Biosci 2023; 13:204. [PMID: 37936124 PMCID: PMC10629094 DOI: 10.1186/s13578-023-01163-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Observational studies have demonstrated an association between gut microbiota and myasthenia gravis; however, the causal relationship between the two still lacks clarity. Our goals are to ascertain the existence of a bidirectional causal relationship between gut microbiota composition and myasthenia gravis, and to investigate how gut microbiota plays a role in reducing the risk of myasthenia gravis. METHODS We acquired gut microbiota data at the phylum, class, order, family, and genus levels from the MiBioGen consortium (N = 18,340) and myasthenia gravis data from the FinnGen Research Project (426 cases and 373,848 controls). In the two-sample Mendelian randomization analysis, we assessed the causal relationship between the gut microbiota and myasthenia gravis. We also conducted bidirectional MR analysis to determine the direction of causality. The inverse variance weighted, mendelian randomization-Egger, weighted median, simple mode, and weighted mode were used to test the causal relationship between the gut microbiota and severe myasthenia gravis. We used MR-Egger intercept and Cochran's Q test to assess for pleiotropy and heterogeneity, respectively. Furthermore, we utilized the MR-PRESSO method to evaluate horizontal pleiotropy and detect outliers. RESULTS In the forward analysis, the inverse-variance weighted method revealed that there is a positive correlation between the genus Lachnoclostridium (OR = 2.431,95%CI 1.047-5.647, p = 0.039) and the risk of myasthenia gravis. Additionally, the family Clostridiaceae1 (OR = 0.424,95%CI 0.202-0.889, p = 0.023), family Defluviitaleaceae (OR = 0.537,95%CI 0.290-0.995, p = 0.048), family Enterobacteriaceae (OR = 0.341,95%CI 0.135-0.865, p = 0.023), and an unknown genus (OR = 0.407,95%CI 0.209-0.793, p = 0.008) all demonstrated negative correlation with the risk of developing myasthenia gravis. Futhermore, reversed Mendelian randomization analysis proved a negative correlation between the risk of myasthenia gravis and genus Barnesiella (OR = 0.945,95%CI 0.906-0.985, p = 0.008). CONCLUSION Our research yielded evidence of a causality connection in both directions between gut microbiota and myasthenia gravis. We identified specific types of microbes associated with myasthenia gravis, which offers a fresh window into the pathogenesis of this disease and the possibility of developing treatment strategies. Nonetheless, more studies, both basic and clinical, are necessary to elucidate the precise role and therapeutic potential of the gut microbiota in the pathogenesis of myasthenia gravis.
Collapse
Affiliation(s)
- Tengfei Su
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Weiguanliu Zhang
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Fan Y, Li Y, Fu X, Peng J, Chen Y, Chen T, Zhang D. Identification of potential ferroptosis key genes and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis. Heliyon 2023; 9:e21167. [PMID: 37920499 PMCID: PMC10618794 DOI: 10.1016/j.heliyon.2023.e21167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Objective Ferroptosis is of vital importance in the development of Rheumatoid arthritis (RA). The purpose of this project is to clarify the potential ferroptosis-related genes, pathways, and immune infiltration in RA by bioinformatics analysis. Methods We acquired ferroptosis-related genes (FRGs) from Ferroptosis database (FerrDb). We obtained the Gene dataset of RA (GSE55235) from the Gene Expression Omnibus (GEO) Database, screened the differentially expressed genes (DEGs) in RA and control samples, and then took the intersection of it and FRGs. Aiming to construct the protein-protein interaction (PPI) networks of the FRGs-DEGs, STRING database and Cytoscape software 3.7.0 would be used. Furthermore, hub genes were identified by CytoNCA, a Cytoscape plug-in. The gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of FRGs-DEGs were performed. Results We identified 34 FRGs-DEGs, including 7 upregulated and 27 downregulated genes by taking the intersection of the FRGs and DEGs. PPI analysis identified a total of 3 hub genes(VEGFA, PTGS2, and JUN). GO enrichment analyses and KEGG Pathway enrichment displayed that the FRGs-DEGs are involved in the response to oxidative stress and corticosteroid, heme binding, FoxO-signal pathway. Results of immune infiltration displayed that increased infiltration of T cells, while Macrophages M2 less may be related to the occurrence of RA. Conclusion The hub genes involved in ferroptosis in RA may be VEGFA, PTGS2, and JUN, which are mainly involved in FoxO-signal pathway. T cell, Mac, and plasma cells may be involved in the regulation of RA-joints-synovial-inflammation.
Collapse
Affiliation(s)
- Yihua Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xiaoyan Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jing Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuchi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Di Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong Province, China
| |
Collapse
|
8
|
Mustonen AM, Tollis S, Käkelä R, Sihvo SP, Palosaari S, Pohjanen VM, Yli-Hallila A, Lehenkari P, Nieminen P. Increased n-6 Polyunsaturated Fatty Acids Indicate Pro- and Anti-Inflammatory Lipid Modifications in Synovial Membranes with Rheumatoid Arthritis. Inflammation 2023:10.1007/s10753-023-01816-3. [PMID: 37140681 PMCID: PMC10359413 DOI: 10.1007/s10753-023-01816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Emerging evidence suggests that fatty acids (FAs) and their lipid mediator derivatives can induce both beneficial and detrimental effects on inflammatory processes and joint degradation in osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA). The present study characterized the detailed FA signatures of synovial membranes collected during knee replacement surgery of age- and gender-matched OA and RA patients (n = 8/diagnosis). The FA composition of total lipids was determined by gas chromatography and analyzed with univariate and multivariate methods supplemented with hierarchical clustering (HC), random forest (RF)-based classification of FA signatures, and FA metabolism pathway analysis. RA synovium lipids were characterized by reduced proportions of shorter-chain saturated FAs (SFAs) and elevated percentages of longer-chain SFAs and monounsaturated FAs, alkenyl chains, and C20 n-6 polyunsaturated FAs compared to OA synovium lipids. In HC, FAs and FA-derived variables clustered into distinct groups, which preserved the discriminatory power of the individual variables in predicting the RA and OA inflammatory states. In RF classification, SFAs and 20:3n-6 were among the most important FAs distinguishing RA and OA. Pathway analysis suggested that elongation reactions of particular long-chain FAs would have increased relevance in RA. The present study was able to determine the individual FAs, FA groups, and pathways that distinguished the more inflammatory RA from OA. The findings suggest modifications of FA elongation and metabolism of 20:4n-6, glycerophospholipids, sphingolipids, and plasmalogens in the chronically inflamed RA synovium. These FA alterations could have implications in lipid mediator synthesis and potential as novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Sylvain Tollis
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Sanna P Sihvo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Sanna Palosaari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Vesa-Matti Pohjanen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Aaron Yli-Hallila
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
- Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029, OYS, Oulu, Finland
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
9
|
Li XF, Yin SQ, Li H, Yang YL, Chen X, Song B, Wu S, Wu YY, Wang H, Li J. PPAR-γ alleviates the inflammatory response in TNF-α-induced fibroblast-like synoviocytes by binding to p53 in rheumatoid arthritis. Acta Pharmacol Sin 2023; 44:454-464. [PMID: 35918412 PMCID: PMC9889328 DOI: 10.1038/s41401-022-00957-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by synovial inflammation, synoviocyte expansion and damage to cartilage and bone. We recently reported that peroxisome proliferator-activated receptor (PPAR)-γ inhibited the proliferation and activation of fibroblast-like synoviocytes (FLS), and was downregulated in RA synovial. In this study we investigated the role of PPAR-γ in RA and the underlying mechanisms. Adjuvant-induced arthritis (AIA) was induced in rats; from D15, AIA rats were orally administered pioglitazone (30 mg·kg-1·d-1) or rosiglitazone (4 mg·kg-1·d-1) for 14 days. Collagen-induced arthritis (CIA) was induced in wild-type and Ppar-γ+/- mice. We showed that the expression of PPAR-γ was significantly reduced, whereas that of TNF-α was markedly increased in human RA FLS. In CIA mice, knockdown of PPAR-γ expression (Ppar-γ+/-) aggravated the ankle inflammation. Similarly, T0070907 (a PPAR-γ antagonist) or si-PPAR-γ promoted the activation and inflammation of TNF-α-induced FLS in vitro. On the contrary, administration of PPAR-γ agonist pioglitazone or rosiglitazone, or injection of ad-Ppar-γ into the ankle of AIA rat in vivo induced overexpression of PPAR-γ, reduced the paw swelling and inflammation, and downregulated activation and inflammation of FLS in RA. Interesting, injection of ad-Ppar-γ into the ankle also reversed the ankle inflammation in Ppar-γ+/- CIA mice. We conducted RNA-sequencing and KEGG pathway analysis, and revealed that PPAR-γ overexpression was closely related to p53 signaling pathway in TNF-α-induced FLS. Co-IP study confirmed that p53 protein was bound to PPAR-γ in RA FLS. Taken together, PPAR-γ alleviates the inflammatory response of TNF-α-induced FLS by binding p53 in RA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shu-Qin Yin
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
- Pharmacy Department, Chizhou People's Hospital, Chizhou, 247000, China
| | - Hao Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ying-Li Yang
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Biao Song
- Pharmacy Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Sha Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jun Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
10
|
Fatty Acid Fingerprints and Hyaluronic Acid in Extracellular Vesicles from Proliferating Human Fibroblast-like Synoviocytes. Int J Mol Sci 2022; 23:ijms23105613. [PMID: 35628422 PMCID: PMC9146557 DOI: 10.3390/ijms23105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1-3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases.
Collapse
|
11
|
Mikulčić M, Tabrizi-Wizsy NG, Bernhart EM, Asslaber M, Trummer C, Windischhofer W, Sattler W, Malle E, Hrzenjak A. 15d-PGJ 2 Promotes ROS-Dependent Activation of MAPK-Induced Early Apoptosis in Osteosarcoma Cell In Vitro and in an Ex Ovo CAM Assay. Int J Mol Sci 2021; 22:ijms222111760. [PMID: 34769194 PMCID: PMC8583949 DOI: 10.3390/ijms222111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth.
Collapse
Affiliation(s)
- Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
| | - Nassim Ghaffari Tabrizi-Wizsy
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Eva M. Bernhart
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Christopher Trummer
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-73860
| |
Collapse
|
12
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
13
|
Synovial Fluid Fatty Acid Profiles Are Differently Altered by Inflammatory Joint Pathologies in the Shoulder and Knee Joints. BIOLOGY 2021; 10:biology10050401. [PMID: 34064447 PMCID: PMC8147852 DOI: 10.3390/biology10050401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Anomalies of fatty acid (FA) metabolism characterize osteoarthritis (OA) and rheumatoid arthritis (RA) in the knee joint. No previous study has investigated the synovial fluid (SF) FA manifestations in these aging-related inflammatory diseases in the shoulder. The present experiment compared the FA alterations between the shoulder and knee joints in patients with end-stage OA or end-stage RA. SF samples were collected during glenohumeral or knee joint surgery from trauma controls and from OA and RA patients (n = 42). The FA composition of SF total lipids was analyzed by gas chromatography with flame ionization and mass spectrometric detection and compared across cohorts. The FA signatures of trauma controls were mostly uniform in both anatomical locations. RA shoulders were characterized by elevated percentages of 20:4n-6 and 22:6n-3 and with reduced proportions of 18:1n-9. The FA profiles of OA and RA knees were relatively uniform and displayed lower proportions of 18:2n-6, 22:6n-3 and total n-6 polyunsaturated FAs (PUFAs). The results indicate location- and disease-dependent differences in the SF FA composition. These alterations in FA profiles and their potential implications for the production of PUFA-derived lipid mediators may affect joint lubrication, synovial inflammation and pannus formation as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases.
Collapse
|
14
|
Tripolino C, Ciaffi J, Pucino V, Ruscitti P, van Leeuwen N, Borghi C, Giacomelli R, Meliconi R, Ursini F. Insulin Signaling in Arthritis. Front Immunol 2021; 12:672519. [PMID: 33995414 PMCID: PMC8119635 DOI: 10.3389/fimmu.2021.672519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory arthritis is burdened by an increased risk of metabolic disorders. Cytokines and other mediators in inflammatory diseases lead to insulin resistance, diabetes and hyperlipidemia. Accumulating evidence in the field of immunometabolism suggests that the cause-effect relationship between arthritis and metabolic abnormalities might be bidirectional. Indeed, the immune response can be modulated by various factors such as environmental agents, bacterial products and hormones. Insulin is produced by pancreatic cells and regulates glucose, fat metabolism and cell growth. The action of insulin is mediated through the insulin receptor (IR), localized on the cellular membrane of hepatocytes, myocytes and adipocytes but also on the surface of T cells, macrophages, and dendritic cells. In murine models, the absence of IR in T-cells coincided with reduced cytokine production, proliferation, and migration. In macrophages, defective insulin signaling resulted in enhanced glycolysis affecting the responses to pathogens. In this review, we focalize on the bidirectional cause-effect relationship between impaired insulin signaling and arthritis analyzing how insulin signaling may be involved in the aberrant immune response implicated in arthritis and how inflammatory mediators affect insulin signaling. Finally, the effect of glucose-lowering agents on arthritis was summarized.
Collapse
Affiliation(s)
- Cesare Tripolino
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Valentina Pucino
- Institute of Inflammation and Ageing, University of Birmingham and Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nina van Leeuwen
- Rheumatology Department, Leiden University Medical Center, Leiden, Netherlands
| | - Claudio Borghi
- Unità Operativa Medicina Interna Cardiovascolare-IRCCS Azienda Ospedaliera-Universitaria, Bologna, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome "Campus Biomedico", Rome, Italy
| | - Riccardo Meliconi
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Ursini
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; 124:48-62. [PMID: 33934990 DOI: 10.1016/j.semcdb.2021.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Inflammation is a host defense mechanism orchestrated through imperative factors - acute inflammatory responses mediated by cellular and molecular events leading to activation of defensive immune subsets - to marginalize detrimental injury, pathogenic agents and infected cells. These potent inflammatory events, if uncontrolled, may cause tissue damage by perturbing homeostasis towards immune dysregulation. A parallel host mechanism operates to contain inflammatory pathways and facilitate tissue regeneration. Thus, resolution of inflammation is an effective moratorium on the pro-inflammatory pathway to avoid the tissue damage inside the host and leads to reestablishment of tissue homeostasis. Dysregulation of the resolution pathway can have a detrimental impact on tissue functionality and contribute to the diseased state. Multiple reports have suggested peculiar dynamics of miRNA expression during various pro- and anti-inflammatory events. The roles of miRNAs in the regulation of immune responses are well-established. However, understanding of miRNA regulation of the resolution phase of events in infection or wound healing models, which is sometimes misconstrued as anti-inflammatory signaling, remains limited. Due to the deterministic role of miRNAs in pro-inflammatory and anti-inflammatory pathways, in this review we have provided a broad perspective on the putative role of miRNAs in the resolution of inflammation and explored their imminent role in therapeutics.
Collapse
|
16
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
17
|
Hsieh MS, Hung PS, Hsieh VCR, Liao SH, How CK. Association between thiazolidinedione use and rheumatoid arthritis risk in patients with type II diabetes, a population-based, case-control study. Int J Clin Pract 2021; 75:e13804. [PMID: 33124165 DOI: 10.1111/ijcp.13804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
AIM A previous study revealed that PPARγ agonists have anti-inflammatory effects in rheumatoid arthritis (RA). Furthermore, some studies have shown that type 2 diabetes mellitus (T2DM) may elicit the development of RA. In this study, we aimed to investigate whether the use of thiazolidinediones (TZDs) is associated with a lower risk of developing RA in patients with T2DM. METHODS Based on the Taiwan National Health Insurance Research Database, we conducted a nationwide case-control study. The selected cases were patients with T2DM who were diagnosed with RA between 2000 and 2013. The controls were retrieved at a ratio of 1:4 by propensity score matching. Logistic regression was conducted to evaluate whether TZD use lowers the risk of RA in patients with T2DM. The dose-response effect was examined according to the total TZD dose, within 2 years before the index date (the first diagnosis date of RA), and TZD doses were divided into four groups by cumulative Defined Daily Dose (cDDD): <30, 31-90, 91-365, and >365 cDDDs. RESULTS A total of 3605 cases and 14 420 controls were included in this study. After adjusting for age, sex, baseline comorbidities, the results demonstrated that TZD use did not significantly reduce the risk of RA in patients with T2DM (adjusted OR = 0.91, 95% CI 0.81-1.02). In the subgroup analysis by total TZD exposure dose within 2 years, 91-365 cDDDs of TZD had a lower risk of RA development, aOR = 0.87 (95% CI 0.71-1.06) and >365 cDDDs of TZD, aOR = 0.85 (95% CI 0.73-1.01). In the trend test, P was <.05. CONCLUSIONS TZD use might reduce the risk of RA in patients with T2DM, but it was non-statistically significant. Further research is necessary to assess this association.
Collapse
Affiliation(s)
- Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pin-Shun Hung
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vivian Chia-Rong Hsieh
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Shu-Hui Liao
- Department of Pathology and Laboratory, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| |
Collapse
|
18
|
Circulating peroxisome proliferator-activated receptor γ is elevated in systemic sclerosis. Postepy Dermatol Alergol 2021; 37:921-926. [PMID: 33603610 PMCID: PMC7874880 DOI: 10.5114/ada.2019.84746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/27/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Systemic sclerosis (SSc) is an autoimmune connective tissue disease with distinguished fibrosis of the skin and internal organs. Vascular damage, immune dysregulation and fibroblasts activation contribute to SSc pathogenesis. Peroxisome proliferator-activated receptor γ (PPAR-γ) can be a link between cell metabolism and fibrosis in SSc due to its anti-fibrotic and immunomodulatory properties. Aim To measure the serum level of PPAR-γ in SSc patients and correlate it with the SSc subtype, hs-CRP, disease duration, vascular and internal organ involvement. Material and methods Twenty-two SSc patients (15 limited SSc, 7 diffuse SSc) matched with healthy controls were analysed. Clinical and laboratory data were collected including specific antibodies, interstitial lung disease, oesophageal involvement, digital pitting scars, disease duration, Raynaud’s phenomenon (RP) and modified Rodnan skin score (mRSS). PPAR-γ levels were analysed by ELISA. Statistical analysis was performed with χ2, Student’s t-test and Mann-Whitney-U test. Pearson and Spearman correlation analyses were used to establish variables association. The significance threshold was set at p < 0.05. Results PPAR-γ concentration was elevated in SSc patients in comparison to controls (p = 0.007) with the highest difference for diffuseSSc (p = 0.004) with significantly elevated mRSS. No association between PPAR-γ levels and hs-CRP, internal organ and vascular involvement, disease duration, autoantibodies and RP onset was found. Conclusions The present study revealed elevated serum PPAR-γ in SSc patients, in particular those with a diffuse form, presenting highest mRSS and lowest BMI. Whether circulating PPAR-γ originates from atrophic adipose tissue, reperfused vessels or ischemic tissues needs assessing. Also the biological meaning or effect of elevated serum PPAR-γ requires further studies.
Collapse
|
19
|
Ouhaddi Y, Najar M, Paré F, Lussier B, Urade Y, Benderdour M, Pelletier JP, Martel-Pelletier J, Fahmi H. L-PGDS deficiency accelerated the development of naturally occurring age-related osteoarthritis. Aging (Albany NY) 2020; 12:24778-24797. [PMID: 33361529 PMCID: PMC7803483 DOI: 10.18632/aging.202367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder among the elderly. It is characterized by progressive cartilage degradation, synovial inflammation, subchondral bone remodeling and pain. Lipocalin prostaglandin D synthase (L-PGDS) is responsible for the biosynthesis of PGD2, which has been implicated in the regulation of inflammation and cartilage biology. This study aimed to evaluate the effect of L-PGDS deficiency on the development of naturally occurring age-related OA in mice. OA-like structural changes were assessed by histology, immunohistochemistry, and micro–computed tomography. Pain related behaviours were assessed using the von Frey and the open-field assays. L-PGDS deletion promoted cartilage degradation during aging, which was associated with enhanced expression of extracellular matrix degrading enzymes, matrix metalloprotease 13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and their breakdown products, C1,2C, VDIPEN and NITEG. Moreover, L-PGDS deletion enhanced subchondral bone changes, but had no effect on its angiogenesis. Additionally, L-PGDS deletion increased mechanical sensitivity and reduced spontaneous locomotor activity. Finally, we showed that the expression of L-PGDS was elevated in aged mice. Together, these findings indicate an important role for L-PGDS in naturally occurring age-related OA. They also suggest that L-PGDS may constitute a new efficient therapeutic target in OA.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Bertrand Lussier
- Faculty of Veterinary Medicine, Clinical Science, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mohamed Benderdour
- Research Centre, Sacré-Coeur Hospital, University of Montreal, Montreal, QC H4J 1C5, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
20
|
Wang W, Zhang Y, Luo J, Wang R, Tang C, Zhang Y. Virtual Screening Technique Used to Estimate the Mechanism of Adhatoda vasica Nees for the Treatment of Rheumatoid Arthritis Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5872980. [PMID: 33062015 PMCID: PMC7542480 DOI: 10.1155/2020/5872980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Adhatoda vasica Nees (AVN) is commonly used to treat joint diseases such as rheumatoid arthritis (RA) in ethnic minority areas of China, especially in Tibetan and Dai areas, and its molecular mechanisms on RA still remain unclear. Network pharmacology, a novel strategy, utilizes bioinformatics to predict and evaluate drug targets and interactions in disease. Here, network pharmacology was used to investigate the mechanism by which AVN acts in RA. The chemical compositions and functional targets of AVN were retrieved using the systematic pharmacological analysis platform PharmMapper. The targets of RA were queried through the DrugBank database. The protein-protein interaction network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of key targets were constructed in the STRING database, and the network visualization analysis was performed in Cytoscape. Maestro 11.1, a type of professional software, was used for verifying prediction and analysis based on network pharmacology. By comparing the predicted target information with the targets of RA-related drugs, 25 potential targets may be related to the treatment of RA, among which MAPK1, TNF, DHODH, IL2, PTGS2, and JAK2 may be the main potential targets for the treatment of RA. Finally, the chemical components and potential target proteins were scored by molecular docking, and compared with the ligands of the protein, the prediction results of network pharmacology were preliminarily verified. The active ingredients and mechanism of AVN against RA were firstly investigated using network pharmacology. Additionally, this research provided a solid foundation for further experimental studies.
Collapse
Affiliation(s)
- Wenxiang Wang
- College Pharmacy of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Ethnic Medicine Academic Heritage Innovation Research Center of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunsen Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Luo
- Ethnic Medicine Academic Heritage Innovation Research Center of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rushan Wang
- Ethnic Medicine Academic Heritage Innovation Research Center of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ce Tang
- Innovative Institute of Chinese Medicine and Pharmacy of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
21
|
Wagner N, Wagner KD. PPARs and Angiogenesis-Implications in Pathology. Int J Mol Sci 2020; 21:ijms21165723. [PMID: 32785018 PMCID: PMC7461101 DOI: 10.3390/ijms21165723] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
22
|
Najar M, Ouhaddi Y, Paré F, Lussier B, Urade Y, Kapoor M, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of Lipocalin-Type Prostaglandin D Synthase in Experimental Osteoarthritis. Arthritis Rheumatol 2020; 72:1524-1533. [PMID: 32336048 DOI: 10.1002/art.41297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Lipocalin-type prostaglandin D synthase (L-PGDS) catalyzes the formation of prostaglandin D2 (PGD2 ), which has important roles in inflammation and cartilage metabolism. We undertook this study to investigate the role of L-PGDS in the pathogenesis of osteoarthritis (OA) using an experimental mouse model. METHODS Experimental OA was induced in wild-type (WT) and L-PGDS-deficient (L-PGDS-/- ) mice (n = 10 per genotype) by destabilization of the medial meniscus (DMM). Cartilage degradation was evaluated by histology. The expression of matrix metalloproteinase 13 (MMP-13) and ADAMTS-5 was assessed by immunohistochemistry. Bone changes were determined by micro-computed tomography. Cartilage explants from L-PGDS-/- and WT mice (n = 6 per genotype) were treated with interleukin-1α (IL-1α) ex vivo in order to evaluate proteoglycan degradation. Moreover, the effect of intraarticular injection of a recombinant adeno-associated virus type 2/5 (rAAV2/5) encoding L-PGDS on OA progression was evaluated in WT mice (n = 9 per group). RESULTS Compared to WT mice, L-PGDS-/- mice had exacerbated cartilage degradation and enhanced expression of MMP-13 and ADAMTS-5 (P < 0.05). Furthermore, L-PGDS-/- mice displayed increased synovitis and subchondral bone changes (P < 0.05). Cartilage explants from L-PGDS-/- mice showed enhanced proteoglycan degradation following treatment with IL-1α (P < 0.05). Intraarticular injection of rAAV2/5 encoding L-PGDS attenuated the severity of DMM-induced OA-like changes in WT mice (P < 0.05). The L-PGDS level was increased in OA tissues of WT mice (P < 0.05). CONCLUSION Collectively, these findings suggest a protective role of L-PGDS in OA, and therefore enhancing levels of L-PGDS may constitute a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mehdi Najar
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Yassine Ouhaddi
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Frédéric Paré
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | | | - Mohit Kapoor
- The Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jean-Pierre Pelletier
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| | | | - Hassan Fahmi
- University of Montreal Hospital Research Center and University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Shahzad S, Willcox M. Immuno-pathogenesis of nCOVID-19 and a possible host-directed therapy including anti-inflammatory and anti-viral prostaglandin (PG J 2) for effective treatment and reduction in the death toll. Med Hypotheses 2020; 143:110080. [PMID: 32683221 PMCID: PMC7341031 DOI: 10.1016/j.mehy.2020.110080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023]
Abstract
Coronaviruses including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, also known as 2019-nCoV especially in China) replicate and divide in host cells. During this they are partly hidden from the innate immune responses although inflammatory consequences of viral replication still occur. We propose that anti-inflammatory antiviral prostaglandins may not only restrict viral replication but also prevent inflammatory responses in the lungs and other vital organs that are known to be part of the immuno-pathogenesis of coronavirus disease-19 (COVID-19). The combination of anti-inflammatory antiviral prostaglandins with interferons may lead to the clearance of viruses inside growth-restricted infected cells. However, further experimental studies and clinical trials should be conducted to evaluate the safety and efficacy of these possible therapies.
Collapse
Affiliation(s)
- Shakeel Shahzad
- Institute of Microbiology, University of Agriculture Faisalabad 38040, Pakistan.
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Di Francesco L, Bruno A, Ricciotti E, Tacconelli S, Dovizio M, Guillem-Llobat P, Alisi MA, Garrone B, Coletta I, Mangano G, Milanese C, FitzGerald GA, Patrignani P. Pharmacological Characterization of the Microsomal Prostaglandin E 2 Synthase-1 Inhibitor AF3485 In Vitro and In Vivo. Front Pharmacol 2020; 11:374. [PMID: 32317963 PMCID: PMC7147323 DOI: 10.3389/fphar.2020.00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale The development of inhibitors of microsomal prostaglandin (PG)E2 synthase-1 (mPGES-1) was driven by the promise of attaining antiinflammatory agents with a safe cardiovascular profile because of the possible diversion of the accumulated substrate, PGH2, towards prostacyclin (PGI2). Objectives We studied the effect of the human mPGES-1 inhibitor, AF3485 (a benzamide derivative) on prostanoid biosynthesis in human whole blood in vitro. To characterize possible off-target effects of the compound, we evaluated: i)the impact of its administration on the systemic biosynthesis of prostanoids in a model of complete Freund's adjuvant (CFA)-induced monoarthritis in rats; ii) the effects on cyclooxygenase (COX)-2 expression and the biosynthesis of prostanoids in human monocytes and human umbilical vein endothelial cells (HUVECs) in vitro. Methods Prostanoids were assessed in different cellular models by immunoassays. The effect of the administration of AF3485 (30 and 100 mg/kg,i.p.) or celecoxib (20mg/kg, i.p.), for 3 days, on the urinary levels of enzymatic metabolites of prostanoids, PGE-M, PGI-M, and TX-M were assessed by LC-MS. Results In LPS-stimulated whole blood, AF3485 inhibited PGE2 biosynthesis, in a concentration-dependent fashion. At 100μM, PGE2 levels were reduced by 66.06 ± 3.30%, associated with a lower extent of TXB2 inhibition (40.56 ± 5.77%). AF3485 administration to CFA-treated rats significantly reduced PGE-M (P < 0.01) and TX-M (P < 0.05) similar to the selective COX-2 inhibitor, celecoxib. In contrast, AF3485 induced a significant (P < 0.05) increase of urinary PGI-M while it was reduced by celecoxib. In LPS-stimulated human monocytes, AF3485 inhibited PGE2 biosynthesis with an IC50 value of 3.03 µM (95% CI:0.5–8.75). At 1μM, AF3485 enhanced TXB2 while at higher concentrations, the drug caused a concentration-dependent inhibition of TXB2. At 100 μM, maximal inhibition of the two prostanoids was associated with the downregulation of COX-2 protein by 86%. These effects did not involve AMPK pathway activation, IkB stabilization, or PPARγ activation. In HUVEC, AF3485 at 100 μM caused a significant (P < 0.05) induction of COX-2 protein associated with enhanced PGI2 production. These effects were reversed by the PPARγ antagonist GW9662. Conclusions The inhibitor of human mPGES-1 AF3485 is a novel antiinflammatory compound which can also modulate COX-2 induction by inflammatory stimuli. The compound also induces endothelial COX-2-dependent PGI2 production via PPARγ activation, both in vitro and in vivo, which might translate into a protective effect for the cardiovascular system.
Collapse
Affiliation(s)
- Luigia Di Francesco
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Paloma Guillem-Llobat
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | | | | | | | | | | | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
25
|
Pérez‐Martínez PI, Rojas‐Espinosa O, Hernández‐Chávez VG, Arce‐Paredes P, Estrada‐Parra S. Anti-inflammatory effect of omega unsaturated fatty acids and dialysable leucocyte extracts on collagen-induced arthritis in DBA/1 mice. Int J Exp Pathol 2020; 101:55-64. [PMID: 32459025 PMCID: PMC7306903 DOI: 10.1111/iep.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 01/05/2023] Open
Abstract
Rheumatoid arthritis is a disabling autoimmune disease with a high global prevalence. Treatment with disease-modifying anti-arthritic drugs (DIMARDs) has been routinely used with beneficial effects but with adverse long-term consequences; novel targeted biologics and small-molecule inhibitors are promising options. In this study, we investigated whether purified omega unsaturated fatty acids (ω-UFAs) and dialysable leukocyte extracts (DLEs) prevented the development of arthritis in a model of collagen-induced arthritis (CIA) in mice. We also investigated whether the transcription factor NF-κB and the NLRP3 inflammasome were involved in the process and whether their activity was modulated by treatment. The development of arthritis was evaluated for 84 days following treatment with nothing, dexamethasone, DLEs, docosahexaenoic acid, arachidonic acid, and oleic acid. Progression of CIA was monitored by evaluating clinical manifestations, inflammatory changes, and histological alterations in the pads' articular tissues. Both DLEs and ω-UFAs led to an almost complete inhibition of the inflammatory histopathology of CIA and this was concomitant with the inhibition of NF-kB and the inhibition of the activation of NLRP3. These data suggest that ω-UFAs and DLEs might have NF-κB as a common target and that they might be used as ancillary medicines in the treatment of arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antirheumatic Agents/pharmacology
- Arachidonic Acid/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Extracts/pharmacology
- Collagen Type II
- Dialysis
- Docosahexaenoic Acids/pharmacology
- Fatty Acids, Unsaturated/pharmacology
- Female
- Inflammasomes/drug effects
- Inflammasomes/metabolism
- Leukocytes
- Mice, Inbred BALB C
- Mice, Inbred DBA
- NF-kappa B/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Oleic Acid/pharmacology
Collapse
Affiliation(s)
- Pamela I. Pérez‐Martínez
- Departamento de InmunologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | - Oscar Rojas‐Espinosa
- Departamento de InmunologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | - Víctor G. Hernández‐Chávez
- Departamento de MorfologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | - Patricia Arce‐Paredes
- Departamento de InmunologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | - Sergio Estrada‐Parra
- Departamento de InmunologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| |
Collapse
|
26
|
Bar-Or D, Thomas G, Rael LT, Frederick E, Hausburg M, Bar-Or R, Brody E. On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis. Curr Rheumatol Rev 2020; 15:189-200. [PMID: 30451114 PMCID: PMC6791032 DOI: 10.2174/1573397114666181119121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Gregory Thomas
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Leonard T Rael
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Elizabeth Frederick
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Raphael Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| |
Collapse
|
27
|
Zhao CC, Jiang MY, Zhang LY, Hu YY, Hu ZJ, Zhang MY, Qi J, Su AC, Lou N, Xian XH, Zhang JG, Li WB, Zhang M. Peroxisome proliferator-activated receptor gamma participates in the acquisition of brain ischemic tolerance induced by ischemic preconditioning via glial glutamate transporter 1 in vivo and in vitro. J Neurochem 2019; 151:608-625. [PMID: 31314916 DOI: 10.1111/jnc.14824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 07/11/2019] [Indexed: 01/29/2023]
Abstract
Glial glutamate transporter 1 (GLT-1) plays a vital role in the induction of brain ischemic tolerance (BIT) by ischemic preconditioning (IPC). However, the mechanism still needs to be further explained. The aim of this study was to investigate whether peroxisome proliferator-activated receptor gamma (PPARγ) participates in regulating GLT-1 during the acquisition of BIT induced by IPC. Initially, cerebral IPC induced BIT and enhanced PPARγ and GLT-1 expression in the CA1 hippocampus in rats. The ratio of nuclear/cytoplasmic PPARγ was also increased. At the same time, the up-regulation of PPARγ expression in astrocytes in the CA1 hippocampus was revealed by double immunofluorescence for PPARγ and glial fibrillary acidic protein. Then, the mechanism by which PPARγ regulates GLT-1 was studied in rat cortical astrocyte-neuron cocultures. We found that IPC [45 min of oxygen glucose deprivation (OGD)] protected neuronal survival after lethal OGD (4 h of OGD), which usually leads to neuronal death. The activation of PPARγ occurred earlier than the up-regulation of GLT-1 in astrocytes after IPC, as determined by western blot and immunofluorescence. Moreover, the preadministration of the PPARγ antagonist T0070907 or PPARγ siRNA significantly attenuated GLT-1 up-regulation and the neuroprotective effects induced by IPC in vitro. Finally, the effect of the PPARγ antagonist on GLT-1 expression and BIT was verified in vivo. We observed that the preadministration of T0070907 by intracerebroventricular injection dose-dependently attenuated the up-regulation of GLT-1 and BIT induced by cerebral IPC in rats. In conclusion, PPARγ participates in regulating GLT-1 during the acquisition of BIT induced by IPC. Cover Image for this issue: doi: 10.1111/jnc.14532. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Cong-Cong Zhao
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China.,Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Meng-Yang Jiang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhen-Jie Hu
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Meng-Yue Zhang
- Clinical Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jie Qi
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - A-Chou Su
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Nan Lou
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China.,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China.,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, People's Republic of China
| |
Collapse
|
28
|
Kaneshiro K, Sakai Y, Suzuki K, Uchida K, Tateishi K, Terashima Y, Kawasaki Y, Shibanuma N, Yoshida K, Hashiramoto A. Interleukin-6 and tumour necrosis factor-α cooperatively promote cell cycle regulators and proliferate rheumatoid arthritis fibroblast-like synovial cells. Scand J Rheumatol 2019; 48:353-361. [DOI: 10.1080/03009742.2019.1602164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- K Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Y Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Terashima
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, Japan
| | - N Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - K Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - A Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
29
|
Abou-ElNour M, Ishak RAH, Tiboni M, Bonacucina G, Cespi M, Casettari L, Soliman ME, Geneidi AS. Triamcinolone acetonide-loaded PLA/PEG-PDL microparticles for effective intra-articular delivery: synthesis, optimization, in vitro and in vivo evaluation. J Control Release 2019; 309:125-144. [PMID: 31344425 DOI: 10.1016/j.jconrel.2019.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022]
Abstract
Nowadays the use of sustainable polymers as poly-lactic acid (PLA) and poly-δ-decalactone (PDL) in drug delivery is advantageous compared to polymers derived from fossil fuels. The present work aimed to produce microparticles (MPs) derived from novel sustainable polymers, loaded with triamcinolone acetonide (TA) for treatment of rheumatoid arthritis via intra-articular (IA) delivery. PDL was synthesized from green δ-decalactone monomers and co-polymerized with methoxy-polyethylene glycol (mPEG) forming PEG-PDL with different molecular weights. The Hansen's solubility parameters were applied to select the most compatible polymer with the drug. An o/w emulsion/solvent evaporation technique was used for MPs fabrication, using 3 [3] full factorial design. Selection of the optimized MPs was performed using Expert Design® software's desirability function. The optimized formulations were characterized using scanning electron microscope, powder X-ray diffraction, differential scanning calorimetry, infrared spectroscopy and in vitro release studies. The inhibition percents of inflammation and histopathological studies were assessed in complete Freund's adjuvant-induced rats' knee joints evaluating the effect of IA injections of selected MPs compared to the free drug suspension. Solubility studies revealed high compatibility and miscibility between TA and PEG-PDL1700, which was blended with PLA for convenient MPs formation. The in vitro characterization studies confirmed the formation of drug-copolymer co-crystals. The in vivo studies ensured the superiority of the newly designed composite MPs in inflammation suppression, compared to the free drug suspension and PLA MPs as well. The present study proved the advantage of using sustainable polymers in a novel combination for effective drug delivery and suggesting its usefulness in designing versatile platforms for therapeutic applications.
Collapse
Affiliation(s)
- May Abou-ElNour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | | | - Marco Cespi
- School of Pharmacy, University of Camerino, Camerino (MC), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy.
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Xiong Z, Luo P, Zhou J, Tan M. 15-Deoxy-Δ 12,14-prostaglandin J 2 as a potential regulator of bone metabolism via PPARγ-dependent and independent pathways: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1879-1888. [PMID: 31213775 PMCID: PMC6549764 DOI: 10.2147/dddt.s206695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Bone metabolism is a complex physiological process that primarily involves osteoblast-mediated bone formation and osteoclast-mediated bone resorption, both of which are regulated by a variety of biological factors. There is increasing evidence that peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and plays an important role in lipid metabolism and bone metabolism. Through the PPARγ-dependent pathway, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) promotes the formation of marrow adipocytes and inhibits the formation of osteoblasts, resulting in bone loss and increasing the risk of fracture and osteoporosis. Recent studies have found that through the PPARγ-independent pathway, 15d-PGJ2 plays a regulatory role in bone metastasis of breast cancer, which can inhibit osteoclastogenesis and reduce bone destruction. The purpose of our review is to summarize the recent progress in elucidating the mechanisms and effects of 15d-PGJ2 in bone metabolism, which can serve as a novel therapeutic target for bone tumors, osteoporosis, rheumatoid arthritis (RA), and other bone diseases.
Collapse
Affiliation(s)
- Zhencheng Xiong
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Pan Luo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jun Zhou
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, People's Republic of China.,School of Clinical Medicine, Graduate School of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mingsheng Tan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, People's Republic of China.,School of Clinical Medicine, Graduate School of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
31
|
A Network Pharmacology Approach to Explore Mechanism of Action of Longzuan Tongbi Formula on Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5191362. [PMID: 30792744 PMCID: PMC6354157 DOI: 10.1155/2019/5191362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Longzuan Tongbi Formula (LZTB) is an effective proved prescription in Zhuang medicine for treating active rheumatoid arthritis (RA). However, its active ingredients, underlying targets, and pharmacological mechanism are still not clear in treating RA. We have applied network pharmacology to study LZTB and found that 8 herbs in LZTB and 67 compounds in the 8 herbs are involved in the regulation of RA-related genes; we have conducted pathway analysis of overlapping genes and found that 7 herbs participate in the regulations of 24 pathways associated with RA and that 5 herbs in the 7 herbs and 25 compounds in the 5 herbs participate in the regulation of hsa05323 (rheumatoid arthritis). The results indicated that all herbs in LZTB and some compounds in those herbs participate in the treatment of RA; 25 compounds are main active ingredients and hsa05323 (rheumatoid arthritis) is the major pathway in the treatment of RA. We have also found that three pathways (inflammatory mediator regulation of TRP channels, PPAR signaling pathway, and mTOR signaling pathway) might have some effect on the treatment of RA.
Collapse
|
32
|
Qiu D, Xia Z, Jiao X, Deng J, Zhang L, Li J. Altered Gut Microbiota in Myasthenia Gravis. Front Microbiol 2018; 9:2627. [PMID: 30483222 PMCID: PMC6241162 DOI: 10.3389/fmicb.2018.02627] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/15/2018] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune-mediated disorder, the etiology of which involves both environmental factors and genetics. While the exact factors responsible for predisposition to MG remain elusive, it is hypothesized that gut microbiota play a critical role in the pathogenesis of MG. This study investigated whether gut microbiota are altered in MG patients by comparing the fecal microbiota profiles of MG patients to those of age- and sex-matched healthy controls. Phylotype profiles of gut microbial populations were generated using hypervariable tag sequencing of the V4 region of the 16S ribosomal RNA gene. Fecal short-chain fatty acids (SCFAs) were assessed by gas chromatographic analyses. The results demonstrated that, compared to the healthy cohort, the gut microbiota of the MG group was changed in terms of the relative abundances of bacterial taxa, with sharply reduced microbial richness, particularly in the genus Clostridium. The fecal SCFA content was significantly lower in the MG group. Furthermore, microbial dysbiosis was closely related to the levels of inflammatory biomarkers in the sera of MG patients.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Neurology of Hunan Province, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Neurology of Hunan Province, Changsha, China
| | - Xiao Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Neurology of Hunan Province, Changsha, China
| | - Jun Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Neurology of Hunan Province, Changsha, China
| | - Lei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Neurology of Hunan Province, Changsha, China
| |
Collapse
|
33
|
Gong Z, Kuang Z, Li H, Li C, Ali MK, Huang F, Li P, Li Q, Huang X, Ren S, Li J, Xie J. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cell Immunol 2018; 335:41-50. [PMID: 30415762 DOI: 10.1016/j.cellimm.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global public health threat. The success of M. tuberculosis largely contributes to its manipulation of host cell fate. The role of M. tuberculosis PE/PPE family effectors in the host destiny was intensively explored. In this study, the role of PPE60 (Rv3478) was characterized by using Rv3478 recombinant M. smegmatis. PPE60 can promote host cell pyroptosis via caspases/NLRP3/gasdermin. The production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12p40 and TNF-α was altered by PPE60. We found that LUBAC was involved in PPE60-elicited NF-κB signaling by using Linear Ubiquitin Chain Assembly Complex (LUBAC)-specific inhibitor gliotoxin. The PPE60 recombinant M. smegmatis survival rate within macrophages is increased, as well as elevated resistance to stresses such as low pH, surface stresses and antibiotics exposure. For a first time it is firstly reported that M. tuberculosis effector PPE60 can modulate the host cell fate via LUBAC-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Institute of Chengdu Medical College, School of Laboratory Medicine, No 783 Xindu Avenue, Chengdu, Sichuan 610083, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Fujing Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Sai Ren
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
34
|
Kawasaki F, Anno T, Takai M, Irie S, Kaneto H, Kaku K, Okimoto N. Saibokuto as a Possible Therapy for Type B Insulin Resistance Syndrome: The Disappearance of Anti-insulin Receptor Antibody and a Marked Amelioration of Glycemic Control by Saibokuto Treatment. Intern Med 2018. [PMID: 29526960 PMCID: PMC6148171 DOI: 10.2169/internalmedicine.0523-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type B insulin resistance syndrome is a rare autoimmune disease and no effective therapy has yet been established. On the other hand, it is known that Saibokuto, one type of Japanese Kampo medicine, may have beneficial effects on various symptoms associated with this disease and it is therefore occasionally prescribed for various immune disorders. We herein describe a case of type B insulin resistance syndrome in which anti-insulin receptor antibody disappeared and the patient's glycemic control markedly improved after the administration of Saibokuto. At first, we administered various anti-oral diabetic drugs and insulin therapy, but the patient's glycemic control became further aggravated. In addition, Helicobacter pylori eradication therapy was not effective, although its benefit has been reported. Interestingly, after the patient started taking Saibokuto, her glycemic control markedly improved. In addition, the patient's plasma insulin levels markedly decreased and anti-insulin receptor antibody became negative after taking Saibokuto. Taken together, there is a possibility that Saibokuto may one of the options for type B insulin resistance syndrome therapy.
Collapse
Affiliation(s)
- Fumiko Kawasaki
- Department of General Internal Medicine 1, Kawasaki Medical School, Japan
| | - Takatoshi Anno
- Department of General Internal Medicine 1, Kawasaki Medical School, Japan
| | - Maiko Takai
- Department of General Internal Medicine 1, Kawasaki Medical School, Japan
| | - Shintaro Irie
- Department of General Internal Medicine 1, Kawasaki Medical School, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Japan
| | - Kohei Kaku
- Department of General Internal Medicine 1, Kawasaki Medical School, Japan
| | - Niro Okimoto
- Department of General Internal Medicine 1, Kawasaki Medical School, Japan
| |
Collapse
|
35
|
Abstract
Chronic inflammation is a risk factor for gastrointestinal cancer and other diseases. Most studies have focused on cytokines and chemokines as mediators connecting chronic inflammation to cancer, whereas the involvement of lipid mediators, including prostanoids, has not been extensively investigated. Prostanoids are among the earliest signaling molecules released in response to inflammation. Multiple lines of evidence suggest that prostanoids are involved in gastrointestinal cancer. In this Review, we discuss how prostanoids impact gastrointestinal cancer development. In particular, we highlight recent advances in our understanding of how prostaglandin E2 induces the immunosuppressive microenvironment in gastrointestinal cancers.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
36
|
Jia W, Wu W, Yang D, Xiao C, Huang M, Long F, Su Z, Qin M, Liu X, Zhu YZ. GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis. Cell Death Dis 2018; 9:503. [PMID: 29717129 PMCID: PMC5931571 DOI: 10.1038/s41419-018-0570-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. In RA, neoangiogenesis is an early and crucial event to promote the formation of pannus, causing further inflammatory cell infiltration. The transcription factor GATA4 is a critical regulator of cardiac differentiation-specific gene expression. We find that a higher level of GATA4 exists in synovium of rheumatoid arthritis (RA) patients, but the function of GATA4 in RA remains unclear. In the present study, IL-1β induces inflammation in fibroblast-like synoviocytes (FLS) MH7A, which is accompanied with the increased expression of GATA4 and VEGF production. Through application of GATA4 loss-of-function assays, we confirm the requirement of GATA4 expression for inflammation induced by IL-1β in FLS. In addition, we demonstrate for the first time that GATA4 plays key roles in regulating VEGF secretion from RA FLS to promote cellular proliferation, induce cell migration, and angiogenic tube formation of endothelial cells. GATA4 induces the angiogenic factors VEGFA and VEGFC, by directly binding to the promoter and enhancing transcription. The knockdown of GATA4 attenuates the development of collagen-induced arthritis (CIA) and prevents RA-augmented angiogenesis in vivo, which are accompanied with decreased VEGF level. These results reveal a previously unrecognized function for GATA4 as a regulator of RA angiogenesis and we provide experimental data validating the therapeutic target of GATA4 in RA mice.
Collapse
Affiliation(s)
- Wanwan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Weijun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenxi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mengwei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fen Long
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenghua Su
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinhua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
37
|
Ferrándiz ML, Nacher-Juan J, Alcaraz MJ. Nrf2 as a therapeutic target for rheumatic diseases. Biochem Pharmacol 2018; 152:338-346. [PMID: 29660314 DOI: 10.1016/j.bcp.2018.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular protective processes. Rheumatic diseases are chronic conditions characterized by inflammation, pain, tissue damage and limitations in function. Main examples are rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis and osteoporosis. Their high prevalence constitutes a major health problem with an important social and economic impact. A wide range of evidence indicates that Nrf2 may control different mechanisms involved in the physiopathology of rheumatic conditions. Therefore, the appropriate expression and balance of Nrf2 is necessary for regulation of oxidative stress, inflammation, immune responses, and cartilage and bone metabolism. Numerous studies have demonstrated that Nrf2 deficiency aggravates the disease in experimental models while Nrf2 activation results in immunoregulatory and anti-inflammatory effects. These reports reinforce the increasing interest in the pharmacologic regulation of Nrf2 and its potential applications. Nevertheless, a majority of Nrf2 inducers are electrophilic molecules which may present off-target effects. In recent years, novel strategies have been sought to modulate the Nrf2 pathway which has emerged as a therapeutic target in rheumatic conditions.
Collapse
Affiliation(s)
- María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - Josep Nacher-Juan
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - Maria José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
38
|
Hoxha M. A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Adv Med Sci 2018; 63:22-29. [PMID: 28818745 DOI: 10.1016/j.advms.2017.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rheumatoid arthritis is characterized by the production of eicosanoids, cytokines, adhesion molecules, infiltration of T and B lymphocytes in the synovium and oxygen reduction accompanied by the cartilage degradation. Eicosanoids are responsible for the progressive destruction of cartilage and bone, however neither steroids, nor the non steroidal anti-inflammatory drugs (NSAIDs), cannot slow down cartilage and bone destruction providing only symptomatic improvement. The current rheumatoid arthritis treatment options include mainly the use of disease-modifying anti-rheumatic drugs, the corticosteroids, the NSAIDs and biological agents. METHODS PubMed, Cochrane, and Embase electronic database were used as the main sources for extracting several articles, reviews, original papers in English for further review and analysis on the implication of arachidonic acid metabolites with rheumatoid arthritis and different strategies of targeting arachidonic acid metabolites, different enzymes or receptors for improving the treatment of rheumatoid arthritis patients. RESULTS We first focused on the role of individual prostaglandins and leukotrienes, in the inflammatory process of arthritis, concluding with an outline of the current clinical situation of rheumatoid arthritis and novel treatment strategies targeting the arachidonic acid pathway. CONCLUSIONS Extended research is necessary for the development of these novel compounds targeting the eicosanoid pathway, by increasing the levels of anti-inflammatory eicosanoids (PGD2,15dPGJ2), by inhibiting the production of pro-inflammatory eicosanoids (PGE2, LTB4, PGI2) involved in rheumatoid arthritis or also by developing dual compounds displaying both the COX-2 inhibitor/TP antagonist activity within a single compound.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania; Department of Pharmacological and Biomolecular Sciences, Università degli studi di Milano, Milan, Italy.
| |
Collapse
|
39
|
Portulaca Extract Attenuates Development of Dextran Sulfate Sodium Induced Colitis in Mice through Activation of PPAR γ. PPAR Res 2018; 2018:6079101. [PMID: 29483924 PMCID: PMC5816873 DOI: 10.1155/2018/6079101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Portulaca oleracea L. is a traditional Chinese medicine, which has been used as adjuvant therapy for inflammatory bowel disease (IBD). However, the mechanism of its activity in IBD still remains unclear. Since previous studies have documented the anti-inflammatory effect of peroxisome proliferator activated receptors-γ (PPAR-γ), Portulaca regulation of PPAR-γ in inflammation was examined in current study. Ulcerative colitis (UC) was generated by 5% dextran sulfate sodium (DSS) in mice and four groups were established as normal control, DSS alone, DSS plus mesalamine, and DSS plus Portulaca. Severity of UC was evaluated by body weight, stool blood form, and length of colorectum. Inflammation was examined by determination of inflammatory cytokines (TNF-a, IL-6, and IL-1a). Portulaca extract was able to attenuate development of UC in DSS model similar to the treatment of mesalazine. Moreover, Portulaca extract inhibited proinflammatory cytokines release and reduced the level of DSS-induced NF-κB phosphorylation. Furthermore, Portulaca extract restored PPAR-γ level, which was reduced by DSS. In addition, Portulaca extract protected DSS induced apoptosis in mice. In conclusion, Portulaca extract can alleviate colitis in mice through regulation of inflammatory reaction, apoptosis, and PPAR-γ level; therefore, Portulaca extract can be a potential candidate for the treatment of IBD.
Collapse
|
40
|
Abstract
Lipids are potent signaling molecules that regulate a multitude of cellular responses, including cell growth and death and inflammation/infection, via receptor-mediated pathways. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. This diversity arises from their synthesis, which occurs via discrete enzymatic pathways and because they elicit responses via different receptors. This review will collate the bioactive lipid research to date and summarize the major pathways involved in their biosynthesis and role in inflammation. Specifically, lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins, and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins, and maresins) will be discussed herein.
Collapse
|
41
|
Bennett M, Gilroy DW. Lipid Mediators in Inflammation. MYELOID CELLS IN HEALTH AND DISEASE 2017:343-366. [DOI: 10.1128/9781555819194.ch19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Melanie Bennett
- Roche Products Limited, Shire Park; Welwyn Garden City AL7 1TW United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London; London WC1 E6JJ United Kingdom
| |
Collapse
|
42
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Abstract
Thiazolidinediones (TZDs) are selective ligands of peroxisome-proliferator-activated receptor g increasingly used in the treatment of type 2 diabetes. Both in vitro and in vivo studies provide evidence that TZDs have anti-inflammatory properties. TZDs inhibit macrophage activation and decrease inflammatory cytokine expression and release in macrophage and monocyte. In vivo, treatment with TZDs decreases circulating mononuclear cells nuclear NF-kB content while increasing, in the same cells, expression of IkB, an NK-kB inhibitor. Furthermore, TZD treatment results in decreased plasma levels of inflammation and cardiovascular risk markers such as CRP, MMP9, PAI-1 and sCD40 in both obese and type 2 diabetic patients. Finally, TZDs induce synoviocyte apoptosis and reduce secretion of TNFa, IL-6 and IL-8 in synoviocyte from rheumatoid arthritis patients. TZDs might thus be considered for use in clinical trials targeting prevention of atherosclerosis and cardiovascular diseases and in pilot trials exploring the possibility that TZDs might help in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- A Consoli
- Department of Medicine and Aging Sciences, University of Chieti, Italy.
| | | |
Collapse
|
44
|
Ganeb SS, El-Brashy AEWS, Baraka EA, Aboelazm AA, Abdul Basset SA. Peroxisome proliferator-activated receptor gamma expression in peripheral monocytes from rheumatoid arthritis patients. THE EGYPTIAN RHEUMATOLOGIST 2016; 38:141-146. [DOI: 10.1016/j.ejr.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Abbasi S, Kajimoto K, Harashima H. Elimination of the biphasic pharmacodynamics of 15d-PGJ2 by controlling its release from a nanoemulsion. Int J Nanomedicine 2016; 11:2685-94. [PMID: 27354798 PMCID: PMC4907719 DOI: 10.2147/ijn.s106297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has a dual action of stimulating anti-inflammation and anti-proliferation when exogenously administered at high doses. However, at lower doses, it can be toxic inducing opposite actions, ie, stimulation of both inflammation and cell proliferation. This biphasic phenomenon of 15d-PGJ2 is believed to be due to its multitarget behavior. In this study, we provide a strategy for controlling such biphasic pharmacodynamics by separating its dual actions while retaining the beneficial one by using a nanoemulsion (NE). The 15d-PGJ2 was encapsulated in the NE composed of triolein/distearoyl phosphatidylcholine/Tween 80 at a high encapsulation ratio (>83%). Furthermore, NE enhanced drug retention by slowing down its release rate, which was, unconventionally, inversely dependent on the total surface area of the NE system. Next, focusing on the biphasic effect on cell proliferation, we found that the 15d-PGJ2-loaded slow-release NE showed only a dose-dependent inhibition of the viability of a mouse macrophage cell line, RAW264.7, although a fast-release NE as well as free 15d-PGJ2 exerted a biphasic effect. The observed slow-release kinetics are believed to be responsible for elimination of the biphasic pharmacodynamics of 15d-PGJ2 mainly for two reasons: 1) a high proportion of 15d-PGJ2 that is retained in the NE was delivered to the cytosol, where proapoptotic targets are located and 2) 15d-PGJ2 was able to bypass cell membrane-associated targets that lead to the induction of cellular proliferation. Collectively, our strategy of eliminating the 15d-PGJ2-induced biphasic pharmacodynamics was based on the delivery of 15d-PGJ2 to its desired site of action, excluding undesired sites, on a subcellular level.
Collapse
Affiliation(s)
- Saed Abbasi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
46
|
Koyani CN, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, Windischhofer W, Sattler W, Malle E. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol 2016; 104:29-41. [PMID: 26801686 PMCID: PMC4782222 DOI: 10.1016/j.bcp.2016.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts to improve treatment modalities for osteosarcoma (OS), patient survival remains poor mainly due to pro-survival pathways in OS cells. Among others, prostaglandins (PGs) are the potent regulators of bone homoeostasis and OS pathophysiology. Therefore, the present study aimed to elucidate the impact of 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, a stable PGD2 degradation product) on cell death/cell survival pathways in p53-deficient MG-63 OS cells. Our findings show that 15d-PGJ2 induces generation of reactive oxygen species that promote p38 MAPK activation and subsequent Akt phosphorylation. This pathway induced nuclear expression of Nrf2 and Egr1, and increased transcription of haem oxygenase-1 (HO-1) and the catalytic subunit of glutamate cysteine ligase (GCLc), catalysing the first step in GSH synthesis. Silencing of Nrf2, Egr1 and HO-1 significantly elevated 15d-PGJ2-mediated reduction of cellular metabolic activity. Activation of cell survival genes including HO-1 and GCLc inhibited 15d-PGJ2-induced cleavage of pro-caspase-3 and PARP. Annexin V/propidium iodide staining showed an increase in early/late apoptotic cells in response to 15d-PGJ2. The observed 15d-PGJ2-mediated signalling events are independent of PGD2 receptors (DP1 and DP2) and PPARγ. In addition, the electrophilic carbon atom C9 is a prerequisite for the observed activity of 15d-PGJ2. The present data show that the intracellular redox imbalance acted as a node and triggered both death and survival pathways in response to 15d-PGJ2. Pharmacological or genetic interference of the pro-survival pathway, the p38 MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis, sensitizes MG-63 cells towards 15d-PGJ2-mediated apoptosis.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Kerstin Kitz
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Evelyn Huber
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christopher Trummer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
47
|
Methods for Testing Immunological Factors. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016. [PMCID: PMC7122208 DOI: 10.1007/978-3-319-05392-9_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypersensitivity reactions can be elicited by various factors: either immunologically induced, i.e., allergic reactions to natural or synthetic compounds mediated by IgE, or non-immunologically induced, i.e., activation of mediator release from cells through direct contact, without the induction of, or the mediation through immune responses. Mediators responsible for hypersensitivity reactions are released from mast cells. An important preformed mediator of allergic reactions found in these cells is histamine. Specific allergens or the calcium ionophore 48/80 induce release of histamine from mast cells. The histamine concentration can be determined with the o-phthalaldehyde reaction.
Collapse
|
48
|
Collagen Induced Arthritis in DBA/1J Mice Associates with Oxylipin Changes in Plasma. Mediators Inflamm 2015; 2015:543541. [PMID: 26604432 PMCID: PMC4641941 DOI: 10.1155/2015/543541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
Oxylipins play important roles in various biological processes and are considered as mediators of inflammation for a wide range of diseases such as rheumatoid arthritis (RA). The purpose of this research was to study differences in oxylipin levels between a widely used collagen induced arthritis (CIA) mice model and healthy control (Ctrl) mice. DBA/1J male mice (age: 6-7 weeks) were selected and randomly divided into two groups, namely, a CIA and a Ctrl group. The CIA mice were injected intraperitoneally (i.p.) with the joint cartilage component collagen type II (CII) and an adjuvant injection of lipopolysaccharide (LPS). Oxylipin metabolites were extracted from plasma for each individual sample using solid phase extraction (SPE) and were detected with high performance liquid chromatography/tandem mass spectrometry (HPLC-ESI-MS/MS), using dynamic multiple reaction monitoring (dMRM). Both univariate and multivariate statistical analyses were applied. The results in univariate Student's t-test revealed 10 significantly up- or downregulated oxylipins in CIA mice, which were supplemented by another 6 additional oxylipins, contributing to group clustering upon multivariate analysis. The dysregulation of these oxylipins revealed the presence of ROS-generated oxylipins and an increase of inflammation in CIA mice. The results also suggested that the collagen induced arthritis might associate with dysregulation of apoptosis, possibly inhibited by activated NF-κB because of insufficient PPAR-γ ligands.
Collapse
|
49
|
Fujii W, Kawahito Y, Nagahara H, Kukida Y, Seno T, Yamamoto A, Kohno M, Oda R, Taniguchi D, Fujiwara H, Ejima A, Kishida T, Mazda O, Ashihara E. Monocarboxylate Transporter 4, Associated With the Acidification of Synovial Fluid, Is a Novel Therapeutic Target for Inflammatory Arthritis. Arthritis Rheumatol 2015. [DOI: 10.1002/art.39270] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wataru Fujii
- Kyoto Prefectural University of Medicine; Kyoto Japan
| | | | | | - Yuji Kukida
- Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Takahiro Seno
- Kyoto Prefectural University of Medicine; Kyoto Japan
| | | | | | - Ryo Oda
- Kyoto Prefectural University of Medicine; Kyoto Japan
| | | | | | - Akika Ejima
- Kyoto Prefectural University of Medicine; Kyoto Japan
| | | | - Osam Mazda
- Kyoto Prefectural University of Medicine; Kyoto Japan
| | | |
Collapse
|
50
|
Bar-Or D, Rael LT, Thomas GW, Brody EN. Inflammatory Pathways in Knee Osteoarthritis: Potential Targets for Treatment. Curr Rheumatol Rev 2015; 11:50-58. [PMID: 26002457 PMCID: PMC4997945 DOI: 10.2174/1573397111666150522094131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) of the knee is a wide-spread, debilitating disease that is prominent in Western countries. It is associated with old age, obesity, and mechanical stress on the knee joint. By examining the recent literature on the effect of the anti-inflammatory prostaglandins 15d-PGJ2 and Δ12-PGJ2, we propose that new therapeutic agents for this disease could facilitate the transition from the COX-2-dependent pro-inflammatory synthesis of the prostaglandin PGE2 (catalyzed by mPGES-1), to the equally COX-2-dependent synthesis of the aforementioned anti-inflammatory prostaglandins. This transition could be instrumental in halting the breakdown of cartilage via matrix metalloproteinases (MMPs) and aggrecanases, as well as promoting the matrix regeneration and synthesis of cartilage by chondrocytes. Another desirable property of new OA therapeutics could involve the recruitment of mesenchymal stem cells to the damaged cartilage and bone, possibly resulting in the generation of chondrocytes, synoviocytes, and, in the case of bone, osteoblasts. Moreover, we propose that research promoting this transition from pro-inflammatory to anti-inflammatory prostaglandins could aid in the identification of new OA therapeutics.
Collapse
Affiliation(s)
| | | | | | - Edward N Brody
- Swedish Medical Center/ Trauma Research Department, 501 E. Hampden Ave., Room 4-454, Englewood, CO 80113, USA
| |
Collapse
|