1
|
Herrera-Pino J, Benedetti-Isaac J, Ripoll-Córdoba D, Camargo L, Castillo-Tamara EE, Morales-Asencio B, Perea-Castro E, Torres Zambrano M, Ducassou A, Flórez Y, Porto MF, Gargiulo PA, Zurita-Cueva B, Caldichoury N, Coronado JC, Castellanos C, Ramírez-Penso C, López N. Effectiveness of deep brain stimulation on refractory aggression in pediatric patients with autism and severe intellectual disability: meta-analytic review. BMC Pediatr 2024; 24:487. [PMID: 39080575 PMCID: PMC11290060 DOI: 10.1186/s12887-024-04920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Some patients with autism and severe intellectual disability may experience uncontrolled aggression, causing serious injury or harm to others, and the therapeutic ineffectiveness of traditional pharmacological and behavioral treatment may aggravate symptoms. Deep brain stimulation (DBS) has been tested in patients with little evidence in children and adolescents. Therefore, we analyzed the efficacy and safety of DBS in refractory aggression in pediatric subjects with autism (ASD) and severe intelligence deficit (ID).Methods A meta-analytic review of Web of Science (WOS) and Scopus articles, following Prisma criteria. A total of 555 articles were identified, but after applying the inclusion criteria, only 18 were analyzed. The review of the registries and the extraction of information was performed by 2 independent groups, to reduce the evaluator's bias. For the description of the results, pediatric patients with ASD or ID present in each registry, with an application of specialized scales (Overt aggression scale, OAS, and THE modified version of the OAS, MOAS) pre and post-DBS, with a clinical follow-up of at least 12 months, were considered valid. Clinical improvement was calculated using tests of aggressiveness. In each registry with available data and then pooling the means of all patients in the OAS and MOAS, the effect size of DBS (overall and per study) was estimated. Finally, the adapted NOS scale was applied to rate the studies' quality and level of bias.Results In the studies analyzed, 65/100 were pediatric patients, with a mean age of 16.8 years. Most of the studies were conducted in South America and Europe. In all teams, aggressive behavior was intractable, but only 9 groups (53/65) applied specialized scales to measure aggressiveness, and of these, only 51 subjects had a follow-up of at least 12 months. Thus, in 48/51 a clinical improvement of patients was estimated (94.2%), with a considerable overall effect size (OAS: d = 4.32; MOAS: d = 1.46). However, adverse effects and complications were found in 13/65 subjects undergoing DBS. The brain target with the most evidence and the fewest side effects was the posteromedial hypothalamic nuclei (pHypN). Finally, applying the adapted NOS scale, quality, and bias, only 9 studies show the best indicators.Conclusion An optimal level of efficacy was found in only half of the publications. This is mainly due to design errors and irrelevant information in the reports. We believe that DBS in intractable aggressiveness in children and adolescents with ASD and severe ID can be safe and effective if working groups apply rigorous criteria for patient selection, interdisciplinary assessments, objective scales for aggressiveness, and known surgical targets.
Collapse
Affiliation(s)
- Jorge Herrera-Pino
- College of Medicine, Florida International University, 11200 SW 8Th St, Miami, FL, 33199, USA
| | - Juancarlos Benedetti-Isaac
- Clinica Neurocardiovascular, Neurodinamia, Tv. 54 #21a-75, Cartagena, Colombia
- Misericordia International Clinic, Cra. 74 #76-105, Barranquilla, 080001, Colombia
| | - Daniela Ripoll-Córdoba
- Departamento de Ciencias Sociales, Universidad de La Costa, Cl. 58 #55 - 66, Barranquilla, 080002, Colombia
| | - Loida Camargo
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Cartagena de Indias, Bolívar, 130014, Colombia
| | - Edgard E Castillo-Tamara
- Facultad de Medicina, Universidad del Sinú, Provincia de Cartagena, Calle 30 #20-71, Cartagena de Indias, Bolívar, 130001, Colombia
| | - Breiner Morales-Asencio
- Departamento de Ciencias Sociales, Universidad de La Costa, Cl. 58 #55 - 66, Barranquilla, 080002, Colombia
| | - Esther Perea-Castro
- Clinica Neurocardiovascular, Neurodinamia, Tv. 54 #21a-75, Cartagena, Colombia
| | | | | | - Yuliana Flórez
- Departamento de Ciencias Sociales, Universidad de La Costa, Cl. 58 #55 - 66, Barranquilla, 080002, Colombia
| | - María F Porto
- Department of Cognition, Development and Educational Psychology, Universitat de Barcelona and Bellvitge Institute for Biomedical Research (IDIBELL), Carrer de La Feixa Llarga, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Pascual A Gargiulo
- Laboratorio de Neurociencias y Psicología Experimental (CONICET), Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo. Parque General San Martín, Mendoza, M5502JMA, Argentina
| | - Boris Zurita-Cueva
- Departamento de Neurocirugía, Omni Hospital, Avenida abel Romeo Castillo y ave. Tanca Marengo., Guayaquil, 090513, Ecuador
| | - Nicole Caldichoury
- Departamento de Ciencias Sociales, Universidad de Los Lagos, Av Alberto-Hertha Fuchslocher 1305, Osorno, Los Lagos, Chile
| | - Juan-Carlos Coronado
- Facultad de Salud, Universidad Católica de Temuco, Montt 56, Temuco, Araucanía, 4780000, Chile
| | - Cesar Castellanos
- Instituto Dominicano para el Estudio de la Salud Integral y la Psicología Aplicada (IDESIP), C. Eugenio Deschamps No.5, Santo Domingo, 10014, República Dominicana
| | - Cleto Ramírez-Penso
- Departamento de Neurocirugía, Director general del Centro Cardio-Neuro-Oftalmológico y Trasplante (CECANOT), C/ Federico Velázquez #1, Sector Maria Auxiliadora, Santo Domingo, República Dominicana
- Sociedad Dominicana de Neurología y Neurocirugía (Pax- President), F38M+CHM, Santo Domingo, 10106, República Dominicana
| | - Norman López
- Departamento de Ciencias Sociales, Universidad de La Costa, Cl. 58 #55 - 66, Barranquilla, 080002, Colombia.
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Manuel Rodríguez 060, Temuco, 4790870, Chile.
| |
Collapse
|
2
|
Nho YH, Rolle CE, Topalovic U, Shivacharan RS, Cunningham TN, Hiller S, Batista D, Feng A, Espil FM, Kratter IH, Bhati MT, Kellogg M, Raslan AM, Williams NR, Garnett J, Pesaran B, Oathes DJ, Suthana N, Barbosa DAN, Halpern CH. Responsive deep brain stimulation guided by ventral striatal electrophysiology of obsession durably ameliorates compulsion. Neuron 2024; 112:73-83.e4. [PMID: 37865084 PMCID: PMC10841397 DOI: 10.1016/j.neuron.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Treatment-resistant obsessive-compulsive disorder (OCD) occurs in approximately one-third of OCD patients. Obsessions may fluctuate over time but often occur or worsen in the presence of internal (emotional state and thoughts) and external (visual and tactile) triggering stimuli. Obsessive thoughts and related compulsive urges fluctuate (are episodic) and so may respond well to a time-locked brain stimulation strategy sensitive and responsive to these symptom fluctuations. Early evidence suggests that neural activity can be captured from ventral striatal regions implicated in OCD to guide such a closed-loop approach. Here, we report on a first-in-human application of responsive deep brain stimulation (rDBS) of the ventral striatum for a treatment-refractory OCD individual who also had comorbid epilepsy. Self-reported obsessive symptoms and provoked OCD-related distress correlated with ventral striatal electrophysiology. rDBS detected the time-domain area-based feature from invasive electroencephalography low-frequency oscillatory power fluctuations that triggered bursts of stimulation to ameliorate OCD symptoms in a closed-loop fashion. rDBS provided rapid, robust, and durable improvement in obsessions and compulsions. These results provide proof of concept for a personalized, physiologically guided DBS strategy for OCD.
Collapse
Affiliation(s)
- Young-Hoon Nho
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Camarin E Rolle
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Uros Topalovic
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel Batista
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Austin Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Flint M Espil
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian H Kratter
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Mahendra T Bhati
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marissa Kellogg
- Oregon Health and Science University Comprehensive Epilepsy Center, Portland, OR, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - John Garnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bijan Pesaran
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Desmond J Oathes
- Department of Psychiatry, Center for Neuromodulation in Depression and Stress, Brain Science, Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Casey H Halpern
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Marini S, D'Agostino L, Ciamarra C, Gentile A. Deep brain stimulation for autism spectrum disorder. World J Psychiatry 2023; 13:174-181. [PMID: 37303931 PMCID: PMC10251363 DOI: 10.5498/wjp.v13.i5.174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023] Open
Abstract
Deep brain stimulation (DBS) is a medical treatment that aims to obtain therapeutic effects by applying chronic electrical impulses in specific brain structures and neurological circuits. Over the years, DBS has been studied for the treatment of many psychiatric disorders. Scientific research on the use of DBS in people with autism has focused this interest mainly on treatment-resistant obsessive-compulsive disorder, drug-resistant epilepsy, self-injurious behaviors (SIB), and aggressive behaviors toward the self. Autism spectrum disorder (ASD) includes a group of developmental disabilities characterized by patterns of delay and deviance in the development of social, communicative, and cognitive skills and the presence of repetitive and stereotyped behaviors as well as restricted interests. People with autism often have numerous medical and psychiatric comorbidities that worsen the quality of life of patients and their caregivers. Obsessive-compulsive symptoms can be found in up to 81.3% of people with autism. They are often severe, refractory to treatment, and particularly difficult to treat. SIB has a high prevalence in severely retarded individuals and is often associated with autism. Drug treatment of both autism and SIB presents a therapeutic challenge. To describe the current state of the art regarding the efficacy of DBS in people with ASD, a literature search was conducted for relevant studies using the PubMed database. Thirteen studies have been considered in this paper. Up to date, DBS has been used for the stimulation of the nucleus accumbens, globus pallidus internus, anterior limb of the internal capsule, ventral anterior limb of the internal capsule, basolateral amygdala, ventral capsule and ventral striatum, medial forebrain bundle, and posterior hypothalamus. In the total sample of 16 patients, 4 were adolescents, and 12 were adults. All patients had symptoms resistant to multiple drug therapy. Many patients taken into consideration by the studies showed clinical improvements as evidenced by the scores of the psychopathological scales used. In some cases, clinical improvements have varied over time, which may require further investigation. Among the new therapeutic perspectives, DBS could be a valid option. However, further, and more in-depth research is needed in this field.
Collapse
Affiliation(s)
- Stefano Marini
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| | - Lucia D'Agostino
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| | - Carla Ciamarra
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| | - Alessandro Gentile
- Department of Mental Health, National Health Service, Termoli 86039, Italy
| |
Collapse
|
4
|
Cope EC, Wang SH, Waters RC, Gore IR, Vasquez B, Laham BJ, Gould E. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice. Nat Commun 2023; 14:1750. [PMID: 36991001 PMCID: PMC10060401 DOI: 10.1038/s41467-023-37248-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Mutation or deletion of the SHANK3 gene, which encodes a synaptic scaffolding protein, is linked to autism spectrum disorder and Phelan-McDermid syndrome, conditions associated with social memory impairments. Shank3B knockout mice also exhibit social memory deficits. The CA2 region of the hippocampus integrates numerous inputs and sends a major output to the ventral CA1 (vCA1). Despite finding few differences in excitatory afferents to the CA2 in Shank3B knockout mice, we found that activation of CA2 neurons as well as the CA2-vCA1 pathway restored social recognition function to wildtype levels. vCA1 neuronal oscillations have been linked to social memory, but we observed no differences in these measures between wildtype and Shank3B knockout mice. However, activation of the CA2 enhanced vCA1 theta power in Shank3B knockout mice, concurrent with behavioral improvements. These findings suggest that stimulating adult circuitry in a mouse model with neurodevelopmental impairments can invoke latent social memory function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Samantha H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Betsy Vasquez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Blake J Laham
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
5
|
Wu Y, Meng YJ, Shi YF, Li JM, Xu YY, Zhang SX, Tian R, He JJ, Ding Y, Wang W. Stereotactic neurosurgery as a symptomatic treatment for autism spectrum disorders: A systematic review. Asian J Psychiatr 2023; 83:103541. [PMID: 36958138 DOI: 10.1016/j.ajp.2023.103541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Stereotactic neurosurgery has been employed in autism spectrum disorders (ASD). However, its safety and effectiveness remain unclear owing to limited sample size and other methodological limitations. We aimed to systematically investigate the safety and efficacy of stereotactic neurosurgery for ASD. Eleven studies with 36 patients were included. Stereotactic neurosurgery alleviated the obsessive-compulsive disorder and aggressive behavior symptoms in ASD, with a mean improvement of 42.74% and 59.59% in the Yale-Brown Obsessive Compulsive Scale and Overt Aggression Scale scores, respectively. Systematic studies are necessary to explore the role of deep brain stimulation for social and communication difficulties in ASD.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Feng Shi
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Jia-Ming Li
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yang-Yang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Shu-Xin Zhang
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Rui Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Jiao-Jiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yi Ding
- University of Electronic Science and Technology, Chengdu, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Graat I, Balke S, Prinssen J, de Koning P, Vulink N, Mocking R, van Rooijen G, Munckhof PVD, Schuurman R, Denys D. Effectiveness and safety of deep brain stimulation for patients with refractory obsessive compulsive disorder and comorbid autism spectrum disorder; A case series. J Affect Disord 2022; 299:492-497. [PMID: 34952108 DOI: 10.1016/j.jad.2021.12.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 12/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is effective for patients with treatment refractory obsessive-compulsive disorder (OCD). Autism spectrum disorder (ASD) is present in up to a third of all patients with OCD, but it is unknown whether effectiveness of DBS for OCD also applies for patients with comorbid ASD. The present case series is the first to examine effectiveness on OCD symptoms and safety of DBS in patients with OCD and ASD specifically. METHODS Six consecutive patients with treatment-refractory OCD and comorbid ASD received DBS of the ventral anterior limb of the internal capsule (vALIC) or medial forebrain bundle (MFB). We examined effectiveness of DBS on symptoms of OCD and depression with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and Hamilton Depression Rating Scale (HAM-D), respectively. We included qualitative data to describe the course of treatment in individual patients with OCD and ASD. RESULTS We found that DBS significantly decreased symptoms of OCD (p < .001) and depression (p = .007). Four out of six patients with OCD and comorbid ASD were responders (decrease ≥ 35% in Y-BOCS), one patient was partial-responder (decrease 25-35% in Y-BOCS) and one patient did not respond (decrease ≤ 25% in Y-BOCS). Serious adverse events were an infection of the DBS system, and a suicide attempt. CONCLUSIONS Though present results are preliminary, DBS reduced symptoms of OCD and depression in patients with OCD and comorbid ASD. Comorbid ASD should therefore not be seen as a contra-indication for DBS in OCD.
Collapse
Affiliation(s)
- Ilse Graat
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands.
| | - Sofie Balke
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Janine Prinssen
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Pelle de Koning
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Nienke Vulink
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Roel Mocking
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Geeske van Rooijen
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| |
Collapse
|
7
|
Davis RA, Giordano J, Hufford DB, Sheth SA, Warnke P, Widge AS, Richardson RM, Rosenow JM, Rossi PJ, Storch EA, Winston H, Zboyan J, Dougherty DD, Foote KD, Goodman WK, McLaughlin NCR, Ojemann S, Rasmussen S, Abosch A, Okun MS. Restriction of Access to Deep Brain Stimulation for Refractory OCD: Failure to Apply the Federal Parity Act. Front Psychiatry 2021; 12:706181. [PMID: 34456762 PMCID: PMC8387630 DOI: 10.3389/fpsyt.2021.706181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rachel A. Davis
- Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, United States
| | - James Giordano
- Neuroethics Studies Program, Department of Neurology, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | | | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Peter Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, United States
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - Peter Justin Rossi
- University of California San Francisco Department of Psychiatry, San Francisco, CA, United States
| | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Helena Winston
- Department of Psychiatry, University of Colorado Anschutz, Aurora, CO, United States
- Denver Health Hospital Authority, Denver, CO, United States
| | - JoAnne Zboyan
- Springer and Steinberg, PC, Denver, CO, United States
| | - Darin D. Dougherty
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Kelly D. Foote
- Departments of Neurosurgery and Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole C. R. McLaughlin
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Butler Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz, Aurora, CO, United States
| | - Steven Rasmussen
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
- Butler Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
8
|
Kahn L, Sutton B, Winston HR, Abosch A, Thompson JA, Davis RA. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Real World Experience Post-FDA-Humanitarian Use Device Approval. Front Psychiatry 2021; 12:568932. [PMID: 33868034 PMCID: PMC8044872 DOI: 10.3389/fpsyt.2021.568932] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: While case series have established the efficacy of deep brain stimulation (DBS) in treating obsessive-compulsive disorder (OCD), it has been our experience that few OCD patients present without comorbidities that affect outcomes associated with DBS treatment. Here we present our experience with DBS therapy for OCD in patients who all have comorbid disease, together with the results of our programming strategies. Methods: For this case series, we assessed five patients who underwent ventral capsule/ventral striatum (VC/VS) DBS for OCD between 2015 and 2019 at the University of Colorado Hospital. Every patient in this cohort exhibited comorbidities, including substance use disorders, eating disorder, tic disorder, and autism spectrum disorder. We conducted an IRB-approved, retrospective study of programming modifications and treatment response over the course of DBS therapy. Results: In addition to patients' subjective reports of improvement, we observed significant improvement in the Yale-Brown Obsessive-Compulsive Scale (44%), the Montgomery-Asberg Depression Rating Scale (53%), the Quality of Life Enjoyment and Satisfaction Questionnaire (27%), and the Hamilton Anxiety Rating scales (34.9%) following DBS. With respect to co-morbid disease, there was a significant improvement in a patient with tic disorder's Total Tic Severity Score (TTSS) (p = 0.005). Conclusions: DBS remains an efficacious tool for the treatment of OCD, even in patients with significant comorbidities in whom DBS has not previously been investigated. Efficacious treatment results not only from the accurate placement of the electrodes by the surgeon but also from programming by the psychiatrist.
Collapse
Affiliation(s)
- Lora Kahn
- Department of Neurosurgery, Ochsner Health, Tulane University-Ochsner Health Neurosurgery Program, New Orleans, LA, United States
| | - Brianne Sutton
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Helena R. Winston
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel A. Davis
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|