1
|
Denby E, Dempster T, White T, Brockman K, Ellis H, Dharm-Datta S, Wilkinson D, Brunger H. Dizziness Directly Influences Postconcussion Symptoms and Is Predictive of Poorer Mental Health in UK Military Personnel: A Retrospective Analysis. J Head Trauma Rehabil 2024; 39:231-238. [PMID: 37773599 DOI: 10.1097/htr.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
OBJECTIVE To investigate the contribution of dizziness to postconcussion symptoms, depression, and anxiety symptoms. SETTING Mild traumatic brain injury (mTBI) service, Defence Medical Rehabilitation Centre, Stanford Hall. PARTICIPANTS Two hundred eighty-three UK military personnel from the Royal Navy, Royal Airforce, Royal Marines, and British Army. DESIGN A retrospective analysis of data from the Ministry of Defence medical records database. MAIN MEASURES Sixteen-item Rivermead Post Concussion Symptoms Questionnaire, Generalized Anxiety Disorder 7-item scale, Patient Health Questionnaire-9, The Dizziness Handicap Inventory. RESULTS Injuries from sports or falls were the most common mechanism of mTBI, accounting for 23%, respectively. Chi-square analysis indicated that individuals with dizziness and postconcussion symptoms (PCS) had greater severity of PCS, depression, and anxiety than those with PCS alone. Mediation analysis showed dizziness directly and independently influenced the severity of PCS, despite the indirect effects of mediating depression and anxiety symptoms. CONCLUSION Comorbid dizziness and PCS were predictive of poorer mental health compared with PCS alone. In addition, dizziness directly influenced the severity of PCS irrespective of the indirect effects of mental health symptoms. These observations suggest that treating dizziness with vestibular rehabilitation may improve PCS and mental health.
Collapse
Affiliation(s)
- Emma Denby
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Tammy Dempster
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Toni White
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Katherine Brockman
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Henrietta Ellis
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Shreshth Dharm-Datta
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - David Wilkinson
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Helen Brunger
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| |
Collapse
|
2
|
Comparing resting-state connectivity of working memory networks in U.S. Service members with mild traumatic brain injury and posttraumatic stress disorder. Brain Res 2022; 1796:148099. [PMID: 36162495 DOI: 10.1016/j.brainres.2022.148099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are prevalent among military populations, and both have been associated with working memory (WM) impairments. Previous resting-state functional connectivity (rsFC) research conducted separately in PTSD and mTBI populations suggests that there may be similar and distinct abnormalities in WM-related networks. However, no studies have compared rsFC of WM brain regions in participants with mTBI versus PTSD. We used resting-state fMRI to investigate rsFC of WM networks in U.S. Service Members (n = 127; ages 18-59) with mTBI only (n = 46), PTSD only (n = 24), and an orthopedically injured (OI) control group (n = 57). We conducted voxelwise rsFC analyses with WM brain regions to test for differences in WM network connectivity in mTBI versus PTSD. Results revealed reduced rsFC between ventrolateral prefrontal cortex (vlPFC), lateral premotor cortex, and dorsolateral prefrontal cortex (dlPFC) WM regions and brain regions in the dorsal attention and somatomotor networks in both mTBI and PTSD groups versus controls. When compared to those with mTBI, individuals with PTSD had lower rsFC between both the lateral premotor WM seed region and middle occipital gyrus as well as between the dlPFC WM seed region and paracentral lobule. Interestingly, only vlPFC connectivity was significantly associated with WM performance across the samples. In conclusion, we found primarily overlapping patterns of reduced rsFC in WM brain regions in both mTBI and PTSD groups. Our finding of decreased vlPFC connectivity associated with WM is consistent with previous clinical and neuroimaging studies. Overall, these results provide support for shared neural substrates of WM in individuals with either mTBI or PTSD.
Collapse
|
3
|
Liampas I, Siokas V, Kyrozis A, Sakoutis G, Yannakoulia M, Kosmidis MH, Sakka P, Sakkas GK, Giannaki CD, Stefanidis I, Scarmeas N, Dardiotis E, Hadjigeorgiou GM. Prevalence and Determinants of Restless Legs Syndrome (Willis-Ekbom Disease) in an Older Greek Population. Behav Sleep Med 2022:1-13. [PMID: 35994615 DOI: 10.1080/15402002.2022.2112194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES The present study aimed to explore the descriptive and analytic epidemiology of restless legs syndrome (RLS) in the older Greek population, with a specific focus on lifestyle indicators. METHODS Baseline data from the randomly selected non-demented older participants of the population-based HELIAD cohort were analyzed. Multivariable binary logistic regression with RLS diagnosis as the dichotomous dependent outcome was performed. Demographic, socioeconomic, anthropometric, dietary, sleep-related and psychological parameters, physical activity, use of psychoactive substances and personal medical history were investigated for potential associations. RESULTS A total of 133 from the eligible sample of 1,838 participants were diagnosed with RLS. The mean age-sex standardized prevalence of RLS among the elderly was estimated at 6.1% (95%CI = 5.0-7.2), with a female (8.0%, 95%CI = 6.4-9.6) to male (3.7%, 95%CI = 2.4-5.1) ratio of 2.1. The prevalence of RLS peaked during the 8th decade of life and diminished thereafter. The positive associations of RLS with female sex [OR = 2.06, 95%CI = (1.19-3.57)], anxiety levels [assessed by the 22-point HADS scale, OR = 1.08, 95%CI = (1.03-1.13)] and traumatic brain injury [OR = 2.22, 95%CI = (1.37-3.62)] were reproduced. Good sleep quality was related to 55% [95%CI~(24-83%)] lower odds of having RLS in comparison with both poor and moderate quality. Adherence to the Mediterranean dietary pattern [assessed by a 55-point scale, OR = 1.06, 95%CI = (1.01-1.11)], and low daily energy intake [low-moderate vs. low: OR = 0.45, 95%CI = (0.26-0.79)]; [moderate-high vs. low: OR = 0.69, 95%CI = (0.40-1.22)]; [high vs. low: OR = 0.31, 95%CI = (0.13-0.69)] were related to RLS for the first time. CONCLUSIONS More emphasis should be placed on the dietary-nutritional aspects of RLS.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andreas Kyrozis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Greece
| | - George Sakoutis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi, Greece
| | - Giorgos K Sakkas
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece.,School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Ioannis Stefanidis
- Department of Nephology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, USA
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
Morelli N, Johnson NF, Kaiser K, Andreatta RD, Heebner NR, Hoch MC. Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review. Brain Inj 2021; 35:1326-1337. [PMID: 34487458 DOI: 10.1080/02699052.2021.1972339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mild traumatic brain injuries (mTBI) are associated with functional network connectivity alterations throughout recovery. Yet, little is known about the adaptive or maladaptive nature of post-mTBI connectivity and which networks are predisposed to altered function and adaptation. The objective of this review was to determine functional connectivity changes post-mTBI and to determine the adaptive or maladaptive nature of connectivity through direct comparisons of connectivity and behavioral data. Literature was systematically searched and appraised for methodological quality. A total of 16 articles were included for review. There was conflicting evidence of post-mTBI connectivity responses as decreased connectivity was noted in 4 articles, 6 articles reported increased connectivity, 5 reported a mixture of increased and decreased connectivity, while 1 found no differences in connectivity. Supporting evidence for adaptive post-mTBI increases in connectivity were found, particularly in the frontoparietal, cerebellar, and default mode networks. Although initial results are promising, continued longitudinal research that systematically controls for confounding variables and that standardizes methodologies is warranted to adequately understand the neurophysiological recovery trajectory of mTBI.
Collapse
Affiliation(s)
- Nathan Morelli
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| | - Nathan F Johnson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Kaiser
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard D Andreatta
- Rehabilitation Sciences Doctoral Program, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas R Heebner
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew C Hoch
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Verduzco-Mendoza A, Carrillo-Mora P, Avila-Luna A, Gálvez-Rosas A, Olmos-Hernández A, Mota-Rojas D, Bueno-Nava A. Role of the Dopaminergic System in the Striatum and Its Association With Functional Recovery or Rehabilitation After Brain Injury. Front Neurosci 2021; 15:693404. [PMID: 34248494 PMCID: PMC8264205 DOI: 10.3389/fnins.2021.693404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Ph.D. Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City, Mexico
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Paul Carrillo-Mora
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alberto Avila-Luna
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Arturo Gálvez-Rosas
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
6
|
Feinberg C, Carr C, Zemek R, Yeates KO, Master C, Schneider K, Bell MJ, Wisniewski S, Mannix R. Association of Pharmacological Interventions With Symptom Burden Reduction in Patients With Mild Traumatic Brain Injury: A Systematic Review. JAMA Neurol 2021; 78:596-608. [PMID: 33464290 DOI: 10.1001/jamaneurol.2020.5079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance Mild traumatic brain injury (TBI) is experienced by 55.9 million people globally each year. The symptoms of mild TBI are diverse and sometimes long-lasting, requiring frequent use of pharmacological interventions to mitigate them. A thorough understanding of the data supporting pharmacological interventions is important for decision-making among clinicians treating this common injury. Objective To systematically review studies of pharmacological interventions and their associations with symptom burden reduction among patients with mild TBI and to use an evidence-based model to identify potential directions for future research that may aid in clinical decision-making. Evidence Review A systematic review was performed in PubMed, Scopus, and Web of Science. Search strings modified for the advanced search interfaces of each search engine were developed in consultation with a librarian and included combinations of search terms, such as brain concussion, post-concussion syndrome, mild traumatic brain injury, and pharmacological treatment. Articles published between January 1, 2000, and July 1, 2020, were analyzed. Studies were included if (1) they were clinical studies with discrete analyses of participants with mild TBI or complicated mild TBI, (2) they were assessments of a pharmacological intervention, (3) they included human participants, and (4) they were published in a peer-reviewed journal in the English language. Studies were excluded if the severity of TBI among participants could not be ascertained (ie, inadequate definition of mild TBI) and the inclusion criteria for the study required intracranial hemorrhage. A total of 23 studies examining 20 pharmacological interventions met the inclusion criteria. Risk of bias was assessed using the Cochrane Risk of Bias for Randomized Trials (for randomized clinical trials) and the Cochrane Risk of Bias in Non-Randomized Studies of Interventions (for all other studies). Data were analyzed from June to September 2020. Findings A total of 1495 articles were identified; of those, 131 articles were excluded as duplicates. Titles and abstracts were screened for inclusion and exclusion criteria among the remaining 1364 articles, and 134 of those articles received a full-text review. After exclusions, 23 studies (11 randomized clinical trials, 7 prospective observational studies, 3 retrospective observational studies, and 2 case studies) examining 20 pharmacological interventions were identified for inclusion in the systematic review. Studies included 22 distinct participant populations comprising 8277 participants with mild TBI and 45 participants without TBI. Among 23 total studies, 8 studies specifically addressed the pediatric population, 9 studies had a low risk of bias, and 16 studies reported symptom burden reduction. Of the 20 pharmacological interventions examined in the studies, methylphenidate, sertraline hydrochloride, ondansetron, amitriptyline, and melatonin were the only medications included in multiple studies. Conclusions and Relevance This systematic review found a limited number of high-quality, clinically meaningful studies, particularly among children and individuals in the acute stage of injury; therefore, performing an evidence-based analysis that would inform clinical decision-making was not possible. Future studies are needed to focus on standardizing measures and increasing sample sizes (including large multicenter clinical trials) to generate a body of research that may provide additional options for the treatment of patients with mild TBI.
Collapse
Affiliation(s)
| | | | - Roger Zemek
- Department of Pediatrics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Emergency Medicine, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christina Master
- Sports Medicine and Performance Center, Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Orthopaedics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kathryn Schneider
- Sport Injury Prevention Research Centre, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Bell
- Department of Pediatrics, Division of Critical Care Medicine, Children's National Hospital, Washington, District of Columbia
| | - Stephen Wisniewski
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Kakehi S, Tompkins DM. A Review of Pharmacologic Neurostimulant Use During Rehabilitation and Recovery After Brain Injury. Ann Pharmacother 2021; 55:1254-1266. [PMID: 33435717 DOI: 10.1177/1060028020983607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe the efficacy and safety of pharmacologic neurostimulants after neurological injuries such as ischemic or hemorrhagic stroke and traumatic brain injury (TBI), critically evaluate the available literature, and make recommendations regarding which neurostimulants should be considered for use in clinical practice. DATA SOURCES A literature search of PubMed was performed (1953 to October 2020) to identify relevant articles. Search terms included the following: "neurostimulant, neurorehabilitation" AND "traumatic brain injury, cerebrovascular accident, or stroke." This review is limited to prospective studies and observational trials. STUDY SELECTION AND DATA EXTRACTION Relevant English-language studies conducted in humans were considered. DATA SYNTHESIS Cognitive and motor deficits caused by stroke and TBI account for high rates of long-term disability. Although not well-established, pharmacologic agents, broadly characterized as neurostimulants, may be prescribed after brain injury to treat these deficits. When prescribing these medications, it is imperative to be aware of the supporting evidence in order to accurately gauge the risk-benefit profile of each agent. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The following presents a literature review critically evaluating clinical studies that investigate neurostimulant use after brain injury. The intent of this review is to serve as an evidence-based guide for clinicians. CONCLUSIONS The pharmacologic agent with the most supporting literature is amantadine used for cognitive improvement after TBI. Other neurostimulants with positive, despite more limited, evidence include methylphenidate, modafinil, levodopa, and citalopram. Caution is warranted with other neurostimulants given higher rates of adverse effects or lack of benefit observed in clinical trials.
Collapse
Affiliation(s)
- Sumie Kakehi
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Danielle M Tompkins
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
8
|
Flashman LA, McDonald BC, Ford JC, Kenny RM, Andrews KD, Saykin AJ, McAllister TW. Differential Effects of Pergolide and Bromocriptine on Working Memory Performance and Brain Activation after Mild Traumatic Brain Injury. J Neurotrauma 2020; 38:225-234. [PMID: 32635808 DOI: 10.1089/neu.2020.7087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dopamine D1 and D2 receptors differ with respect to patterns of regional brain distribution and behavioral effects. Pre-clinical work suggests that D1 agonists enhance working memory, but the absence of selective D1 agonists has constrained using this approach in humans. This study examines working memory performance in mild traumatic brain injury (mTBI) patients when given pergolide, a mixed D1/D2 agonist, compared with bromocriptine, a selective D2 agonist. Fifteen individuals were studied 1 month after mTBI and compared with 17 healthy controls. At separate visits, participants were administered 1.25 mg bromocriptine or 0.05 mg pergolide prior to functional magnetic resonance imaging (MRI) using a working memory task (visual-verbal n-back). Results indicated a significant group-by-drug interaction for mean performance across n-back task conditions, where the mTBI group showed better performance on pergolide relative to bromocriptine, whereas controls showed the opposite pattern. There was also a significant effect of diagnosis, where mTBI patients performed worse than controls, particularly while on bromocriptine, as shown in our prior work. Functional MRI activation during the most challenging task condition (3-back > 0-back contrast) showed a significant group-by-drug interaction, with the mTBI group showing increased activation relative to controls in working memory circuitry while on pergolide, including in the left inferior frontal gyrus. Across participants there was a positive correlation between change in activation in this region and change in performance between drug conditions. Results suggest that activation of the D1 receptor may improve working memory performance after mTBI. This has implications for the development of pharmacological strategies to treat cognitive deficits after mTBI.
Collapse
Affiliation(s)
- Laura A Flashman
- Department of Neurology, Wake Forest Medical School and Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James C Ford
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rachel M Kenny
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katharine D Andrews
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Arbabi M, Sheldon RJG, Bahadoran P, Smith JG, Poole N, Agrawal N. Treatment outcomes in mild traumatic brain injury: a systematic review of randomized controlled trials. Brain Inj 2020; 34:1139-1149. [PMID: 32715768 DOI: 10.1080/02699052.2020.1797168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M Arbabi
- Brain & Spinal Cord Injury Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Psychosomatic Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - RJG Sheldon
- Sussex Partnership NHS Foundation Trust, Worthing, UK
- Department of Neuropsychiatry, St George’s Hospital, London, UK
- South West London and St George’s Mental Health NHS Trust, London, UK
| | - P Bahadoran
- Department of Neuropsychiatry, St George’s Hospital, London, UK
- South West London and St George’s Mental Health NHS Trust, London, UK
| | - JG Smith
- Population Health Research Institute, St George’s, University of London, London, UK
| | - N Poole
- Department of Neuropsychiatry, St George’s Hospital, London, UK
- South West London and St George’s Mental Health NHS Trust, London, UK
| | - N Agrawal
- Department of Neuropsychiatry, St George’s Hospital, London, UK
- South West London and St George’s Mental Health NHS Trust, London, UK
| |
Collapse
|
10
|
The D2-family receptor agonist bromocriptine but, not nicotine, reverses NMDA receptor antagonist-induced working memory deficits in the radial arm maze in mice. Neurobiol Learn Mem 2020; 168:107159. [PMID: 31911198 DOI: 10.1016/j.nlm.2020.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/22/2022]
Abstract
Hypofunction of the NMDA receptor (NMDAr) may underlie cognitive deficits associated with schizophrenia and other psychiatric conditions including working memory (WM) impairments. Given that these deficits link closely to functional outcome, treatments remediating such deficits require identification. NMDAr hypofunction can be modeled via treatment with the antagonist MK-801. Hence, the present study determined whether cholinergic or dopaminergic agonists attenuate MK-801-induced WM deficits in mice. WM was assessed in male C57BL/6 mice trained on an automated 12-arm radial arm maze (RAM) paradigm, wherein rewards were delivered after the first but, not after subsequent entries into WM arms (8/12) and never delivered for entries into reference memory (RM) arms (4/12). Mice were then treated with MK-801 (vehicle or 0.3 mg/kg) and nicotine (vehicle, 0.03 or 0.30 mg/kg) in a cross-over design. After a 2-week washout, mice were then retested with MK-801 and the dopamine D2-family receptor agonist bromocriptine (vehicle, 3 or 10 mg/kg). In both experiments, MK-801 reduced WM span and increased RM and WM error rates. Nicotine did not attenuate these deficits. In contrast, a bromocriptine/MK-801 interaction was observed on WM error rate, where bromocriptine attenuated MK-801 induced deficits without affecting MK-801-induced RM errors. Additionally, bromocriptine produced the main effect of slowing latency to collect rewards. Hence, while NMDAr hypofunction-induced deficits in WM was unaffected by nicotine, it was remediated by treatment with the dopamine D2-family agonist bromocriptine. Future studies should determine whether selective activation of dopamine D2, D3, or D4 receptors remediate this NMDAr hypofunction-induced WM deficit.
Collapse
|
11
|
Cook MJ, Gardner AJ, Wojtowicz M, Williams WH, Iverson GL, Stanwell P. Task-related functional magnetic resonance imaging activations in patients with acute and subacute mild traumatic brain injury: A coordinate-based meta-analysis. NEUROIMAGE-CLINICAL 2019; 25:102129. [PMID: 31891819 PMCID: PMC6939096 DOI: 10.1016/j.nicl.2019.102129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/28/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
ALE meta-analysis revealed functional activation differences in mTBI. Reduced activation identified within the right middle frontal gyrus. Suggests alteration of prefrontal region, associated with executive functioning. Need for addressing subject- and task-specific variation in future studies.
Task-based functional magnetic resonance imaging (fMRI) has been used to examine neuroanatomical and functional changes following mild traumatic brain injury (mTBI). Prior studies have lacked consistency in identifying common regions of altered neural activity during cognitive tasks. This may be partly due to differences in task paradigm, patient heterogeneity, and methods of fMRI analysis. We conducted a meta-analysis using an activation likelihood estimation (ALE) method to identify regions of differential brain activation in patients with mTBI compared to healthy controls. We included experiments that performed scans from acute to subacute time points post-injury. The seven included studies recruited a total sample of 174 patients with mTBIs and 139 control participants. The results of our coordinate based meta-analysis revealed a single cluster of reduced activation within the right middle frontal gyrus (MFG) that differentiated mTBI from healthy controls. We conclude that the cognitive impairments in memory and attention typically reported in mTBI patients may be associated with a deficit in the right MFG, which impacts the recruitment of neural networks important for attentional control.
Collapse
Affiliation(s)
- Michael J Cook
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Gardner
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Hunter New England Local Health District Sports Concussion Clinic, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Magdalena Wojtowicz
- Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, University of Exeter, Exeter, Devon, UK
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Spaulding Rehabilitation Hospital, and Spaulding Research Institute, Charlestown, MA, USA; MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, USA; Home Base, A Red Sox Foundation and Massachusetts General Hospital Home Base Program, Charlestown, MA, USA
| | - Peter Stanwell
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
12
|
Levin H, Troyanskaya M, Petrie J, Wilde EA, Hunter JV, Abildskov TJ, Scheibel RS. Methylphenidate Treatment of Cognitive Dysfunction in Adults After Mild to Moderate Traumatic Brain Injury: Rationale, Efficacy, and Neural Mechanisms. Front Neurol 2019; 10:925. [PMID: 31572283 PMCID: PMC6751302 DOI: 10.3389/fneur.2019.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Abstract
Positive effects of methylphenidate (MPH) on attention and cognitive processing speed have been reported in studies of patients with moderate to severe traumatic brain injury (TBI). Studies which have acquired functional brain imaging before and while using MPH have also found alteration of brain activation while performing a cognitive task; in some studies, this alteration of activation in selective brain regions was also related to improved performance on cognitive tests administered outside of the scanning environment. Enhanced cognitive performance has been reported after single doses of MPH and after daily treatment over durations of up to and exceeding 1 month. Preclinical research and both positron emission tomography and single photon emission tomography of humans have shown that MPH increases extracellular dopamine and norepinephrine; the dose effects of MPH have an inverted U-shaped function where high doses may cause insomnia, nervousness, and increased heart rate among other symptoms and impair cognitive performance, whereas too low a dose fails to improve cognitive performance. In the past 5 years, small clinical trials, and experimental pilot studies have found therapeutic effects of single and repeated low doses of MPH in patients with mild TBI who reported cognitive dysfunction. This literature also suggests that MPH may interact with concurrent cognitive interventions to enhance their effects. This focused review will critically evaluate the recent literature on MPH effects on cognitive dysfunction after mild to moderate TBI. To elucidate the neural mechanisms of MPH effects, this review will also include recent imaging research, preclinical, and experimental human studies.
Collapse
Affiliation(s)
- Harvey Levin
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| | - Maya Troyanskaya
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| | - JoAnn Petrie
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Elisabeth A. Wilde
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Jill V. Hunter
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Tracy J. Abildskov
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Randall S. Scheibel
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
13
|
Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol 2019; 29:617-637. [PMID: 30215621 PMCID: PMC6155367 DOI: 10.1097/fbp.0000000000000430] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process - synthesis, distribution, and breakdown - and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function - impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI.
Collapse
|
14
|
Saletti PG, Ali I, Casillas-Espinosa PM, Semple BD, Lisgaras CP, Moshé SL, Galanopoulou AS. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis 2019; 123:86-99. [PMID: 29936231 PMCID: PMC6309524 DOI: 10.1016/j.nbd.2018.06.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.
Collapse
Affiliation(s)
- Patricia G Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Idrish Ali
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Christos Panagiotis Lisgaras
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Einstein/Montefiore Epilepsy Center, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
15
|
Wang S, Hu L, Cao J, Huang W, Sun C, Zheng D, Wang Z, Gan S, Niu X, Gu C, Bai G, Ye L, Zhang D, Zhang N, Yin B, Zhang M, Bai L. Sex Differences in Abnormal Intrinsic Functional Connectivity After Acute Mild Traumatic Brain Injury. Front Neural Circuits 2018; 12:107. [PMID: 30555304 PMCID: PMC6282647 DOI: 10.3389/fncir.2018.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023] Open
Abstract
Mild traumatic brain injury (TBI) is considered to induce abnormal intrinsic functional connectivity within resting-state networks (RSNs). The objective of this study was to estimate the role of sex in intrinsic functional connectivity after acute mild TBI. We recruited a cohort of 54 patients (27 males and 27 females with mild TBI within 7 days post-injury) from the emergency department (ED) and 34 age-, education-matched healthy controls (HCs; 17 males and 17 females). On the clinical scales, there were no statistically significant differences between males and females in either control group or mild TBI group. To detect whether there was abnormal sex difference on functional connectivity in RSNs, we performed independent component analysis (ICA) and a dual regression approach to investigate the between-subject voxel-wise comparisons of functional connectivity within seven selected RSNs. Compared to female patients, male patients showed increased intrinsic functional connectivity in motor network, ventral stream network, executive function network, cerebellum network and decreased connectivity in visual network. Further analysis demonstrated a positive correlation between the functional connectivity in executive function network and insomnia severity index (ISI) scores in male patients (r = 0.515, P = 0.006). The abnormality of the functional connectivity of RSNs in acute mild TBI showed the possibility of brain recombination after trauma, mainly concerning male-specific.
Collapse
Affiliation(s)
- Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liuxun Hu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieli Cao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenmin Huang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuonan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenghui Gu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Limei Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
The effects of dopaminergic D2-like receptor stimulation upon behavioral and neural correlates of renewal depend on individual context processing propensities. Neuroimage 2018; 169:69-79. [DOI: 10.1016/j.neuroimage.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
|
17
|
Update on pharmacotherapy for stroke and traumatic brain injury recovery during rehabilitation. Curr Opin Neurol 2018; 29:700-705. [PMID: 27748687 DOI: 10.1097/wco.0000000000000381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This article evaluates whether specific drugs are able to facilitate motor recovery after stroke or improve the level of consciousness, cognitive, or behavioral symptoms after traumatic brain injury. RECENT FINDINGS After stroke, serotonin reuptake inhibitors can enhance restitution of motor functions in depressed as well as in nondepressed patients. Erythropoietin and progesterone administered within hours after moderate to severe traumatic brain injury failed to improve the outcome. A single dose of zolpidem can transiently improve the level of consciousness in patients with vegetative state or minimally conscious state. SUMMARY Because of the lack of large randomized controlled trials, evidence is still limited. Currently, most convincing evidence exists for fluoxetine for facilitation of motor recovery early after stroke and for amantadine for acceleration of functional recovery after severe traumatic brain injury. Methylphenidate and acetylcholinesterase inhibitors might enhance cognitive functions after traumatic brain injury. Sufficiently powered studies and the identification of predictors of beneficial drug effects are still needed.
Collapse
|
18
|
Spontaneous Eye Blink Rate (EBR) Is Uncorrelated with Dopamine D2 Receptor Availability and Unmodulated by Dopamine Agonism in Healthy Adults. eNeuro 2017; 4:eN-NWR-0211-17. [PMID: 28929131 PMCID: PMC5602106 DOI: 10.1523/eneuro.0211-17.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/15/2023] Open
Abstract
Spontaneous eye blink rate (EBR) has been proposed as a noninvasive, inexpensive marker of dopamine functioning. Support for a relation between EBR and dopamine function comes from observations that EBR is altered in populations with dopamine dysfunction and EBR changes under a dopaminergic manipulation. However, the evidence across the literature is inconsistent and incomplete. A direct correlation between EBR and dopamine function has so far been observed only in nonhuman animals. Given significant interest in using EBR as a proxy for dopamine function, this study aimed to verify a direct association in healthy, human adults. Here we measured EBR in healthy human subjects whose dopamine D2 receptor (DRD2) availability was assessed with positron emission tomography (PET)-[18F]fallypride to examine the predictive power of EBR for DRD2 availability. Effects of the dopamine agonist bromocriptine on EBR also were examined to determine the responsiveness of EBR to dopaminergic stimulation and, in light of the hypothesized inverted-U profile of dopamine effects, the role of DRD2 availability in EBR responsivity to bromocriptine. Results from 20 subjects (age 33.6 ± 7.6 years, 9F) showed no relation between EBR and DRD2 availability. EBR also was not responsive to dopaminergic stimulation by bromocriptine, and individual differences in DRD2 availability did not modulate EBR responsivity to bromocriptine. Given that EBR is hypothesized to be particularly sensitive to DRD2 function, these findings suggest caution in using EBR as a proxy for dopamine function in healthy humans.
Collapse
|
19
|
Froudist-Walsh S, López-Barroso D, José Torres-Prioris M, Croxson PL, Berthier ML. Plasticity in the Working Memory System: Life Span Changes and Response to Injury. Neuroscientist 2017; 24:261-276. [PMID: 28691573 DOI: 10.1177/1073858417717210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Working memory acts as a key bridge between perception, long-term memory, and action. The brain regions, connections, and neurotransmitters that underlie working memory undergo dramatic plastic changes during the life span, and in response to injury. Early life reliance on deep gray matter structures fades during adolescence as increasing reliance on prefrontal and parietal cortex accompanies the development of executive aspects of working memory. The rise and fall of working memory capacity and executive functions parallels the development and loss of neurotransmitter function in frontal cortical areas. Of the affected neurotransmitters, dopamine and acetylcholine modulate excitatory-inhibitory circuits that underlie working memory, are important for plasticity in the system, and are affected following preterm birth and adult brain injury. Pharmacological interventions to promote recovery of working memory abilities have had limited success, but hold promise if used in combination with behavioral training and brain stimulation. The intense study of working memory in a range of species, ages and following injuries has led to better understanding of the intrinsic plasticity mechanisms in the working memory system. The challenge now is to guide these mechanisms to better improve or restore working memory function.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana López-Barroso
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Paula L Croxson
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,4 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo L Berthier
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain
| |
Collapse
|
20
|
Hobbs JG, Young JS, Bailes JE. Sports-related concussions: diagnosis, complications, and current management strategies. Neurosurg Focus 2017; 40:E5. [PMID: 27032922 DOI: 10.3171/2016.1.focus15617] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions (SRCs) are traumatic events that affect up to 3.8 million athletes per year. The initial diagnosis and management is often instituted on the field of play by coaches, athletic trainers, and team physicians. SRCs are usually transient episodes of neurological dysfunction following a traumatic impact, with most symptoms resolving in 7-10 days; however, a small percentage of patients will suffer protracted symptoms for years after the event and may develop chronic neurodegenerative disease. Rarely, SRCs are associated with complications, such as skull fractures, epidural or subdural hematomas, and edema requiring neurosurgical evaluation. Current standards of care are based on a paradigm of rest and gradual return to play, with decisions driven by subjective and objective information gleaned from a detailed history and physical examination. Advanced imaging techniques such as functional MRI, and detailed understanding of the complex pathophysiological process underlying SRCs and how they affect the athletes acutely and long-term, may change the way physicians treat athletes who suffer a concussion. It is hoped that these advances will allow a more accurate assessment of when an athlete is truly safe to return to play, decreasing the risk of secondary impact injuries, and provide avenues for therapeutic strategies targeting the complex biochemical cascade that results from a traumatic injury to the brain.
Collapse
Affiliation(s)
- Jonathan G Hobbs
- Department of Surgery, Section of Neurosurgery, The University of Chicago Pritzker School of Medicine, Chicago; and
| | - Jacob S Young
- Department of Surgery, Section of Neurosurgery, The University of Chicago Pritzker School of Medicine, Chicago; and
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, The University of Chicago Pritzker School of Medicine, Evanston, Illinois
| |
Collapse
|
21
|
McAllister TW. Mild Traumatic Brain Injury. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2016; 14:410-421. [PMID: 31975821 DOI: 10.1176/appi.focus.20160025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mild traumatic brain injury (MTBI) is a significant public health problem worldwide. Injured individuals have an increased relative risk of developing a variety of neuropsychiatric conditions associated with the profile of brain regions typically affected in TBI. Within a neurobiopsychosocial framework, this article reviews what is known about the neuropsychiatric sequelae of MTBI, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Thomas W McAllister
- Dr. McAllister is with the Department of Psychiatry, Indiana University School of Medicine, Indianapolis (e-mail: )
| |
Collapse
|
22
|
Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury. Neurosci Lett 2016; 630:241-246. [PMID: 27478013 DOI: 10.1016/j.neulet.2016.07.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
Problems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p=0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p=0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation.
Collapse
|
23
|
Fawale MB, Ismail IA, Mustapha AF, Komolafe MA, Adedeji TA. Restless Legs Syndrome in a Nigerian Elderly Population. J Clin Sleep Med 2016; 12:965-72. [PMID: 27070251 DOI: 10.5664/jcsm.5926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/03/2016] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES The prevalence of restless legs syndrome (RLS) is highest in the elderly in Caucasian populations; the prevalence of RLS in elderly Africans is not known. This study aimed at determining the frequency and associations of RLS in a Nigerian elderly population. METHODS The study population comprised of 633 consecutive elderly individuals aged 65-105 years attending the general outpatient clinic of the State Hospital, Ilesa, for minor complaints and routine check-up. The diagnosis of RLS was made using the 2003 minimal criteria of the International Restless Legs Syndrome Study Group. Relevant sociodemographic and clinical data, including sleep duration, were also obtained. RESULTS Restless legs syndrome was found in 3.5% of the study population with a male-female ratio of 2:1. There was no significant age (p = 0.427) or gender (p = 0.178) influence on the prevalence of RLS except in the 75- to 84-year age group where there was significant male preponderance (p = 0.044). A strong independent association between RLS and sleep duration (OR, 3.229; 95% CI, 1.283-8.486; p = 0.013) and past history of head injury (OR, 4.691; 95% CI, 1.750-12.577; p = 0.002) was found. CONCLUSIONS Our finding support previous reports of a possible lower prevalence of RLS in Africans. Restless legs syndrome independently increases the odds of habitual sleep curtailment in elderly individuals. Head injury may be a risk factor for future RLS; this requires further investigation as indirect evidence for a possible link between RLS and traumatic brain injury exists.
Collapse
Affiliation(s)
- Michael B Fawale
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Adekunle F Mustapha
- Neurology Unit, Department of Medicine, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Morenikeji A Komolafe
- Neurology Unit, Department of Medicine, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tewogbade A Adedeji
- Department of Chemical Pathology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
24
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
25
|
Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2015; 1640:15-35. [PMID: 26711850 DOI: 10.1016/j.brainres.2015.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Nursing, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
26
|
Decreased Regional Homogeneity in Patients With Acute Mild Traumatic Brain Injury: A Resting-State fMRI Study. J Nerv Ment Dis 2015; 203:786-91. [PMID: 26348589 DOI: 10.1097/nmd.0000000000000368] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is characterized by structural disconnection and large-scale neural network dysfunction in the resting state. However, little is known concerning the intrinsic changes in local spontaneous brain activity in patients with mTBI. The aim of the current study was to assess regional synchronization in acute mTBI patients. Fifteen acute mTBI patients and 15 sex-, age-, and education-matched healthy controls (HCs) were studied. We used the regional homogeneity (ReHo) method to map local connectivity across the whole brain and performed a two-sample t-test between the two groups. Compared with HCs, patients with acute mTBI showed significantly decreased ReHo in the left insula, left precentral/postcentral gyrus, and left supramarginal gyrus (p < 0.05, AlphaSim corrected). The ReHo index of the left insula showed a positive correlation with the Mini-Mental State Examination (MMSE) scores across all acute mTBI patients (p < 0.05, uncorrected). The ReHo method may provide an objective biomarker for evaluating the functional abnormity of mTBI in the acute setting.
Collapse
|
27
|
Zheng P, Tong W. Understanding the neurotransmitter changes underlying cognitive dysfunction in traumatic brain injury and possible therapeutic targets: a review. Arch Med Sci 2015; 11:696-8. [PMID: 26170868 PMCID: PMC4495167 DOI: 10.5114/aoms.2015.52380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ping Zheng
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
28
|
Bruce ED, Konda S, Dean DD, Wang EW, Huang JH, Little DM. Neuroimaging and traumatic brain injury: State of the field and voids in translational knowledge. Mol Cell Neurosci 2015; 66:103-13. [DOI: 10.1016/j.mcn.2015.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/07/2023] Open
|
29
|
Expert consensus document: Mind the gaps—advancing research into short-term and long-term neuropsychological outcomes of youth sports-related concussions. Nat Rev Neurol 2015; 11:230-44. [PMID: 25776822 DOI: 10.1038/nrneurol.2015.30] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sports-related concussions and repetitive subconcussive exposure are increasingly recognized as potential dangers to paediatric populations, but much remains unknown about the short-term and long-term consequences of these events, including potential cognitive impairment and risk of later-life dementia. This Expert Consensus Document is the result of a 1-day meeting convened by Safe Kids Worldwide, the Alzheimer's Drug Discovery Foundation, and the Andrews Institute for Orthopaedics and Sports Medicine. The goal is to highlight knowledge gaps and areas of critically needed research in the areas of concussion science, dementia, genetics, diagnostic and prognostic biomarkers, neuroimaging, sports injury surveillance, and information sharing. For each of these areas, we propose clear and achievable paths to improve the understanding, treatment and prevention of youth sports-related concussions.
Collapse
|
30
|
Wang H, Wang B, Jackson K, Miller CM, Hasadsri L, Llano D, Rubin R, Zimmerman J, Johnson C, Sutton B. A novel head-neck cooling device for concussion injury in contact sports. Transl Neurosci 2015; 6:20-31. [PMID: 28123788 PMCID: PMC4936612 DOI: 10.1515/tnsci-2015-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA; Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire M Miller
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel Llano
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-Champaign, Carle Foundation Hospital, Urbana, USA; The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Rachael Rubin
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jarred Zimmerman
- Department of Sports Medicine, Carle Foundation Hospital, Urbana, USA
| | - Curtis Johnson
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Brad Sutton
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
31
|
Westfall DR, West JD, Bailey JN, Arnold TW, Kersey PA, Saykin AJ, McDonald BC. Increased brain activation during working memory processing after pediatric mild traumatic brain injury (mTBI). J Pediatr Rehabil Med 2015; 8:297-308. [PMID: 26684070 PMCID: PMC5061570 DOI: 10.3233/prm-150348] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The neural substrate of post-concussive symptoms following the initial injury period after mild traumatic brain injury (mTBI) in pediatric populations remains poorly elucidated. This study examined neuropsychological, behavioral, and brain functioning in adolescents post-mTBI to assess whether persistent differences were detectable up to a year post-injury. METHODS Nineteen adolescents on average 7.5 months post-mTBI completed neuropsychological testing and an fMRI auditory-verbal N-back working memory task. Parents completed behavioral ratings. The comparison group included 19 healthy controls matched to the mTBI group for demographic variables and N-back task performance. RESULTS There were no between-group differences for cognition or behavior ratings. The expected decreased accuracy and increased reaction time as N-back task difficulty increased were apparent. The mTBI group showed significantly greater brain activation than controls during the most difficult working memory load condition. CONCLUSION Greater working memory task-related activation was found in adolescents up to one year post-mTBI relative to controls, potentially indicating compensatory activation to support normal task performance. Differences in brain activation in the mTBI group so long after injury may indicate residual alterations in brain function much later than would be expected based on the typical pattern of symptom recovery, which could have important clinical implications.
Collapse
Affiliation(s)
- Daniel R Westfall
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John D West
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jessica N Bailey
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Functional magnetic resonance imaging of mild traumatic brain injury. Neurosci Biobehav Rev 2014; 49:8-18. [PMID: 25434880 DOI: 10.1016/j.neubiorev.2014.11.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022]
Abstract
Functional magnetic resonance imaging (fMRI) offers great promise for elucidating the neuropathology associated with a single or repetitive mild traumatic brain injury (mTBI). The current review discusses the physiological underpinnings of the blood-oxygen level dependent response and how trauma affects the signal. Methodological challenges associated with fMRI data analyses are considered next, followed by a review of current mTBI findings. The majority of evoked studies have examined working memory and attentional functioning, with results suggesting a complex relationship between cognitive load/attentional demand and neuronal activation. Researchers have more recently investigated how brain trauma affects functional connectivity, and the benefits/drawbacks of evoked and functional connectivity studies are also discussed. The review concludes by discussing the major clinical challenges associated with fMRI studies of brain-injured patients, including patient heterogeneity and variations in scan-time post-injury. We conclude that the fMRI signal represents a complex filter through which researchers can measure the physiological correlates of concussive symptoms, an important goal for the burgeoning field of mTBI research.
Collapse
|
33
|
Eierud C, Craddock RC, Fletcher S, Aulakh M, King-Casas B, Kuehl D, LaConte SM. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NEUROIMAGE-CLINICAL 2014; 4:283-94. [PMID: 25061565 PMCID: PMC4107372 DOI: 10.1016/j.nicl.2013.12.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/02/2013] [Accepted: 12/22/2013] [Indexed: 11/28/2022]
Abstract
This paper broadly reviews the study of mild traumatic brain injury (mTBI), across the spectrum of neuroimaging modalities. Among the range of imaging methods, however, magnetic resonance imaging (MRI) is unique in its applicability to studying both structure and function. Thus we additionally performed meta-analyses of MRI results to examine 1) the issue of anatomical variability and consistency for functional MRI (fMRI) findings, 2) the analogous issue of anatomical consistency for white-matter findings, and 3) the importance of accounting for the time post injury in diffusion weighted imaging reports. As we discuss, the human neuroimaging literature consists of both small and large studies spanning acute to chronic time points that have examined both structural and functional changes with mTBI, using virtually every available medical imaging modality. Two key commonalities have been used across the majority of imaging studies. The first is the comparison between mTBI and control populations. The second is the attempt to link imaging results with neuropsychological assessments. Our fMRI meta-analysis demonstrates a frontal vulnerability to mTBI, demonstrated by decreased signal in prefrontal cortex compared to controls. This vulnerability is further highlighted by examining the frequency of reported mTBI white matter anisotropy, in which we show a strong anterior-to-posterior gradient (with anterior regions being more frequently reported in mTBI). Our final DTI meta-analysis examines a debated topic arising from inconsistent anisotropy findings across studies. Our results support the hypothesis that acute mTBI is associated with elevated anisotropy values and chronic mTBI complaints are correlated with depressed anisotropy. Thus, this review and set of meta-analyses demonstrate several important points about the ongoing use of neuroimaging to understand the functional and structural changes that occur throughout the time course of mTBI recovery. Based on the complexity of mTBI, however, much more work in this area is required to characterize injury mechanisms and recovery factors and to achieve clinically-relevant capabilities for diagnosis. mTBI neuroimaging literature review and meta-analyses of fMRI and DTI. fMRI meta-analysis revealed differences between mTBI and controls in 13 regions. mTBI anisotropy findings are statistically more frequently reported in anterior regions. Anisotropy is elevated in acute mTBI, but depressed in chronic mTBI. We hypothesize a statistical interaction between anisotropy, cognitive score, and time.
Collapse
Affiliation(s)
- Cyrus Eierud
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, USA ; Structural and Computational Biology & Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - R Cameron Craddock
- Child Mind Institute, 445 Park Avenue, New York, NY, USA ; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Sean Fletcher
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA, USA
| | - Manek Aulakh
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA, USA
| | - Brooks King-Casas
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, USA ; Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Damon Kuehl
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stephen M LaConte
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, USA ; Structural and Computational Biology & Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA ; School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA ; Department of Emergency Radiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
34
|
Risacher SL, Wang Y, Wishart HA, Rabin LA, Flashman LA, McDonald BC, West JD, Santulli RB, Saykin AJ. Cholinergic Enhancement of Brain Activation in Mild Cognitive Impairment during Episodic Memory Encoding. Front Psychiatry 2013; 4:105. [PMID: 24062699 PMCID: PMC3775540 DOI: 10.3389/fpsyt.2013.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/30/2013] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine the physiological impact of treatment with donepezil (Aricept) on neural circuitry supporting episodic memory encoding in patients with amnestic mild cognitive impairment (MCI) using functional magnetic resonance imaging (fMRI). METHODS Eighteen patients with MCI and 20 age-matched healthy controls (HC) were scanned twice while performing an event-related verbal episodic encoding task. MCI participants were scanned before treatment and after approximately 3 months on donepezil; HC were untreated but rescanned at the same interval. Voxel-level analyses assessed treatment effects on activation profiles in MCI patients relative to retest changes in non-treated HC. Changes in task-related connectivity in medial temporal circuitry were also evaluated, as were associations between brain activation, task-related functional connectivity, task performance, and clinical measures of cognition. RESULTS At baseline, the MCI group showed reduced activation during encoding relative to HC in the right medial temporal lobe (MTL; hippocampal/parahippocampal) and additional regions, as well as attenuated task-related deactivation, relative to rest, in a medial parietal lobe cluster. After treatment, the MCI group showed normalized MTL activation and improved parietal deactivation. These changes were associated with cognitive performance. After treatment, the MCI group also demonstrated increased task-related functional connectivity from the right MTL cluster seed region to a network of other sites including the basal nucleus/caudate and bilateral frontal lobes. Increased functional connectivity was associated with improved task performance. CONCLUSION Pharmacologic enhancement of cholinergic function in amnestic MCI is associated with changes in brain activation and functional connectivity during episodic memory processing which are in turn related to increased cognitive performance. fMRI is a promising biomarker for assessing treatment related changes in brain function.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine , Indianapolis, IN , USA ; Indiana Alzheimer Disease Center, Indiana University School of Medicine , Indianapolis, IN , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav 2012; 6:193-207. [PMID: 22618832 DOI: 10.1007/s11682-012-9173-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mild traumatic brain injury (mTBI) represents the great majority of traumatic brain injuries, and is a common medical problem affecting cognitive and vocational functioning as well as quality of life in some individuals. Functional MRI (fMRI) is an important research method for investigating the neuroanatomic substrates of cognitive disorders and their treatment. Surprisingly, however, relatively little research has utilized fMRI to examine alterations in brain functioning after mTBI. This article provides a critical overview of the published fMRI research on mTBI to date. These topics include examination of frontal lobe/executive functions such as working memory, as well as episodic memory and resting state/functional connectivity. mTBI has also been investigated in military populations where studies have focused on effects of blast injury and comorbid conditions such as post-traumatic stress disorder and major depressive disorder. Finally, we address fMRI evaluations of response to behavioral or pharmacological challenges and interventions targeting cognitive and behavioral sequelae of mTBI. The review concludes with identification and discussion of gaps in current knowledge and future directions for fMRI studies of mTBI. The authors conclude that fMRI in combination with related methods can be expected to play an increasing role in research related to studies of pathophysiological mechanisms of the sequelae of mTBI as well as in diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Brenna C McDonald
- IU Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
36
|
Abstract
First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.
Collapse
Affiliation(s)
- Daniel A Orringer
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
37
|
Heimrath K, Sandmann P, Becke A, Müller NG, Zaehle T. Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Front Psychiatry 2012; 3:56. [PMID: 22723784 PMCID: PMC3378949 DOI: 10.3389/fpsyt.2012.00056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/23/2012] [Indexed: 12/14/2022] Open
Abstract
Impairments of working memory (WM) performance are frequent concomitant symptoms in several psychiatric and neurologic diseases. Despite the great advance in treating the reduced WM abilities in patients suffering from, e.g., Parkinson's and Alzheimer's disease by means of transcranial direct current stimulation (tDCS), the exact neurophysiological underpinning subserving these therapeutic tDCS-effects are still unknown. In the present study we investigated the impact of tDCS on performance in a visuo-spatial WM task and its underlying neural activity. In three experimental sessions, participants performed a delayed matching-to-sample WM task after sham, anodal, and cathodal tDCS over the right parietal cortex. The results showed that tDCS modulated WM performance and its underlying electrophysiological brain activity in a polarity-specific way. Parietal tDCS altered event-related potentials and oscillatory power in the alpha band at posterior electrode sites. The present study demonstrates that posterior tDCS can alter visuo-spatial WM performance by modulating the underlying neural activity. This result can be considered an important step toward a better understanding of the mechanisms involved in tDCS-induced modulations of cognitive processing. This is of particular importance for the application of electrical brain stimulation as a therapeutic treatment of neuropsychiatric deficits in clinical populations.
Collapse
Affiliation(s)
- K. Heimrath
- Section of Neuropsychology, Department of Neurology, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - P. Sandmann
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of OldenburgOldenburg, Germany
| | - A. Becke
- German Centre for Neurodegenerative DiseasesMagdeburg, Germany
| | - N. G. Müller
- German Centre for Neurodegenerative DiseasesMagdeburg, Germany
| | - T. Zaehle
- Section of Neuropsychology, Department of Neurology, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| |
Collapse
|