1
|
ten Hoor M, van de Berg R, Pérez Fornos A, Stultiens JJA. Electrical stimulation of the vestibular nerve: evaluating effects and potential starting points for optimization in vestibular implants. Curr Opin Otolaryngol Head Neck Surg 2024; 32:313-321. [PMID: 39171746 PMCID: PMC11377057 DOI: 10.1097/moo.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW Oscillopsia and unsteadiness are common and highly debilitating symptoms in individuals with bilateral vestibulopathy. A lack of adequate treatment options encouraged the investigation of vestibular implants, which aim to restore vestibular function with motion-modulated electrical stimulation. This review aims to outline the ocular and postural responses that can be evoked with electrical prosthetic stimulation of the semicircular canals and discuss potential approaches to further optimize evoked responses. Particular focus is given to the stimulation paradigm. RECENT FINDINGS Feasibility studies in animals paved the way for vestibular implantation in human patients with bilateral vestibulopathy. Recent human trials demonstrated prosthetic electrical stimulation to partially restore vestibular reflexes, enhance dynamic visual acuity, and generate controlled postural responses. To further optimize prosthetic performance, studies predominantly targeted eye responses elicited by the vestibulo-ocular reflex, aiming to minimize misalignments and asymmetries while maximizing the response. Changes of stimulation parameters are shown to hold promise to increase prosthetic efficacy, together with surgical refinements and neuroplastic effects. SUMMARY Optimization of the stimulation paradigm, in combination with a more precise electrode placement, holds great potential to enhance the clinical benefit of vestibular implants.
Collapse
Affiliation(s)
- Marieke ten Hoor
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
2
|
Stultiens JJA, Lewis RF, Phillips JO, Boutabla A, Della Santina CC, Glueckert R, van de Berg R. The Next Challenges of Vestibular Implantation in Humans. J Assoc Res Otolaryngol 2023; 24:401-412. [PMID: 37516679 PMCID: PMC10504197 DOI: 10.1007/s10162-023-00906-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.
Collapse
Affiliation(s)
- Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, The Netherlands.
| | - Richard F Lewis
- Department of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - James O Phillips
- Department of Otolaryngology, University of Washington, Seattle, WA, USA
| | - Anissa Boutabla
- Department of Otorhinolaryngology & Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Charles C Della Santina
- Department of Biomedical Engineering and Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raymond van de Berg
- Department of Otorhinolaryngology & Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
3
|
Soto E, Pliego A, Vega R. Vestibular prosthesis: from basic research to clinics. Front Integr Neurosci 2023; 17:1161860. [PMID: 37265514 PMCID: PMC10230114 DOI: 10.3389/fnint.2023.1161860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Balance disorders are highly prevalent worldwide, causing substantial disability with high personal and socioeconomic impact. The prognosis in many of these patients is poor, and rehabilitation programs provide little help in many cases. This medical problem can be addressed using microelectronics by combining the highly successful cochlear implant experience to produce a vestibular prosthesis, using the technical advances in micro gyroscopes and micro accelerometers, which are the electronic equivalents of the semicircular canals (SCC) and the otolithic organs. Reaching this technological milestone fostered the possibility of using these electronic devices to substitute the vestibular function, mainly for visual stability and posture, in case of damage to the vestibular endorgans. The development of implantable and non-implantable devices showed diverse outcomes when considering the integrity of the vestibular pathways, the device parameters (current intensity, impedance, and waveform), and the targeted physiological function (balance and gaze). In this review, we will examine the development and testing of various prototypes of the vestibular implant (VI). The insight raised by examining the state-of-the-art vestibular prosthesis will facilitate the development of new device-development strategies and discuss the feasibility of complex combinations of implantable devices for disorders that directly affect balance and motor performance.
Collapse
Affiliation(s)
- Enrique Soto
- Benemérita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla, Mexico
| | - Adriana Pliego
- Benemérita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla, Mexico
- Universidad Autónoma del Estado de México (UAEMéx), Facultad de Medicina, Toluca, Mexico
| | - Rosario Vega
- Benemérita Universidad Autónoma de Puebla, Instituto de Fisiología, Puebla, Mexico
| |
Collapse
|
4
|
Guyot JP, Guinand N, Perez Fornos A. Tribute to Bernard Cohen - Whose Pioneering Work Made the Vestibular Implant Possible. Front Neurol 2020; 11:452. [PMID: 32536904 PMCID: PMC7267219 DOI: 10.3389/fneur.2020.00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jean-Philippe Guyot
- Division of ENT and Head-and-Neck Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Nils Guinand
- Division of ENT and Head-and-Neck Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Angelica Perez Fornos
- Division of ENT and Head-and-Neck Surgery, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
5
|
Crétallaz C, Boutabla A, Cavuscens S, Ranieri M, Nguyen TAK, Kingma H, Van De Berg R, Guinand N, Pérez Fornos A. Influence of systematic variations of the stimulation profile on responses evoked with a vestibular implant prototype in humans. J Neural Eng 2020; 17:036027. [PMID: 32213673 PMCID: PMC8630998 DOI: 10.1088/1741-2552/ab8342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To explore the impact of different electrical stimulation profiles in human recipients of the Geneva-Maastricht vestibular implant prototypes. APPROACH Four implanted patients were recruited for this study. We investigated the relative efficacy of systematic variations of the electrical stimulus profile (phase duration, pulse rate, baseline level, modulation depth) in evoking vestibulo-ocular (eVOR) and perceptual responses. MAIN RESULTS Shorter phase durations and, to a lesser extent, slower pulse rates allowed maximizing the electrical dynamic range available for eliciting a wider range of intensities of vestibular percepts. When either the phase duration or the pulse rate was held constant, current modulation depth was the factor that had the most significant impact on peak velocity of the eVOR. SIGNIFICANCE Our results identified important parametric variations that influence the measured responses. Furthermore, we observed that not all vestibular pathways seem equally sensitive to the electrical stimulus when the electrodes are placed in the semicircular canals and monopolar stimulation is used. This opens the door to evaluating new stimulation strategies for a vestibular implant, and suggests the possibility of selectively activating one vestibular pathway or the other in order to optimize rehabilitation outcomes.
Collapse
Affiliation(s)
- Céline Crétallaz
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hageman KN, Chow MR, Roberts D, Boutros PJ, Tooker A, Lee K, Felix S, Pannu SS, Haque R, Della Santina CC. Binocular 3D otolith-ocular reflexes: responses of chinchillas to prosthetic electrical stimulation targeting the utricle and saccule. J Neurophysiol 2019; 123:259-276. [PMID: 31747349 DOI: 10.1152/jn.00883.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals' ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation.NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.
Collapse
Affiliation(s)
- Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Margaret R Chow
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angela Tooker
- Lawrence Livermore National Laboratory, Livermore, California
| | - Kye Lee
- Lawrence Livermore National Laboratory, Livermore, California
| | - Sarah Felix
- Lawrence Livermore National Laboratory, Livermore, California
| | | | - Razi Haque
- Lawrence Livermore National Laboratory, Livermore, California
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Boutros PJ, Schoo DP, Rahman M, Valentin NS, Chow MR, Ayiotis AI, Morris BJ, Hofner A, Rascon AM, Marx A, Deas R, Fridman GY, Davidovics NS, Ward BK, Treviño C, Bowditch SP, Roberts DC, Lane KE, Gimmon Y, Schubert MC, Carey JP, Jaeger A, Della Santina CC. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight 2019; 4:128397. [PMID: 31723056 DOI: 10.1172/jci.insight.128397] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDBilateral loss of vestibular (inner ear inertial) sensation causes chronically blurred vision during head movement, postural instability, and increased fall risk. Individuals who fail to compensate despite rehabilitation therapy have no adequate treatment options. Analogous to hearing restoration via cochlear implants, prosthetic electrical stimulation of vestibular nerve branches to encode head motion has garnered interest as a potential treatment, but prior studies in humans have not included continuous long-term stimulation or 3D binocular vestibulo-ocular reflex (VOR) oculography, without which one cannot determine whether an implant selectively stimulates the implanted ear's 3 semicircular canals.METHODSWe report binocular 3D VOR responses of 4 human subjects with ototoxic bilateral vestibular loss unilaterally implanted with a Labyrinth Devices Multichannel Vestibular Implant System vestibular implant, which provides continuous, long-term, motion-modulated prosthetic stimulation via electrodes in 3 semicircular canals.RESULTSInitiation of prosthetic stimulation evoked nystagmus that decayed within 30 minutes. Stimulation targeting 1 canal produced 3D VOR responses approximately aligned with that canal's anatomic axis. Targeting multiple canals yielded responses aligned with a vector sum of individual responses. Over 350-812 days of continuous 24 h/d use, modulated electrical stimulation produced stable VOR responses that grew with stimulus intensity and aligned approximately with any specified 3D head rotation axis.CONCLUSIONThese results demonstrate that a vestibular implant can selectively, continuously, and chronically provide artificial sensory input to all 3 implanted semicircular canals in individuals disabled by bilateral vestibular loss, driving reflexive VOR eye movements that approximately align in 3D with the head motion axis encoded by the implant.TRIAL REGISTRATIONClinicalTrials.gov: NCT02725463.FUNDINGNIH/National Institute on Deafness and Other Communication Disorders: R01DC013536 and 2T32DC000023; Labyrinth Devices, LLC; and Med-El GmbH.
Collapse
Affiliation(s)
| | - Desi P Schoo
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mehdi Rahman
- Labyrinth Devices, LLC, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | - Gene Y Fridman
- Department of Biomedical Engineering and.,Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Bryan K Ward
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Carolina Treviño
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephen P Bowditch
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Dale C Roberts
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly E Lane
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoav Gimmon
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael C Schubert
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John P Carey
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Charles C Della Santina
- Department of Biomedical Engineering and.,Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Labyrinth Devices, LLC, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Stultiens JJA, Postma AA, Guinand N, Pérez Fornos A, Kingma H, van de Berg R. Vestibular Implantation and the Feasibility of Fluoroscopy-Guided Electrode Insertion. Otolaryngol Clin North Am 2019; 53:115-126. [PMID: 31677739 DOI: 10.1016/j.otc.2019.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent research has shown promising results for the development of a clinically feasible vestibular implant in the near future. However, correct electrode placement remains a challenge. It was shown that fluoroscopy was able to visualize the semicircular canal ampullae and electrodes, and guide electrode insertion in real time. Ninety-four percent of the 18 electrodes were implanted correctly (<1.5 mm distance to target). The median distances were 0.60 mm, 0.85 mm, and 0.65 mm for the superior, lateral, and posterior semicircular canal, respectively. These findings suggest that fluoroscopy can significantly improve electrode placement during vestibular implantation.
Collapse
Affiliation(s)
- Joost Johannes Antonius Stultiens
- Department of Otorhinolaryngology-Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, P.O. box 5800, 6202 AZ, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alida Annechien Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, P.O. box 5800, 6202 AZ, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nils Guinand
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Hermanus Kingma
- Department of Otorhinolaryngology-Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, P.O. box 5800, 6202 AZ, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond van de Berg
- Department of Otorhinolaryngology-Head and Neck Surgery, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, P.O. box 5800, 6202 AZ, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Vestibular implant: does it really work? A systematic review. Braz J Otorhinolaryngol 2019; 85:788-798. [PMID: 31606334 PMCID: PMC9443005 DOI: 10.1016/j.bjorl.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction People with vestibular loss present a deficit in the vestibular system, which is primarily responsible for promoting postural control, gaze stabilization, and spatial orientation while the head moves. There is no effective treatment for a bilateral loss of vestibular function. Recently, a vestibular implant was developed for people with bilateral loss of vestibular function to improve this function and, consequently, the quality of life of these patients. Objective To identify in the scientific literature evidence that vestibular implants in people with vestibular deficit improves vestibular function. Methods One hundred and forty six articles were found from five databases and 323 articles from the gray literature mentioning the relationship between vestibular implant and vestibular function in humans. The PICOS strategy (Population, Intervention, Comparison and Outcome) was used to define the eligibility criteria. The studies that met the inclusion criteria for this second step were included in a qualitative synthesis, and each type of study was analyzed according to the bias risk assessment of the Joanna Briggs Institute through the critical assessment checklist Joanna Briggs institute for quasi-experimental studies and the Joanna Briggs institute critical assessment checklist for case reports. Results Of the 21 articles included in reading the full text, 10 studies were selected for the qualitative analysis in the present systematic review. All ten articles analyzed through the critical assessment checklist Joanna Briggs institute showed a low risk of bias. The total number of samples in the evaluated articles was 18 patients with vestibular implants. Conclusions Taken together, these findings support the feasibility of vestibular implant for restoration of the vestibulo-ocular reflex in a broad frequency range and illustrate new challenges for the development of this technology.
Collapse
|
10
|
Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, Ramos de Miguel A, Borkoski Barreiro S, Barbara M, Manrique M, Zarowski A. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol Neurootol 2019; 25:6-24. [PMID: 31533097 DOI: 10.1159/000502407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Collapse
Affiliation(s)
- Morgana Sluydts
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium,
| | - Ian Curthoys
- Vestibular Research Laboratory, University of Sydney, Sydney, New South Wales, Australia
| | - Robby Vanspauwen
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| | - Blake Croll Papsin
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Lynn Cushing
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel Ramos
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Angel Ramos de Miguel
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Silvia Borkoski Barreiro
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Andrzej Zarowski
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| |
Collapse
|
11
|
Abstract
Purpose of review Bilateral vestibular deficits exist and their prevalence is more important than believed by the medical community. Their severe impact has inspired several teams to develop technical solutions in an attempt to rehabilitate patients. A particularly promising pathway is the vestibular implant. This article describes the main milestones in this field, mainly focusing on work conducted in human patients. Recent findings There have been substantial research efforts, first in animals and more recently in humans, toward the development of vestibular implants. Humans have demonstrated surprising adaptation capabilities to the artificial vestibular signal. Today, the possibility of restoring vestibular reflexes, particularly the vestibulo-ocular reflex, and even achieving useful function in close-to-reality tasks (i.e. improving visual abilities while walking) have been demonstrated in humans. Summary The vestibular implant opens new perspectives, not only as an effective therapeutic tool, but also pushes us to go beyond current knowledge and well-established clinical concepts.
Collapse
|
12
|
Boutros PJ, Valentin NS, Hageman KN, Dai C, Roberts D, Della Santina CC. Nonhuman primate vestibuloocular reflex responses to prosthetic vestibular stimulation are robust to pulse timing errors caused by temporal discretization. J Neurophysiol 2019; 121:2256-2266. [PMID: 30995152 DOI: 10.1152/jn.00887.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrical stimulation of vestibular afferent neurons to partially restore semicircular canal sensation of head rotation and the stabilizing reflexes that sensation supports has potential to effectively treat individuals disabled by bilateral vestibular hypofunction. Ideally, a vestibular implant system using this approach would be integrated with a cochlear implant, which would provide clinicians with a means to simultaneously treat loss of both vestibular and auditory sensation. Despite obvious similarities, merging these technologies poses several challenges, including stimulus pulse timing errors that arise when a system must implement a pulse frequency modulation-encoding scheme (as is used in vestibular implants to mimic normal vestibular nerve encoding of head movement) within fixed-rate continuous interleaved sampling (CIS) strategies used in cochlear implants. Pulse timing errors caused by temporal discretization inherent to CIS create stair step discontinuities of the vestibular implant's smooth mapping of head velocity to stimulus pulse frequency. In this study, we assayed electrically evoked vestibuloocular reflex responses in two rhesus macaques using both a smooth pulse frequency modulation map and a discretized map corrupted by temporal errors typical of those arising in a combined cochlear-vestibular implant. Responses were measured using three-dimensional scleral coil oculography for prosthetic electrical stimuli representing sinusoidal head velocity waveforms that varied over 50-400°/s and 0.1-5 Hz. Pulse timing errors produced negligible effects on responses across all canals in both animals, indicating that temporal discretization inherent to implementing a pulse frequency modulation-coding scheme within a cochlear implant's CIS fixed pulse timing framework need not sacrifice performance of the combined system's vestibular implant portion. NEW & NOTEWORTHY Merging a vestibular implant system with existing cochlear implant technology can provide clinicians with a means to restore both vestibular and auditory sensation. Pulse timing errors inherent to integration of pulse frequency modulation vestibular stimulation with fixed-rate, continuous interleaved sampling cochlear implant stimulation would discretize the smooth head velocity encoding of a combined device. In this study, we show these pulse timing errors produce negligible effects on electrically evoked vestibulo-ocular reflex responses in two rhesus macaques.
Collapse
Affiliation(s)
- Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Nicolas S Valentin
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Chenkai Dai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
13
|
Hitier M, Sato G, Zhang YF, Zheng Y, Besnard S, Smith PF. Vestibular-related eye movements in the rat following selective electrical stimulation of the vestibular sensors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:835-847. [DOI: 10.1007/s00359-018-1286-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/26/2023]
|
14
|
Abstract
Sensorineural hearing loss (SNHL) in children occurs in 1 to 3% of live births and acquired hearing loss can additionally occur. This sensory deficit has far reaching consequences that have been shown to extend beyond speech and language development. Thankfully there are many therapeutic options that exist for these children with the aim of decreasing the morbidity of their hearing impairment. Of late, focus has shifted beyond speech and language outcomes to the overall performance of children with SNHL in real-world environments. To account for their residual deficits in such environments, clinicians must understand the extent of their sensory impairments. SNHL commonly coexists with other sensory deficits such as vestibular loss. Vestibular impairment is exceedingly common in children with SNHL with nearly half of children exhibiting vestibular end-organ dysfunction. These deficits naturally lead to impairments in balance and delay in motor milestones. However, this additional sensory deficit likely leads to further impairment in the performance of these children. This article focuses on the following: 1. Defining the coexistence of vestibular impairment in children with SNHL and cochlear implants. 2. Describing screening methods aimed at identifying vestibular dysfunction in children with SNHL. 3. Understanding the functional implications of this dual-sensory impairment. 4. Exploring possible rehabilitative strategies to minimize the impact of vestibular impairment in children with SNHL.
Collapse
Affiliation(s)
- Sharon L Cushing
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Cochlear Implant Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Blake C Papsin
- Department of Otolaryngology, Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Phillips JO, Ling L, Nowack AL, Phillips CM, Nie K, Rubinstein JT. The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey. Front Neurosci 2018; 12:88. [PMID: 29867306 PMCID: PMC5962652 DOI: 10.3389/fnins.2018.00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022] Open
Abstract
Electrical vestibular neurostimulation may be a viable tool for modulating vestibular afferent input to restore vestibular function following injury or disease. To do this, such stimulators must provide afferent input that can be readily interpreted by the central nervous system to accurately represent head motion to drive reflexive behavior. Since vestibular afferents have different galvanic sensitivity, and different natural sensitivities to head rotational velocity and acceleration, and electrical stimulation produces aphysiological synchronous activation of multiple afferents, it is difficult to assign a priori an appropriate transformation between head velocity and acceleration and the properties of the electrical stimulus used to drive vestibular reflex function, i.e., biphasic pulse rate or pulse current amplitude. In order to empirically explore the nature of the transformation between vestibular prosthetic stimulation and vestibular reflex behavior, in Rhesus macaque monkeys we parametrically varied the pulse rate and current amplitude of constant rate and current amplitude pulse trains, and the modulation frequency of sinusoidally modulated pulse trains that were pulse frequency modulated (FM) or current amplitude modulated (AM). In addition, we examined the effects of differential eye position and head position on the observed eye movement responses. We conclude that there is a strong and idiosyncratic, from canal to canal, effect of modulation frequency on the observed eye velocities that are elicited by stimulation. In addition, there is a strong effect of initial eye position and initial head position on the observed responses. These are superimposed on the relationships between pulse frequency or current amplitude and eye velocity that have been shown previously.
Collapse
Affiliation(s)
- James O Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Leo Ling
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Amy L Nowack
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Christopher M Phillips
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Epidemiology, University of Washington, Seattle, WA, United States
| | - Kaibao Nie
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| | - Jay T Rubinstein
- Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States.,Washington National Primate Research Center, University of Washington, Seattle, WA, United States.,Virginia Merril Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.,Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Affiliation(s)
- Robby Vanspauwen
- Department of ENT, European Institute for ORL-HNS - Sint-Augustinus Hospital, Antwerp, Belgium
| |
Collapse
|
17
|
van de Berg R, Lucieer F, Guinand N, van Tongeren J, George E, Guyot JP, Kingma H, van Hoof M, Temel Y, van Overbeeke J, Perez-Fornos A, Stokroos R. The Vestibular Implant: Hearing Preservation during Intralabyrinthine Electrode Insertion-A Case Report. Front Neurol 2017; 8:137. [PMID: 28443060 PMCID: PMC5385458 DOI: 10.3389/fneur.2017.00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
Objective The vestibular implant seems feasible as a clinically useful device in the near future. However, hearing preservation during intralabyrinthine implantation remains a challenge. It should be preserved to be able to treat patients with bilateral vestibulopathy and (partially) intact hearing. This case study investigated the feasibility of hearing preservation during the acute phase after electrode insertion in the semicircular canals. Methods A 40-year-old woman with normal hearing underwent a translabyrinthine approach for a vestibular schwannoma Koos Grade IV. Hearing was monitored using auditory brainstem response audiometry (ABR). ABR signals were recorded synchronously to video recordings of the surgery. Following the principles of soft surgery, a conventional dummy electrode was inserted in the lateral semicircular canal for several minutes and subsequently removed. The same procedure was then applied for the posterior canal. Finally, the labyrinthectomy was completed, and the schwannoma was removed. Results Surgery was performed without complications. No leakage of endolymph and no significant reduction of ABR response were observed during insertion and after removal of the electrodes from the semicircular canals, indicting no damage to the peripheral auditory function. The ABR response significantly changed when the semicircular canals were completely opened during the labyrinthectomy. This was indicated by a change in the morphology and latency of peak V of the ABR signal. Conclusion Electrode insertion in the semicircular canals is possible without acutely damaging the peripheral auditory function measured with ABR, as shown in this proof-of-principle clinical investigation.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Florence Lucieer
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Joost van Tongeren
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Erwin George
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Marc van Hoof
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jacobus van Overbeeke
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Stokroos
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
18
|
Perez Fornos A, Cavuscens S, Ranieri M, van de Berg R, Stokroos R, Kingma H, Guyot JP, Guinand N. The vestibular implant: A probe in orbit around the human balance system. J Vestib Res 2017; 27:51-61. [DOI: 10.3233/ves-170604] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Angelica Perez Fornos
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Cavuscens
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maurizio Ranieri
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, The Netherlands
- Faculty of Physics, Tomsk State University, Russian Federation
| | - Robert Stokroos
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Herman Kingma
- Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center, The Netherlands
- Faculty of Physics, Tomsk State University, Russian Federation
| | - Jean-Philippe Guyot
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nils Guinand
- Department of Clinical Neurosciences, Service of Otorhinolaryngology, Head and Neck Surgery, University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns. Exp Brain Res 2016; 234:3245-3257. [PMID: 27405997 DOI: 10.1007/s00221-016-4722-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
In our study, we examined postural stability during head turns for two rhesus monkeys: one animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals' posture, motions of the head and trunk, as well as torque about the body's center of mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison with the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction.
Collapse
|
20
|
Guinand N, van de Berg R, Ranieri M, Cavuscens S, DiGiovanna J, Nguyen TAK, Micera S, Stokroos R, Kingma H, Guyot JP, Perez Fornos A. Vestibular implants: Hope for improving the quality of life of patients with bilateral vestibular loss. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7192-5. [PMID: 26737951 DOI: 10.1109/embc.2015.7320051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The vestibular system plays an essential role in crucial tasks such as postural control, gaze stabilization, and spatial orientation. Currently, there is no effective treatment for a bilateral loss of the vestibular function (BVL). The quality of life of affected patients is significantly impaired. During the last decade, our group has explored the potential of using electrical stimulation to artificially restore the vestibular function. Our vestibular implant prototype consists of a custom modified cochlear implant featuring one to three vestibular electrodes implanted in the proximity of the ampullary branches of the vestibular nerve; in addition to the main cochlear array. Special surgical techniques for safe implantation of these devices have been developed. In addition, we have developed stimulation strategies to generate bidirectional eye movements as well as the necessary interfaces to capture the signal from a motion sensor (e.g., gyroscope) and use it to modulate the stimulation signals delivered to the vestibular nerves. To date, 24 vestibular electrodes have been implanted in 11 BVL patients. Using a virtual motion profile to modulate the "baseline" electrical stimulation, vestibular responses could be evoked with 21 electrodes. Eye movements with mean peak eye velocities of 32°/s and predominantly in the plane of the stimulated canal were successfully generated. These are within the range of normal compensatory eye movements during walking and were large enough to have a significant effect on the patients' visual acuity. These results indicate that electrical stimulation of the vestibular nerve has a significant functional impact; eye movements generated this way could be sufficient to restore gaze stabilization during essential everyday tasks such as walking. The innovative concept of the vestibular implant has the potential to restore the vestibular function and have a central role in improving the quality of life of BVL patients in the near future.
Collapse
|
21
|
Hitier M, Sato G, Zhang YF, Zheng Y, Besnard S, Smith PF, Curthoys IS. Anatomy and surgical approach of rat’s vestibular sensors and nerves. J Neurosci Methods 2016; 270:1-8. [DOI: 10.1016/j.jneumeth.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
22
|
Nguyen TAK, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, van de Berg R, Carpaneto J, Kingma H, Guyot JP, Micera S, Fornos AP. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng 2016; 13:046023. [DOI: 10.1088/1741-2560/13/4/046023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Vestibular assistance systems: promises and challenges. J Neurol 2016; 263 Suppl 1:S30-5. [PMID: 27083882 PMCID: PMC4833784 DOI: 10.1007/s00415-015-7922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
The handicap resulting from a bilateral vestibular deficit is often underestimated. In most cases the deficit settles gradually. Patients do not understand what is happening to them and have many difficulties to describe their symptoms. They have to consult several doctors with different medical specialties before diagnosis. Once the diagnosis is made there is no biological way to “repair” the deficient vestibular apparatus and vestibular exercises are mildly effective. Attempts have been made to help patients using substitution devices replacing the defective vestibular information by tactile or acoustic cues. Currently, efforts are being made towards the development of a vestibular implant, conceptually similar to the cochlear implant for the rehabilitation of deaf patients. In recent years, several experiments on animal models have demonstrated the feasibility of this project. This paper reports the steps accomplished in human experiments and the main results obtained in our laboratory.
Collapse
|
24
|
Abouzayd M, Smith PF, Moreau S, Hitier M. What vestibular tests to choose in symptomatic patients after a cochlear implant? A systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2016; 274:53-63. [PMID: 27059840 DOI: 10.1007/s00405-016-4007-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Vestibular function after cochlear implantation is difficult to understand, as subjective vestibular symptoms seem uncorrelated with the results of objective tests. Consequently, clinicians may struggle to decide what assessments to perform for a symptomatic patient. We used a systematic review and meta-analysis approach to enlighten this point. After a study inclusion process, results were classified into four different groups for each test in each study: (1) 'true positive' if the test showed impairment from pre-operative to post-operative in symptomatic patients; (2) 'false positive' if the test showed impairment from pre-operative to post-operative in asymptomatic patients; (3) 'true negative' if the test showed no impairment in asymptomatic patients; and (4) 'false negative' if the test showed no impairment in symptomatic patients. From these groups, sensitivities and specificities of each test were calculated in a meta-analysis. After reviewing more than 3000 references, 16 studies were included, representing 957 patients. The meta-analysis revealed a sensitivity of 0.21 (CI 95 % 0.08-0.40) for the caloric tests, of 0.32 (CI 95 % 0.15-0.54) for the cervical vestibular evoked myogenic potentials (c-VEMP), and of 0.5 (CI 95 % 0.07-0.93) for the head impulse tests. The analysis of prevalence revealed that c-VEMPs were the most often impaired, and the HIT the most often conserved. Our review and meta-analysis revealed that no vestibular test is sensitive enough to be recommended as a single test. Ideally, all the five vestibular sensors should be tested. In clinical practice, we suggest a case-to-case strategy according to patient's symptoms and their suspected origin.
Collapse
Affiliation(s)
- Moumainn Abouzayd
- Department of Otolaryngology Head and Neck Surgery, CHU de Caen, Caen, France
| | - Paul F Smith
- Department of Pharmacology and Toxicology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Sylvain Moreau
- Department of Otolaryngology Head and Neck Surgery, CHU de Caen, Caen, France.,Department of Anatomy, UNICAEN, Normandie University, 14032, Caen, France
| | - Martin Hitier
- Department of Otolaryngology Head and Neck Surgery, CHU de Caen, Caen, France. .,Department of Anatomy, UNICAEN, Normandie University, 14032, Caen, France. .,Inserm, U 1075 COMETE, 14000, Caen, France.
| |
Collapse
|
25
|
Hageman KN, Kalayjian ZK, Tejada F, Chiang B, Rahman MA, Fridman GY, Dai C, Pouliquen PO, Georgiou J, Della Santina CC, Andreou AG. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:269-79. [PMID: 25974945 PMCID: PMC4641830 DOI: 10.1109/tbcas.2015.2409797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 μs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 °/s for the MVP2 and 2.0-14.2 °/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2.
Collapse
Affiliation(s)
- Kristin N. Hageman
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Zaven K. Kalayjian
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Francisco Tejada
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Bryce Chiang
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Mehdi A. Rahman
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Gene Y. Fridman
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Chenkai Dai
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Philippe O. Pouliquen
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Julio Georgiou
- Department of Electrical and Computer Engineering, University of Cyprus, 1678 Nicosa, Cyprus
| | - Charles C. Della Santina
- Vestibular NeuroEngineering Lab (affiliated with the Departments of Biomedical Engineering and Otolaryngology Head and Neck Surgery), Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Andreas G. Andreou
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
26
|
Loss of Afferent Vestibular Input Produces Central Adaptation and Increased Gain of Vestibular Prosthetic Stimulation. J Assoc Res Otolaryngol 2015; 17:19-35. [PMID: 26438271 DOI: 10.1007/s10162-015-0544-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
Implanted vestibular neurostimulators are effective in driving slow phase eye movements in monkeys and humans. Furthermore, increases in slow phase velocity and electrically evoked compound action potential (vECAP) amplitudes occur with increasing current amplitude of electrical stimulation. In intact monkeys, protracted intermittent stimulation continues to produce robust behavioral responses and preserved vECAPs. In lesioned monkeys, shorter duration studies show preserved but with somewhat lower or higher velocity behavioral responses. It has been proposed that such changes are due to central adaptive changes in the electrically elicited vestibulo-ocular reflex (VOR). It is equally possible that these differences are due to changes in the vestibular periphery in response to activation of the vestibular efferent system. In order to investigate the site of adaptive change in response to electrical stimulation, we performed transtympanic gentamicin perfusions to induce rapid changes in vestibular input in monkeys with long-standing stably functioning vestibular neurostimulators, disambiguating the effects of implantation from the effects of ototoxic lesion. Gentamicin injection was effective in producing a large reduction in natural VOR only when it was performed in the non-implanted ear, suggesting that the implanted ear contributed little to the natural rotational response before injection. Injection of the implanted ear produced a reduction in the vECAP responses in that ear, suggesting that the intact hair cells in the non-functional ipsilateral ear were successfully lesioned by gentamicin, reducing the efficacy of stimulation in that ear. Despite this, injection of both ears produced central plastic changes that resulted in a dramatically increased slow phase velocity nystagmus elicited by electrical stimulation. These results suggest that loss of vestibular afferent activity, and a concurrent loss of electrically elicited vestibular input, produces an increase in the efficacy of a vestibular neurostimulator by eliciting centrally adapted behavioral responses without concurrent adaptive increase of galvanic afferent activation in the periphery.
Collapse
|
27
|
Gay A, Guinand N, Miffon M, Guyot JP. Perception of Discomfort Caused by a Unilateral Hearing Loss in People Suffering from a Total Bilateral Vestibular Loss. ORL J Otorhinolaryngol Relat Spec 2015; 77:248-253. [DOI: 10.1159/000433552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Guinand N, van de Berg R, Cavuscens S, Stokroos RJ, Ranieri M, Pelizzone M, Kingma H, Guyot JP, Perez-Fornos A. Vestibular Implants: 8 Years of Experience with Electrical Stimulation of the Vestibular Nerve in 11 Patients with Bilateral Vestibular Loss. ORL J Otorhinolaryngol Relat Spec 2015; 77:227-240. [PMID: 26367113 DOI: 10.1159/000433554] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The concept of the vestibular implant is primarily to artificially restore the vestibular function in patients with a bilateral vestibular loss (BVL) by providing the central nervous system with motion information using electrical stimulation of the vestibular nerve. Our group initiated human trials about 10 years ago. METHODS Between 2007 and 2013, 11 patients with a BVL received a vestibular implant prototype providing electrodes to stimulate the ampullary branches of the vestibular nerve. Eye movements were recorded and analyzed to assess the effects of the electrical stimulation. Perception induced by electrical stimulation was documented. RESULTS Smooth, controlled eye movements were obtained in all patients showing that electrical stimulation successfully activated the vestibulo-ocular pathway. However, both the electrical dynamic range and the amplitude of the eye movements were variable from patient to patient. The axis of the response was consistent with the stimulated nerve branch in 17 out of the 24 tested electrodes. Furthermore, in at least 1 case, the elicited eye movements showed characteristics similar to those of compensatory eye movements observed during natural activities such as walking. Finally, diverse percepts were reported upon electrical stimulation (i.e., rotatory sensations, sound, tickling or pressure) with intensity increasing as the stimulation current increased. CONCLUSIONS These results demonstrate that electrical stimulation is a safe and effective means to activate the vestibular system, even in a heterogeneous patient population with very different etiologies and disease durations. Successful tuning of this information could turn this vestibular implant prototype into a successful artificial balance organ.
Collapse
|
29
|
Marianelli P, Capogrosso M, Bassi Luciani L, Panarese A, Micera S. A Computational Framework for Electrical Stimulation of Vestibular Nerve. IEEE Trans Neural Syst Rehabil Eng 2015; 23:897-909. [DOI: 10.1109/tnsre.2015.2407861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Sun DQ, Lehar M, Dai C, Swarthout L, Lauer AM, Carey JP, Mitchell DE, Cullen KE, Santina CCD. Histopathologic Changes of the Inner ear in Rhesus Monkeys After Intratympanic Gentamicin Injection and Vestibular Prosthesis Electrode Array Implantation. J Assoc Res Otolaryngol 2015; 16:373-87. [PMID: 25790951 PMCID: PMC4417088 DOI: 10.1007/s10162-015-0515-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/02/2015] [Indexed: 11/29/2022] Open
Abstract
Bilateral vestibular deficiency (BVD) due to gentamicin ototoxicity can significantly impact quality of life and result in large socioeconomic burdens. Restoring sensation of head rotation using an implantable multichannel vestibular prosthesis (MVP) is a promising treatment approach that has been tested in animals and humans. However, uncertainty remains regarding the histopathologic effects of gentamicin ototoxicity alone or in combination with electrode implantation. Understanding these histological changes is important because selective MVP-driven stimulation of semicircular canals (SCCs) depends on persistence of primary afferent innervation in each SCC crista despite both the primary cause of BVD (e.g., ototoxic injury) and surgical trauma associated with MVP implantation. Retraction of primary afferents out of the cristae and back toward Scarpa's ganglion would render spatially selective stimulation difficult to achieve and could limit utility of an MVP that relies on electrodes implanted in the lumen of each ampulla. We investigated histopathologic changes of the inner ear associated with intratympanic gentamicin (ITG) injection and/or MVP electrode array implantation in 11 temporal bones from six rhesus macaque monkeys. Hematoxylin and eosin-stained 10-μm temporal bone sections were examined under light microscopy for four treatment groups: normal (three ears), ITG-only (two ears), MVP-only (two ears), and ITG + MVP (four ears). We estimated vestibular hair cell (HC) surface densities for each sensory neuroepithelium and compared findings across end organs and treatment groups. In ITG-only, MVP-only, and ITG + MVP ears, we observed decreased but persistent ampullary nerve fibers of SCC cristae despite ITG treatment and/or MVP electrode implantation. ITG-only and ITG + MVP ears exhibited neuroepithelial thinning and loss of type I HCs in the cristae but little effect on the maculae. MVP-only and ITG + MVP ears exhibited no signs of trauma to the cochlea or otolith end organs except in a single case of saccular injury due to over-insertion of the posterior SCC electrode. While implanted electrodes reached to within 50-760 μm of the target cristae and were usually ensheathed in a thin fibrotic capsule, dense fibrotic reaction and osteoneogenesis were each observed in only one of six electrode tracts examined. Consistent with physiologic studies that have demonstrated directionally appropriate vestibulo-ocular reflex responses to MVP electrical stimulation years after implantation in these animals, histologic findings in the present study indicate that although intralabyrinthine MVP implantation causes some inner ear trauma, it can be accomplished without destroying the distal afferent fibers an MVP is designed to excite.
Collapse
Affiliation(s)
- Daniel Q. Sun
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Outpatient Center, 6th floor, 601 North Caroline Street, Baltimore, MD 21287 USA
| | - Mohamed Lehar
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Chenkai Dai
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lani Swarthout
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amanda M. Lauer
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - John P. Carey
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | | | - Charles C. Della Santina
- />Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
31
|
Phillips C, Ling L, Oxford T, Nowack A, Nie K, Rubinstein JT, Phillips JO. Longitudinal performance of an implantable vestibular prosthesis. Hear Res 2015; 322:200-11. [PMID: 25245586 PMCID: PMC4369472 DOI: 10.1016/j.heares.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Abstract
Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
| | - Leo Ling
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Trey Oxford
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Amy Nowack
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Kaibao Nie
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jay T Rubinstein
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Bioengineering, University of Washington, Seattle, WA, USA
| | - James O Phillips
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Phillips JO, Ling L, Nie K, Jameyson E, Phillips CM, Nowack AL, Golub JS, Rubinstein JT. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. J Neurophysiol 2015; 113:3866-92. [PMID: 25652917 DOI: 10.1152/jn.00171.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0-400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear.
Collapse
Affiliation(s)
- James O Phillips
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| | - Leo Ling
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Kaibao Nie
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| | - Elyse Jameyson
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington
| | - Christopher M Phillips
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy L Nowack
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Justin S Golub
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington
| | - Jay T Rubinstein
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington; National Primate Research Center, University of Washington, Seattle, Washington; and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
33
|
van de Berg R, Guinand N, Nguyen TAK, Ranieri M, Cavuscens S, Guyot JP, Stokroos R, Kingma H, Perez-Fornos A. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci 2015; 8:255. [PMID: 25653601 PMCID: PMC4299437 DOI: 10.3389/fnsys.2014.00255] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/29/2014] [Indexed: 12/05/2022] Open
Abstract
The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the “natural” VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the “natural” VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the “normal” vestibular system.
Collapse
Affiliation(s)
- Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center Maastricht, Netherlands ; Faculty of Physics, Tomsk State University Tomsk, Russia
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - T A Khoa Nguyen
- Translational Neural Engineering Lab, Center for Neuroprosthetics, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Maurizio Ranieri
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - Samuel Cavuscens
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| | - Robert Stokroos
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center Maastricht, Netherlands
| | - Herman Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center Maastricht, Netherlands ; Faculty of Physics, Tomsk State University Tomsk, Russia
| | - Angelica Perez-Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals Geneva, Switzerland
| |
Collapse
|
34
|
Lacour M, Bernard-Demanze L. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery. Front Neurol 2015; 5:285. [PMID: 25610424 PMCID: PMC4285093 DOI: 10.3389/fneur.2014.00285] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or "à la carte" VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life.
Collapse
Affiliation(s)
- Michel Lacour
- Laboratoire de Neurobiologie Intégrative et Adaptative, UMR 7260 CNRS/Université Aix-Marseille, Fédération de Recherche 3C, Centre de St Charles, Marseille, France
| | - Laurence Bernard-Demanze
- Laboratoire de Neurobiologie Intégrative et Adaptative, UMR 7260 CNRS/Université Aix-Marseille, Fédération de Recherche 3C, Centre de St Charles, Marseille, France
- Service d’otorhinolaryngologie et d’otoneurologie, CHU Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
35
|
Abstract
HYPOTHESIS A functional vestibular prosthesis can be implanted in human such that electrical stimulation of each semicircular canal produces canal-specific eye movements while preserving vestibular and auditory function. BACKGROUND A number of vestibular disorders could be treated with prosthetic stimulation of the vestibular end organs. We have previously demonstrated in rhesus monkeys that a vestibular neurostimulator, based on the Nucleus Freedom cochlear implant, can produce canal-specific electrically evoked eye movements while preserving auditory and vestibular function. An investigational device exemption has been obtained from the FDA to study the feasibility of treating uncontrolled Ménière's disease with the device. METHODS The UW/Nucleus vestibular implant was implanted in the perilymphatic space adjacent to the three semicircular canal ampullae of a human subject with uncontrolled Ménière's disease. Preoperative and postoperative vestibular and auditory function was assessed. Electrically evoked eye movements were measured at 2 time points postoperatively. RESULTS Implantation of all semicircular canals was technically feasible. Horizontal canal and auditory function were largely, but not totally, lost. Electrode stimulation in 2 of 3 canals resulted in canal-appropriate eye movements. Over time, stimulation thresholds increased. CONCLUSION Prosthetic implantation of the semicircular canals in humans is technically feasible. Electrical stimulation resulted in canal-specific eye movements, although thresholds increased over time. Preservation of native auditory and vestibular function, previously observed in animals, was not demonstrated in a single subject with advanced Ménière's disease.
Collapse
|
36
|
Perez Fornos A, Guinand N, van de Berg R, Stokroos R, Micera S, Kingma H, Pelizzone M, Guyot JP. Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis. Front Neurol 2014; 5:66. [PMID: 24808890 PMCID: PMC4010770 DOI: 10.3389/fneur.2014.00066] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 12/05/2022] Open
Abstract
The vestibular system plays a crucial role in the multisensory control of balance. When vestibular function is lost, essential tasks such as postural control, gaze stabilization, and spatial orientation are limited and the quality of life of patients is significantly impaired. Currently, there is no effective treatment for bilateral vestibular deficits. Research efforts both in animals and humans during the last decade set a solid background to the concept of using electrical stimulation to restore vestibular function. Still, the potential clinical benefit of a vestibular neuroprosthesis has to be demonstrated to pave the way for a translation into clinical trials. An important parameter for the assessment of vestibular function is the vestibulo-ocular reflex (VOR), the primary mechanism responsible for maintaining the perception of a stable visual environment while moving. Here we show that the VOR can be artificially restored in humans using motion-controlled, amplitude modulated electrical stimulation of the ampullary branches of the vestibular nerve. Three patients received a vestibular neuroprosthesis prototype, consisting of a modified cochlear implant providing vestibular electrodes. Significantly higher VOR responses were observed when the prototype was turned ON. Furthermore, VOR responses increased significantly as the intensity of the stimulation increased, reaching on average 79% of those measured in healthy volunteers in the same experimental conditions. These results constitute a fundamental milestone and allow us to envision for the first time clinically useful rehabilitation of patients with bilateral vestibular loss.
Collapse
Affiliation(s)
- Angelica Perez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center , Maastricht , Netherlands
| | - Robert Stokroos
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center , Maastricht , Netherlands
| | - Silvestro Micera
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland ; The BioRobotics Institute, Scuola Superiore Sant'Anna , Pisa , Italy
| | - Herman Kingma
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University Medical Center , Maastricht , Netherlands
| | - Marco Pelizzone
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| | - Jean-Philippe Guyot
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals , Geneva , Switzerland
| |
Collapse
|
37
|
Marianelli P, Bassi Luciani L, Micera S. Electrical potential distribution within the inner ear: a preliminary study for vestibular prosthesis design. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3017-20. [PMID: 23366560 DOI: 10.1109/embc.2012.6346599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rotational cues in patients that suffer from bilateral vestibular loss can be delivered by vestibular prosthesis. Even though great efforts towards the development of a vestibular implant have been made, many parameters have still to be optimized. Numerical simulations of the neural activation during electrical stimulation can give important indications about the optimal electrode insertion site, stimulation waveform and electrode configuration, in terms of the highest selectivity. The first step of this type of numerical simulation requires the digital reconstruction of the human inner ear and the calculation of the spatial electrical potential distribution by means of finite-element methods.
Collapse
Affiliation(s)
- Prisca Marianelli
- Biorobotics Institute - Scuola Superiore Sant’Anna - Via Rinaldo Piaggio 34, 56025 Pontedera (Italy)
| | | | | |
Collapse
|
38
|
Postural responses to electrical stimulation of the vestibular end organs in human subjects. Exp Brain Res 2013; 229:181-95. [PMID: 23771587 DOI: 10.1007/s00221-013-3604-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
A multichannel vestibular prosthesis that delivers electrical stimulation to the perilymph of individual semicircular canals is a potential new treatment modality for patients with vestibular deficiencies. Most research in this field has evaluated the efficacy of this approach by its ability to reproduce eye movements in response to head rotations. Our group has developed such a device and implanted it in four human subjects with intractable unilateral Meniere's disease. This allows us to evaluate individual semicircular canal contribution to the control of balance and posture in human subjects. In this report, we demonstrate that electrical stimulation trains delivered to the perilymph of individual semicircular canals elicit postural responses specific to the particular canal stimulated, with some current spread to adjacent end organs. Modulation of stimulation current modulates the amplitude of the postural response. However, eye movements elicited by the same electrical stimuli were not consistent with postural responses in magnitude or direction in all subjects. Taken together, these findings support the feasibility of a vestibular prosthesis for the control of balance and illustrate new challenges for the development of this technology.
Collapse
|
39
|
Valentin NS, Hageman KN, Dai C, Della Santina CC, Fridman GY. Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant. IEEE Trans Neural Syst Rehabil Eng 2013; 21:830-9. [PMID: 23649285 DOI: 10.1109/tnsre.2013.2259261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
No adequate treatment exists for individuals who remain disabled by bilateral loss of vestibular (inner ear inertial) sensation despite rehabilitation. We have restored vestibular reflexes using lab-built multichannel vestibular prostheses (MVPs) in animals, but translation to clinical practice may be best accomplished by modification of a commercially available cochlear implant (CI). In this interim report, we describe preliminary efforts toward that goal. We developed software and circuitry to sense head rotation and drive a CI's implanted stimulator (IS) to deliver up to 1 K pulses/s via nine electrodes implanted near vestibular nerve branches. Studies in two rhesus monkeys using the modified CI revealed in vivo performance similar to our existing dedicated MVPs. A key focus of our study was the head-worn unit (HWU), which magnetically couples across the scalp to the IS. The HWU must remain securely fixed to the skull to faithfully sense head motion and maintain continuous stimulation. We measured normal and shear force thresholds at which HWU-IS decoupling occurred as a function of scalp thickness and calculated pressure exerted on the scalp. The HWU remained attached for human scalp thicknesses from 3-7.8 mm for forces experienced during routine daily activities, while pressure on the scalp remained below capillary perfusion pressure.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To summarize the recent progress in the development of vestibular implants. The review is timely because of the recent advances in the field and because MED-EL has recently announced that they are developing a vestibular implant for clinical applications. RECENT FINDINGS The handicap experienced by patients suffering from bilateral vestibulopathy has a strong negative impact on physical and social functioning that appears to justify a surgical intervention. Two different surgical approaches to insert electrodes to stimulate ampullary neurons have been shown to be viable. The three-dimensional vestibulo-ocular reflex in rhesus monkeys produced with a three-dimensional vestibular implant showed gains that were relatively normal during acute stimulation. Rotation cues provided by an implant interact with otolith cues in a qualitatively normal manner. The brain appears to adapt plastically to the cues provided via artificial electrical stimulation. SUMMARY Research to date includes just a few human studies, but available data from both humans and animals support the technological and physiological feasibility of vestibular implants. Although vestibular implant users should not expect normal vestibular function - any more than cochlear implant users should expect normal hearing - data suggest that significant functional improvements are possible.
Collapse
|
41
|
Davidovics NS, Rahman MA, Dai C, Ahn J, Fridman GY, Della Santina CC. Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. J Assoc Res Otolaryngol 2013; 14:233-48. [PMID: 23355001 DOI: 10.1007/s10162-013-0370-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022] Open
Abstract
An implantable prosthesis that stimulates vestibular nerve branches to restore the sensation of head rotation and the three-dimensional (3D) vestibular ocular reflex (VOR) could benefit individuals disabled by bilateral loss of vestibular sensation. Our group has developed a vestibular prosthesis that partly restores normal function in animals by delivering biphasic current pulses via electrodes implanted in semicircular canals. Despite otherwise promising results, this approach has been limited by insufficient velocity of VOR response to head movements that should inhibit the implanted labyrinth and by misalignment between direction of head motion and prosthetically elicited VOR. We report that significantly larger VOR eye velocities in the inhibitory direction can be elicited by adapting a monkey to elevated baseline stimulation rate and current prior to stimulus modulation and then concurrently modulating ("co-modulating") both rate and current below baseline levels to encode inhibitory angular head velocity. Co-modulation of pulse rate and current amplitude above baseline can also elicit larger VOR eye responses in the excitatory direction than do either pulse rate modulation or current modulation alone. Combining these stimulation strategies with a precompensatory 3D coordinate transformation improves alignment and magnitude of evoked VOR eye responses. By demonstrating that a combination of co-modulation and precompensatory transformation strategies achieves a robust VOR response in all directions with significantly improved alignment in an animal model that closely resembles humans with vestibular loss, these findings provide a solid preclinical foundation for application of vestibular stimulation in humans.
Collapse
Affiliation(s)
- Natan S Davidovics
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Nie K, Ling L, Bierer SM, Kaneko CRS, Fuchs AF, Oxford T, Rubinstein JT, Phillips JO. An experimental vestibular neural prosthesis: design and preliminary results with rhesus monkeys stimulated with modulated pulses. IEEE Trans Biomed Eng 2013; 60:1685-92. [PMID: 23358943 DOI: 10.1109/tbme.2013.2241433] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A vestibular neural prosthesis was designed on the basis of a cochlear implant for treatment of Meniere's disease and other vestibular disorders. Computer control software was developed to generate patterned pulse stimuli for exploring optimal parameters to activate the vestibular nerve. Two rhesus monkeys were implanted with the prototype vestibular prosthesis and they were behaviorally evaluated post implantation surgery. Horizontal and vertical eye movement responses to patterned electrical pulse stimulations were collected on both monkeys. Pulse amplitude modulated (PAM) and pulse rate modulated (PRM) trains were applied to the lateral canal of each implanted animal. Robust slow-phase nystagmus responses following the PAM or PRM modulation pattern were observed in both implanted monkeys in the direction consistent with the activation of the implanted canal. Both PAM and PRM pulse trains can elicit a significant amount of in-phase modulated eye velocity changes and they could potentially be used for efficiently coding head rotational signals in future vestibular neural prostheses.
Collapse
Affiliation(s)
- Kaibao Nie
- Department of Otolaryngology, Department of Electrical Engineering, and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otol Neurotol 2012; 33:789-96. [PMID: 22699989 DOI: 10.1097/mao.0b013e318254ec24] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS It is possible to implant a stimulating electrode array in the semicircular canals without damaging rotational sensitivity or hearing. The electrodes will evoke robust and precisely controlled eye movements. BACKGROUND A number of groups are attempting to develop a neural prosthesis to ameliorate abnormal vestibular function. Animal studies demonstrate that electrodes near the canal ampullae can produce electrically evoked eye movements. The target condition of these studies is typically bilateral vestibular hypofunction. Such a device could potentially be more widely useful clinically and would have a simpler roadmap to regulatory approval if it produced minimal or no damage to the native vestibular and auditory systems. METHODS An electrode array was designed for insertion into the bony semicircular canal adjacent to the membranous canal. It was designed to be sufficiently narrow so as to not compress the membranous canal. The arrays were manufactured by Cochlear, Ltd., and linked to a Nucleus Freedom receiver/stimulator. Seven behaviorally trained rhesus macaques had arrays placed in 2 semicircular canals using a transmastoid approach and "soft surgical" procedures borrowed from Hybrid cochlear implant surgery. Postoperative vestibulo-ocular reflex was measured in a rotary chair. Click-evoked auditory brainstem responses were also measured in the 7 animals using the contralateral ear as a control. RESULTS All animals had minimal postoperative vestibular signs and were eating within hours of surgery. Of 6 animals tested, all had normal postoperative sinusoidal gain. Of 7 animals, 6 had symmetric postoperative velocity step responses toward and away from the implanted ear. The 1 animal with significantly asymmetric velocity step responses also had a significant sensorineural hearing loss. One control animal that underwent canal plugging had substantial loss of the velocity step response toward the canal-plugged ear. In 5 animals, intraoperative electrically evoked vestibular compound action potential recordings facilitated electrode placement. Postoperatively, electrically evoked eye movements were obtained from electrodes associated with an electrically evoked vestibular compound action potential wave form. Hearing was largely preserved in 6 animals and lost in 1 animal. CONCLUSION It is possible to implant the vestibular system with prosthetic stimulating electrodes without loss of rotational sensitivity or hearing. Because electrically evoked eye movements can be reliably obtained with the assistance of intraoperative electrophysiology, it is appropriate to consider treatment of a variety of vestibular disorders using prosthetic electrical stimulation. Based on these findings, and others, a feasibility study for the treatment of human subjects with disabling Ménière's disease has begun.
Collapse
|
44
|
Fridman GY, Della Santina CC. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency. Anat Rec (Hoboken) 2012; 295:2010-29. [PMID: 23044664 DOI: 10.1002/ar.22581] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation-inhibition asymmetry, and adapting laboratory MVP prototypes into devices appropriate for use in clinical trials.
Collapse
Affiliation(s)
- Gene Y Fridman
- Department of Otolaryngology-Head & Neck surgery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
45
|
Guinand N, Boselie F, Guyot JP, Kingma H. Quality of Life of Patients with Bilateral Vestibulopathy. Ann Otol Rhinol Laryngol 2012; 121:471-7. [DOI: 10.1177/000348941212100708] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Currently, there is no evidence of an effective treatment for patients with bilateral vestibulopathy (BV). Their main complaints are oscillopsia and imbalance. Opinions about the impact of BV on their quality of life are controversial, and their handicap is not always recognized, even among otoneurologists. The aim of this study was to objectively assess the health status of BV patients in order to evaluate the need for pursuing efforts toward the development of new treatments. Methods: The Short-Form Health Survey (SF-36), the Dizziness Handicap Inventory (DHI), the Short Falls Efficacy Scale–International (Short FES-I), and an oscillopsia severity questionnaire were submitted to 39 BV patients. The SF-36 scores were compared to the scores of a general Dutch population. The DHI scores were correlated to the oscillopsia severity scores. The Short FES-I scores were compared to scores in an elderly population. Residual otolithic function was correlated to all scores, and hearing to SF-36 scores. Results: Compared to the general Dutch population, the BV patients scored significantly worse on the “physical functioning,” “role physical,” “general health,” “vitality,” and “social functioning” SF-36 variables (p < 0.05). The DHI scores were strongly correlated with the oscillopsia severity scores (r = 0.75; p < 0.000001). The Short FES-I scores indicated a slight to moderate increase in the patients' fear of falling. No significant score differences were found between BV patients with residual otolithic function and patients with complete BV. There was no correlation between hearing status and SF-36 scores. Conclusions: The results correlate with our clinical impression that BV has a strong negative impact on physical and social functioning, leading to a quality-of-life deterioration. There is a clear need for a therapeutic solution. Efforts toward the development of a vestibular implant are justified.
Collapse
|
46
|
Guinand N, Guyot JP, Kingma H, Kos I, Pelizzone M. Vestibular implants: the first steps in humans. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2262-4. [PMID: 22254791 DOI: 10.1109/iembs.2011.6090569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently there is no efficient treatment for patients with severe bilateral vestibular function impairment. Presence of oscillopsia is their main complaint. It has a significant negative impact on their quality of life. Recently it has been shown that angular vestibulo-ocular reflex can be partially restored in animals. In humans it is possible to elicit a nystagmic response by electric stimulation of ampullary parts of the vestibular nerve. Controlled eye movements can be generated by frequency and intensity modulation of the restored baseline firing rate of the vestibular nerve. During adaptation phase to the electric stimulus, patients experience nystagmus with associated inconveniences. By repetition of "on/off periods" the duration of the adaptation phase can be significantly decreased. Results show that permanent electric stimulation is necessary to maintain this "optimal" adaptation state.
Collapse
Affiliation(s)
- N Guinand
- ENT Department, University Hospital, Faculty of Medicine, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
47
|
Auditory outcomes following implantation and electrical stimulation of the semicircular canals. Hear Res 2012; 287:51-6. [PMID: 22504025 DOI: 10.1016/j.heares.2012.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 11/22/2022]
Abstract
We measured auditory brainstem responses (ABRs) in eight Rhesus monkeys after implantation of electrodes in the semicircular canals of one ear, using a multi-channel vestibular prosthesis based on cochlear implant technology. In five animals, click-evoked ABR thresholds in the implanted ear were within 10 dB of thresholds in the non-implanted control ear. Threshold differences in the remaining three animals varied from 18 to 69 dB, indicating mild to severe hearing losses. Click- and tone-evoked ABRs measured in a subset of animals before and after implantation revealed a comparable pattern of threshold changes. Thresholds obtained five months or more after implantation--a period in which the prosthesis regularly delivered electrical stimulation to achieve functional activation of the vestibular system--improved in three animals with no or mild initial hearing loss and increased in a fourth with a moderate hearing loss. These results suggest that, although there is a risk of hearing loss with unilateral vestibular implantation to treat balance disorders, the surgery can be performed in a manner that preserves hearing over an extended period of functional stimulation.
Collapse
|
48
|
van de Berg R, Guinand N, Guyot JP, Kingma H, Stokroos RJ. The modified ampullar approach for vestibular implant surgery: feasibility and its first application in a human with a long-term vestibular loss. Front Neurol 2012; 3:18. [PMID: 22363317 PMCID: PMC3282298 DOI: 10.3389/fneur.2012.00018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/30/2012] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess, for the first time in a human with a long-term vestibular loss, a modified approach to the ampullae and the feasibility of evoking a VOR by ampullar stimulation. Materials and methods: Peroperative stimulation of the ampullae, using the ampullar approach, was performed under full anesthesia during cochlear implantation in a 21-year-old female patient, who had experienced bilateral vestibular areflexia and sensorineural hearing loss for almost 20 years. Results: The modified ampullar approach was performed successfully with as minimally invasive surgery as possible. Ampullar stimulation evoked eye movements containing vectors congruent with the stimulated canal. As expected, the preliminary electrophysiological data were influenced by the general anesthesia, which resulted in current spread and reduced maximum amplitudes of eye movement. Nevertheless, they confirm the feasibility of ampullar stimulation. Conclusion: The modified ampullar approach provides safe access to the ampullae using as minimally invasive surgery as possible. For the first time in a human with long-term bilateral vestibular areflexia, it is shown that the VOR can be evoked by ampullar stimulation, even when there has been no vestibular function for almost 20 years. This approach should be considered in vestibular surgery, as it provides safe access to one of the most favorable stimulus locations for development of a vestibular implant.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otolaryngology and Head and Neck Surgery, Maastricht University Medical Centre Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
49
|
van de Berg R, Guinand N, Stokroos RJ, Guyot JP, Kingma H. The vestibular implant: quo vadis? Front Neurol 2011; 2:47. [PMID: 21991260 PMCID: PMC3181464 DOI: 10.3389/fneur.2011.00047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
Objective: To assess the progress of the development of the vestibular implant (VI) and its feasibility short-term. Data sources: A search was performed in Pubmed, Medline, and Embase. Key words used were “vestibular prosth*” and “VI.” The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation. Study selection: All studies about the VI and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the VI. Data extraction and synthesis: Data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: To use a basic VI in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation), complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.
Collapse
Affiliation(s)
- Raymond van de Berg
- Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Centre Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
50
|
Characterization of the electrically evoked compound action potential of the vestibular nerve. Otol Neurotol 2011; 32:88-97. [PMID: 21192375 DOI: 10.1097/mao.0b013e3181f6ca45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We recorded intraoperative and postoperative electrically evoked compound action potentials (ECAPs) in rhesus monkeys implanted with a vestibular neurostimulator. The objectives were to correlate the generation of slow-phase nystagmus or eye twitches induced by electrical stimulation of the implanted semicircular canal with the presence or absence of the vestibular ECAP responses and to assess the effectiveness of ECAP monitoring during surgery to guide surgical insertion of electrode arrays into the canals. DESIGN Four rhesus monkeys (a total of 7 canals) were implanted with a vestibular neurostimulator modified from the Nucleus Freedom cochlear implant. ECAP recordings were obtained during surgery or at various intervals after surgery using the Neural Response Telemetry feature of the clinical Custom Sound EP software. Eye movements during electrical stimulation of individual canals were recorded with a scleral search coil system in the same animals. RESULTS Measurable vestibular ECAPs were observed intraoperatively or postoperatively in 3 implanted animals. Robust and sustained ECAPs were obtained in 3 monkeys at the test intervals of 0, 7, or greater than 100 days after implantation surgery. In all 3 animals, stimulation with electrical pulse trains produced measurable eye movements in a direction consistent with the vestibulo-ocular reflex from the implanted semicircular canal. In contrast, electrically evoked eye movements could not be measured in 3 of the 7 implanted canals, none of which produced distinct vestibular ECAPs. In 2 animals, ECAP waveforms were systematically monitored during surgery, and the procedure proved crucial to the success of vestibular implantation. CONCLUSION Vestibular ECAPs exhibit similar morphology and growth characteristics to cochlear ECAPs from human cochlear implant patients. The ECAP measure is well correlated with the functional activation of eye movements by electrical stimulation after implantation surgery. The intraoperative ECAP recording technique is an efficient tool to guide the placement of electrode array into the semicircular canals.
Collapse
|