1
|
Ding L, Hu DX, Yang L, Zhang WJ. Application of olfactory ensheathing cells in peripheral nerve injury and its complication with pathological pain. Neuroscience 2024; 560:120-129. [PMID: 39307415 DOI: 10.1016/j.neuroscience.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Direct or indirect injury of peripheral nerve can lead to sensory and motor dysfunction, which can lead to pathological pain and seriously affect the quality of life and psychosomatic health of patients. While the internal repair function of the body after peripheral nerve injury is limited. Nerve regeneration is the key factor hindering the recovery of nerve function. At present, there is no effective treatment. Therefore, more and more attention have been paid to the development of foreground treatment to achieve functional recovery after peripheral nerve injury, including relief of pathological pain. Cell transplantation strategy is a therapeutic method with development potential in recent years, which can exert endogenous alternative repair by transplanting exogenous functional bioactive cells to the site of nerve injury. Olfactory ensheathing cells (OECs) are a special kind of glial cells, which have the characteristics of continuous renewal and survival. The mechanisms of promoting nerve regeneration and functional repair and relieving pathological pain by transplantation of OECs to peripheral nerve injury include secretion of a variety of neurotrophic factors, axonal regeneration and myelination, immune regulation, anti-inflammation, neuroprotection, promotion of vascular growth and improvement of inflammatory microenvironment around nerve injury. Different studies have shown that OECs combined with biomaterials have made some progress in the treatment of peripheral nerve injury and pathological pain. These biomaterials enhance the therapeutic effect of OECs. Therefore, the functional role of OECs in peripheral nerve injury and pathological pain was discussed in this paper.Although OECs are in the primary stage of exploration in the repair of peripheral nerve injury and the application of pain, but OECs transplantation may become a prospective therapeutic strategy for the treatment of peripheral nerve injury and pathological pain.
Collapse
Affiliation(s)
- Lin Ding
- The Second Affiliated Hospital, Nanchang University, Jiangxi Medical College, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Liu Yang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
2
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
3
|
Liu H, Pu Y, Xu Y, Xu H, Liu H, Cheng Y, Xu W, Chen X, Fan J. Olfactory-ensheathing cells promote physiological repair of injured recurrent laryngeal nerves and functional recovery of glottises in dogs. Mol Cell Biochem 2018; 446:115-125. [PMID: 29492839 DOI: 10.1007/s11010-018-3279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/16/2018] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate whether the transplantation of olfactory-ensheathing cells (OECs) could physiologically repair severely injured recurrent laryngeal nerve (RLN) in dogs. Adult Beagle dogs were surgically introduced with a 10-mm defect in the left RLN and transplanted with a nerve guide (NEUROLAC) containing dog olfactory mucosa-olfactory-ensheathing cells (OM-OECs) in matrigel. The effects of OM-OECs on the morphology, histology, and electrophysiology of the injured RLNs, glottis movement, and voice acoustics were comparatively studied. Two months after transplantation, the normal dogs (group N) had intact left RLNs that contained axons well organized as bundles, transmitted action potentials of high amplitudes without latent phases, and modulated glottis movement to produce normal voices. The RLN-damaged dogs transplanted with OM-OECs (group CTT) had pieces of nerves regenerated in the place of the defects, which contained fewer axons scattered in the internal nerve membrane and wrapped peripherally by the connective tissue, prevented the distal trunk of the defected RLN from shrinking, transmitted action potentials of lower amplitudes with latent phases, and modulated a slightly impaired glottis movement to produce voices with slight differences compared to the N dogs. The RLN-damaged dogs without OM-OECs (group NC) had no nerves generated at the defective or the damaged area, leading to a shrinkage in the enervated distal nerve trunks; a blockage in nerve pulse transit; a paralysis of the left vocal cords; an impaired glottis movement; and abnormal voices. Transplantation of OM-OECs promoted nerve regeneration, and the recoveries of glottises and voices in dogs with RLN injury.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Pu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yaping Xu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - He Xu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Huanhai Liu
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yin Cheng
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Weihua Xu
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, 200135, China
| | - Xiaoping Chen
- Department of Otolaryngology Head and Neck Surgery, Gongli Hospital, Second Military Medical University, Shanghai, 200135, China.
| | - Jingping Fan
- Department of Otolaryngology Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
4
|
Abstract
BACKGROUND Tissue engineering using biocompatible scaffolds, with or without cells, can permit surgeons to restore structure and function following tissue resection or in cases of congenital abnormality. Tracheal regeneration has emerged as a spearhead application of these technologies, whilst regenerative therapies are now being developed to treat most other diseases within otolaryngology. METHODS AND RESULTS A systematic review of the literature was performed using Ovid Medline and Ovid Embase, from database inception to 15 November 2014. A total of 561 papers matched the search criteria, with 76 fulfilling inclusion criteria. Articles were predominantly pre-clinical animal studies, reflecting the current status of research in this field. Several key human research articles were identified and discussed. CONCLUSION The main issues facing research in regenerative surgery are translation of animal model work into human models, increasing stem cell availability so it can be used to further research, and development of better facilities to enable implementation of these advances.
Collapse
|
5
|
Roet KCD, Verhaagen J. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol 2014; 261:594-609. [PMID: 24842489 DOI: 10.1016/j.expneurol.2014.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Olfactory ensheathing glial cells (OECs) are a specialized type of glia that form a continuously aligned cellular pathway that actively supports unprecedented regeneration of primary olfactory axons from the periphery into the central nervous system. Implantation of OECs stimulates neural repair in experimental models of spinal cord, brain and peripheral nerve injury and delays disease progression in animal models for neurodegenerative diseases like amyotrophic lateral sclerosis. OECs implanted in the injured spinal cord display a plethora of pro-regenerative effects; they promote axonal regeneration, reorganize the glial scar, remyelinate axons, stimulate blood vessel formation, have phagocytic properties and modulate the immune response. Recently genome wide transcriptional profiling and proteomics analysis combined with classical or larger scale "medium-throughput" bioassays have provided novel insights into the molecular mechanism that endow OECs with their pro-regenerative properties. Here we review these studies and show that the gaps that existed in our understanding of the molecular basis of the reparative properties of OECs are narrowing. OECs express functionally connected sets of genes that can be linked to at least 10 distinct processes directly relevant to neural repair. The data indicate that OECs exhibit a range of synergistic cellular activities, including active and passive stimulation of axon regeneration (by secretion of growth factors, axon guidance molecules and basement membrane components) and critical aspects of tissue repair (by structural remodeling and support, modulation of the immune system, enhancement of neurotrophic and antigenic stimuli and by metabolizing toxic macromolecules). Future experimentation will have to further explore the newly acquired knowledge to enhance the therapeutic potential of OECs.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, Amsterdam 1081HV, The Netherlands.
| |
Collapse
|
6
|
Mor N, Naggar I, Das O, Nakase K, Silverman JB, Sundaram K, Stewart M, Kollmar R. Quantitative Video Laryngoscopy to Monitor Recovery from Recurrent Laryngeal Nerve Injury in the Rat. Otolaryngol Head Neck Surg 2014; 150:824-6. [DOI: 10.1177/0194599814521572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recovery from unilateral vocal-fold paralysis is lengthy, unpredictable, and often incomplete, highlighting the need for better treatments of the injured recurrent laryngeal nerve. To be able to monitor recovery of vocal-fold motion in studies with rats, we developed a procedure for quantitative video laryngoscopy. An asymmetry index was defined as a continuous and robust measure of unequal vocal-fold motion and calculated from spectral-density plots of vocal-fold displacements. In a cohort of 8 animals, unilateral vocal-fold paralysis was observed within seconds after clamping of the right recurrent laryngeal nerve and was accompanied by a markedly negative asymmetry index. Over the next month, the asymmetry index gradually returned to zero, concomitant with a visible recovery of vocal-fold motion. Our results suggest that quantitative video laryngoscopy is a sensitive and discriminating method for monitoring recovery from recurrent laryngeal nerve injury and set the stage for testing novel surgical and pharmacological treatments of unilateral vocal-fold paralysis.
Collapse
Affiliation(s)
- Niv Mor
- Department of Otolaryngology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Isaac Naggar
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Olipriya Das
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Ko Nakase
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Joshua B. Silverman
- Department of Otolaryngology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Mark Stewart
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Richard Kollmar
- Department of Otolaryngology, SUNY Downstate Medical Center, Brooklyn, New York, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
7
|
Radtke C, Kocsis JD. Peripheral nerve injuries and transplantation of olfactory ensheathing cells for axonal regeneration and remyelination: fact or fiction? Int J Mol Sci 2012. [PMID: 23202929 PMCID: PMC3497303 DOI: 10.3390/ijms131012911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-511-532-8864; Fax: +49-511-532-8890
| | - Jeffery D. Kocsis
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This article reviews literature on the scientific background of functional electric stimulation of the immobile larynx, the status of animal pacing trials, and first clinical attempts to establish laryngeal pacing. RECENT FINDINGS Impaired vocal fold motion is seen following recurrent laryngeal nerve paralysis and is a result of inadequate or synkinetic reinnervation. The term vocal fold paralysis should only be used after verification using laryngeal electromyography. A variety of animal trials give clear evidence supporting the feasibility of laryngeal pacing as a new dynamic approach for the rehabilitation of patients with bilateral vocal fold motion impairment. Laryngeal pacing has become clinically applicable with minimal invasive electrode insertion and newly designed stimulation circuits. SUMMARY Laryngeal pacing seems to be on the right path to open up a dynamic rehabilitation of the bilaterally motion-impaired larynx.
Collapse
|
9
|
Guérout N, Paviot A, Bon-Mardion N, Duclos C, Genty D, Jean L, Boyer O, Marie JP. Co-transplantation of olfactory ensheathing cells from mucosa and bulb origin enhances functional recovery after peripheral nerve lesion. PLoS One 2011; 6:e22816. [PMID: 21826209 PMCID: PMC3149611 DOI: 10.1371/journal.pone.0022816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/29/2011] [Indexed: 01/28/2023] Open
Abstract
Olfactory ensheathing cells (OECs) represent an interesting candidate for cell therapy and could be obtained from olfactory mucosa (OM-OECs) or olfactory bulbs (OB-OECs). Recent reports suggest that, depending on their origin, OECs display different functional properties. We show here the complementary and additive effects of co-transplanting OM-OECs and OB-OECs after lesion of a peripheral nerve. For this, a selective motor denervation of the laryngeal muscles was performed by a section/anastomosis of the recurrent laryngeal nerve (RLN). Two months after surgery, recovery of the laryngeal movements and synkinesis phenonema were analyzed by videolaryngoscopy. To complete these assessments, measure of latency and potential duration were determined by electrophysiological recordings and myelinated nerve fiber profiles were defined based on toluidine blue staining. To explain some of the mechanisms involved, tracking of GFP positive OECs was performed. It appears that transplantation of OM-OECs or OB-OECs displayed opposite abilities to improve functional recovery. Indeed, OM-OECs increased recuperation of laryngeal muscles activities without appropriate functional recovery. In contrast, OB-OECs induced some functional recovery by enhancing axonal regrowth. Importantly, co-transplantation of OM-OECs and OB-OECs supported a major functional recovery, with reduction of synkinesis phenomena. This study is the first which clearly demonstrates the complementary and additive properties of OECs obtained from olfactory mucosa and olfactory bulb to improve functional recovery after transplantation in a nerve lesion model.
Collapse
Affiliation(s)
- Nicolas Guérout
- Experimental Surgery Laboratory, Groupe de Recherche sur le Handicap Ventilatoire (GRHV), UPRES EA 3830, Institut de Recherche et d'Innovation Biomédicale de Haute Normandie (IRIB), Faculty of Medicine and Pharmacy, University of Rouen, Rouen, France.
| | | | | | | | | | | | | | | |
Collapse
|