1
|
Mackay G, Allen J. Platelet-rich plasma applications in the larynx: snake oil or stupendous? Curr Opin Otolaryngol Head Neck Surg 2024:00020840-990000000-00159. [PMID: 39436958 DOI: 10.1097/moo.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW To explore and summarize recent work examining the use of platelet-rich plasma (PRP) applications for vocal fold disorder. RECENT FINDINGS Intrachordal PRP injections have recently emerged as a treatment option for patients with damage to the lamina propria of the vocal fold (scar, atrophy, sulcus and inflammatory lesions). Studies support significant improvements in patient-reported and clinician-reported outcomes, and objective phonatory parameters. PRP demonstrates a good safety profile, absence of immune reactions, affordable cost model and improvement in mucosal wave features with resultant improved voice quality up to 12 months following treatment. SUMMARY PRP injection of the vocal folds is a novel repurposing of a previously validated technique, and emerging data shows consistent results across multiple centres, increasing confidence in use of this freely available material. Current published studies confirm improved voice outcomes compared with pretreatment measures and high patient satisfaction. Further research is required to properly assign the role of and ideal candidate for PRP applications, and to delineate durability of treatment.
Collapse
Affiliation(s)
| | - Jacqui Allen
- Department of Surgery, University of Auckland
- Department of Otolaryngology, Te Whatu Ora Waitemata, Auckland, New Zealand
| |
Collapse
|
2
|
Svistushkin M, Shpichka A, Bikmulina P, Fayzullin A, Zolotova A, Kosheleva N, Selezneva L, Shavkuta B, Lobacheva V, Nikiforova A, Kochetkov P, Kotova S, Starostina S, Shekhter A, Svistunov A, Svistushkin V, Timashev P. Vocal fold restoration after scarring: biocompatibility and efficacy of an MSC-based bioequivalent. Stem Cell Res Ther 2023; 14:303. [PMID: 37865795 PMCID: PMC10590531 DOI: 10.1186/s13287-023-03534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is growing interest to application of regenerative medicine approaches in otorhinolaryngological practice, especially in the framework of the therapy of vocal fold (VF) scar lesions. The used conservative and surgical methods, despite the achieved positive outcomes, are frequently unpredictable and do not result in the restoration of the VF's lamina propria's structure, which provides the mechanical properties necessary for vibration. In this connection, the aim of this study was to ascertain the safety and efficacy of a bioequivalent in the treatment of VF scars using a rabbit model of chronic damage. METHODS The bioequivalent consisted of a hydrogel system based on a PEG-fibrin conjugate and human bone marrow-derived MSC. It was characterized and implanted heterotopically into rats and orthotopically into rabbits after VF scar excision. RESULTS We showed that the fabricated bioequivalent consisted of viable cells retaining their metabolic and proliferative activity. While being implanted heterotopically, it had induced the low inflammatory reaction in 7 days and was well tolerated. The orthotopic implantation showed that the gel application was characterized by a lower hemorrhage intensity (p = 0.03945). The intensity of stridor and respiratory rate between the groups in total and between separate groups had no statistically significant difference (p = 0.96 and p = 1; p = 0.9593 and p = 0.97…1, respectively). In 3 days post-implantation, MSC were detected only in the tissues closely surrounding the VF defect. The bioequivalent injection caused that the scar collagen fibers were packed looser and more frequently mutually parallel that is inherent in the native tissue (p = 0.018). In all experimental groups, the fibrous tissue's ingrowth in the adjacent exterior muscle tissue was observed; however, in Group 4 (PEG-Fibrin + MSC), it was much less pronounced than it was in Group 1 (normal saline) (p = 0.008). The difference between the thicknesses of the lamina propria in the control group and in Group 4 was not revealed to be statistically significant (p = 0.995). The Young's modulus of the VF after the bioequivalent implantation (1.15 ± 0.25 kPa) did not statistically significantly differ from the intact VF modulus (1.17 ± 0.45 kPa); therefore, the tissue properties in this group more closely resembled the intact VF. CONCLUSIONS The developed bioequivalent showed to be biocompatible and highly efficient in the restoration of VF's tissue.
Collapse
Affiliation(s)
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anna Zolotova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Liliya Selezneva
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Boris Shavkuta
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | - Anna Nikiforova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Peter Kochetkov
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| |
Collapse
|
3
|
Svistushkin MV, Kotova S, Shpichka A, Starostina S, Shekhter A, Bikmulina P, Nikiforova A, Zolotova A, Royuk V, Kochetkov PA, Timashev S, Fomin V, Vosough M, Svistushkin V, Timashev P. Stem cell therapy for vocal fold regeneration after scarring: a review of experimental approaches. Stem Cell Res Ther 2022; 13:176. [PMID: 35505357 PMCID: PMC9066721 DOI: 10.1186/s13287-022-02853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
This review aims at becoming a guide which will help to plan the experimental design and to choose adequate methods to assess the outcomes when testing cell-based products in the treatment of the damaged vocal folds. The requirements to preclinical trials of cell-based products remain rather hazy and dictated by the country regulations. Most parameters like the way the cells are administered, selection of the cell source, selection of a carrier, and design of in vivo studies are decided upon by each research team and may differ essentially between studies. The review covers the methodological aspects of preclinical studies such as experimental models, characterization of cell products, assessment of the study outcome using molecular, morphological and immunohistochemical analyses, as well as measuring the tissue physical properties. The unified recommendations to perform preclinical trials could significantly facilitate the translation of cell-based products into the clinical practice.
Collapse
Affiliation(s)
- Mikhail V Svistushkin
- Department for ENT Diseases, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | | | - Anatoliy Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anna Nikiforova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Anna Zolotova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Valery Royuk
- University Hospital No 1, Sechenov University, Moscow, Russia
| | - P A Kochetkov
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Serge Timashev
- National Research Nuclear University «MEPhI», Moscow, Russia
| | - Victor Fomin
- Department of Internal Medicine No 1, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
5
|
Walimbe T, Calve S, Panitch A, Sivasankar MP. Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering. Acta Biomater 2019; 87:97-107. [PMID: 30708064 DOI: 10.1016/j.actbio.2019.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Vocal fold scarring is the fibrotic manifestation of a variety of voice disorders, and is difficult to treat. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. However, major challenges remain in capturing the complexity of the native tissue and sustaining regeneration. We hypothesized that hydrogels with tunable viscoelastic properties that present relevant biological cues to cells might be better suited as therapeutics. Herein, we characterized the response of human vocal fold fibroblasts to four different biomimetic hydrogels: thiolated hyaluronan (HA) crosslinked with poly(ethylene glycol) diacrylate (PEGDA), HA-PEGDA with type I collagen (HA-Col I), HA-PEGDA with type III collagen (HA-Col III) and HA-PEGDA with type I and III collagen (HA-Col I-Col III). Collagen incorporation allowed for interpenetrating fibrils of collagen within the non-fibrillar HA network, which increased the mechanical properties of the hydrogels. The addition of collagen fibrils also reduced hyaluronidase degradation of HA and hydrogel swelling ratio. Fibroblasts encapsulated in the HA-Col gels adopted a spindle shaped fibroblastic morphology by day 7 and exhibited extensive cytoskeletal networks by day 21, suggesting that the incorporation of collagen was essential for cell adhesion and spreading. Cells remained viable and synthesized new DNA throughout 21 days of culture. Gene expression levels significantly differed between the cells encapsulated in the different hydrogels. Relative fold changes in gene expression of MMP1, COL1A1, fibronectin and decorin suggest higher degrees of remodeling in HA-Col I-Col III gels in comparison to HA-Col I or HA-Col III hydrogels, suggesting that the former may better serve as a natural biomimetic hydrogel for tissue engineering applications. STATEMENT OF SIGNIFICANCE: Voice disorders affect about 1/3rd of the US population and significantly reduce quality of life. Patients with vocal fold fibrosis have few treatment options. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. Various studies have used collagen or thiolated hyaluronan (HA) with gelatin as potential tissue engineering therapies. However, there is room for improvement in providing cells with more relevant biological cues that mimic the native tissue microenvironment and sustain regeneration. The present study introduces the use of type I collagen and type III collagen along with thiolated HA as a natural biomimetic hydrogel for vocal fold tissue engineering applications.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Weldon School of Biomedical Engineering, Purdue University, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, United States.
| | - M Preeti Sivasankar
- Weldon School of Biomedical Engineering, Purdue University, United States; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Gugjoo MB, Amarpal A, Sharma GT. Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol 2019; 234:16779-16811. [PMID: 30790282 DOI: 10.1002/jcp.28348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The stem cells, owing to their special characteristics like self-renewal, multiplication, homing, immunomodulation, anti-inflammatory, and dedifferentiation are considered to carry an "all-in-one-solution" for diverse clinical problems. However, the limited understanding of cellular physiology currently limits their definitive therapeutic use. Among various stem cell types, currently mesenchymal stem cells are extensively studied for dog clinical applications owing to their readily available sources, easy harvesting, and ability to differentiate both into mesodermal, as well as extramesodermal tissues. The isolated, culture expanded, and characterized cells have been applied both at preclinical as well as clinical settings in dogs with variable but mostly positive results. The results, though positive, are currently inconclusive and demands further intensive research on the properties and their dependence on the applications. Further, numerous clinical conditions of dog resemble to that of human counterparts and thus, if proved rewarding in the former may act as basis of therapy for the latter. The current review throws some light on dog mesenchymal stem cell properties and their potential therapeutic applications.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu and Kashmir, India
| | - Amarpal Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
7
|
Svistushkin MV, Kotova SL, Shekhter AB, Svistushkin VM, Akovantseva AA, Frolova AA, Fayzullin AL, Starostina SV, Bezrukov EA, Sukhanov RB, Timashev SF, Butnaru DV, Timashev PS. Collagen fibrillar structures in vocal fold scarring and repair using stem cell therapy: a detailed histological, immunohistochemical and atomic force microscopy study. J Microsc 2019; 274:55-68. [PMID: 30740689 DOI: 10.1111/jmi.12784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Regenerative medicine opens new opportunities in the repair of cicatricial lesions of the vocal folds. Here, we present a thorough morphological study, with the focus on the collagen structures in the mucosa of the vocal folds, dedicated to the effects of stem cells on the vocal folds repair after cicatricial lesions. We used a conventional experimental model of a mature scar of the rabbit vocal folds, which was surgically excised with a simultaneous implantation of autologous bone marrow-derived mesenchymal stem cells (MSC) into the defect. The restoration of the vocal folds was studied 3 months postimplantation of stem cells and 6 months after the first surgery. The collagen structure assessment included histology, immunohistochemistry and atomic force microscopy (AFM) studies. According to the data of optical microscopy and AFM, as well as to immunohistochemical analysis, MSC implantation into the vocal fold defect leads not only to the general reduction of scarring, normal ratio of collagens type I and type III, but also to a more complete restoration of architecture and ultrastructure of collagen fibres in the mucosa, as compared to the control. The collagen structures in the scar tissue in the vocal folds with implanted MSC are more similar to those in the normal mucosa of the vocal folds than to those of the untreated scars. AFM has proven to be an instrumental technique in the assessment of the ultrastructure restoration in such studies. LAY DESCRIPTION: Regenerative medicine opens new opportunities in the repair of the vocal fold scars. Because collagen is a main component in the vocal fold mucosa responsible for the scar formation and repair, we focus on the collagen structures in the mucosa of the vocal folds, using a thorough morphological study based on histology and atomic force microscopy (AFM). Atomic force microscopy is a scanning microscopic technique which allows revealing the internal structure of a tissue with a resolution up to nanometres. We used a conventional experimental model of a mature scar of the rabbit vocal folds, surgically excised and treated with a mesenchymal stem cells transplant. Our morphological study, primarily AFM, explicitly shows that the collagen structures in the scarred vocal folds almost completely restore after the stem cell treatment. Thus, the modern microscopic methods, and especially AFM are instrumental tools for monitoring the repair of the vocal folds scars.
Collapse
Affiliation(s)
| | - Svetlana L Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| | - Anatoly B Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | - Anastasia A Akovantseva
- Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Moscow, Russia
| | | | - Alexey L Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | | | | | - Sergey F Timashev
- N.N. Semenov Institute of Chemical Physics, Moscow, Russia.,National Research Nuclear University MEPhI, Moscow, Russia
| | - Denis V Butnaru
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics, Moscow, Russia.,Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Moscow, Russia
| |
Collapse
|
8
|
Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine. Stem Cells Int 2018; 2018:8329174. [PMID: 30123294 PMCID: PMC6079340 DOI: 10.1155/2018/8329174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022] Open
Abstract
Stem cell therapy has prompted the expansion of veterinary medicine both experimentally and clinically, with the potential to contribute to contemporary treatment strategies for various diseases and conditions for which limited or no therapeutic options are presently available. Although the application of various types of stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue-derived mesenchymal stem cells (AT-MSCs), and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), has promising potential to improve the health of different species, it is crucial that the benefits and drawbacks are completely evaluated before use. Umbilical cord blood (UCB) is a rich source of stem cells; nonetheless, isolation of mesenchymal stem cells (MSCs) from UCB presents technical challenges. Although MSCs have been isolated from UCB of diverse species such as human, equine, sheep, goat, and canine, there are inherent limitations of using UCB from these species for the expansion of MSCs. In this review, we investigated canine UCB (cUCB) and compared it with UCB from other species by reviewing recent articles published from February 2003 to June 2017 to gain an understanding of the limitations of cUCB in the acquisition of MSCs and to determine other suitable sources for the isolation of MSCs from canine. Our review indicates that cUCB is not an ideal source of MSCs because of insufficient volume and ethical issues. However, canine reproductive organs discarded during neutering may help broaden our understanding of effective isolation of MSCs. We recommend exploring canine reproductive and adipose tissue rather than UCB to fulfill the current need in veterinary medicine for the well-designed and ethically approved source of MSCs.
Collapse
|
9
|
Morisaki T, Kishimoto Y, Tateya I, Kawai Y, Suzuki R, Tsuji T, Hiwatashi N, Nakamura T, Omori K, Kitano H, Takeuchi H, Hirano S. Adipose-derived mesenchymal stromal cells prevented rat vocal fold scarring. Laryngoscope 2017; 128:E33-E40. [DOI: 10.1002/lary.26855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Tsuyoshi Morisaki
- Department of Otolaryngology-Head and Neck Surgery; Faculty of Medicine, Tottori University; Tottori Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Ryo Suzuki
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Takuya Tsuji
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
- Department of Otolaryngology-Head and Neck Surgery; NYU Voice Center, New York University School of Medicine; New York New York U.S.A
| | - Tatsuo Nakamura
- Department of Bioartificial Organs; Institute for Frontier Medical Science, Kyoto University; Kyoto Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Hiroya Kitano
- Department of Otolaryngology-Head and Neck Surgery; Faculty of Medicine, Tottori University; Tottori Japan
| | - Hiromi Takeuchi
- Department of Otolaryngology-Head and Neck Surgery; Faculty of Medicine, Tottori University; Tottori Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
10
|
Mattei A, Magalon J, Bertrand B, Philandrianos C, Veran J, Giovanni A. Cell therapy and vocal fold scarring. Eur Ann Otorhinolaryngol Head Neck Dis 2017; 134:339-345. [PMID: 28689790 DOI: 10.1016/j.anorl.2017.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vocal fold microstructure is complex and can be affected by laryngeal microsurgery, inducing scarring that prevents mechanical uncoupling of epithelium and muscle, leading to vibration disorder and disabling dysphonia. Treatment options presently are few, and often without efficacy for vibration, having only an impact on volume to reduce glottal closure defect. The present review of the literature had two aims: (i) to report the current state of the literature on cell therapy in vocal fold scarring; and (ii) to analyze the therapeutic interest of the adipose-derived stromal vascular fraction in the existing therapeutic armamentarium. A PubMed® search conducted in September 2016 retrieved English or French-language original articles on the use of stem cells to treat vocal fold scarring. Twenty-seven articles published between 2003 and 2016 met the study selection criteria. Mesenchymal stem cells were most widely used, mainly derived from bone marrow or adipose tissue. Four studies were performed in vitro on fibroblasts, and 18 in vivo on animals. End-points comprised: (i) scar analysis (macro- and micro-scopic morphology, viscoelastic properties, extracellular matrix, fibroblasts); and (ii) assessment of stem cell survival and differentiation. The studies testified to the benefit of mesenchymal stem cells, and especially those of adipose derivation. The stromal vascular fraction exhibits properties that might improve results by facilitating production logistics.
Collapse
Affiliation(s)
- A Mattei
- Aix Marseille université, 13000 Marseille, France; Service d'oto-rhino-laryngologie et chirurgie cervicofaciale, La Conception, Assistance publique-Hôpitaux de Marseille, 147, boulevard Baille, 13005 Marseille, France.
| | - J Magalon
- VRCM Inserm UMR 1076, faculté de pharmacie de Marseille, Aix Marseille université, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France; Inserm CBT-1409, laboratoire de culture et thérapie cellulaire, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - B Bertrand
- Service de chirurgie plastique et réparatrice, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - C Philandrianos
- Service de chirurgie plastique et réparatrice, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - J Veran
- Inserm CBT-1409, laboratoire de culture et thérapie cellulaire, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - A Giovanni
- Service d'oto-rhino-laryngologie et chirurgie cervicofaciale, La Conception, Assistance publique-Hôpitaux de Marseille, 147, boulevard Baille, 13005 Marseille, France; CNRS, laboratoire parole et langage, Aix Marseille université, 5, avenue Pasteur, 13100 Aix-en-Provence, France
| |
Collapse
|
11
|
Kaneko M, Shiromoto O, Fujiu-Kurachi M, Kishimoto Y, Tateya I, Hirano S. Optimal Duration for Voice Rest After Vocal Fold Surgery: Randomized Controlled Clinical Study. J Voice 2017; 31:97-103. [DOI: 10.1016/j.jvoice.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
|
12
|
Kitamura M, Hirano S, Kanemaru SI, Kitani Y, Ohno S, Kojima T, Nakamura T, Ito J, Rosen CA, Gilbert TW. Glottic regeneration with a tissue-engineering technique, using acellular extracellular matrix scaffold in a canine model. J Tissue Eng Regen Med 2016; 10:825-832. [PMID: 24403099 PMCID: PMC4087089 DOI: 10.1002/term.1855] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/26/2013] [Accepted: 11/08/2013] [Indexed: 11/05/2022]
Abstract
Acellular extracellular matrix scaffold derived from porcine urinary bladder (UBM) is decellularized material that has shown success for constructive remodelling of various tissues and organs. The regenerative effects of UBM were reported for the tympanic membrane, oesophagus, trachea, larynx, pleura and pericardium in animal studies, with promising results. The aim of this study was to investigate the regenerative effects of UBM on hemilarynx, using a canine model. A left partial hemilaryngectomy was performed and the surgical defects were reconstructed by insertion of UBM scaffold. Although local infection was observed in one dog in 1 week after implantation of the scaffold, all dogs showed good re-epithelialization with minimum complication in 1 month. The effect of regeneration of the larynx was evaluated 6 months after the operation. The excised larynx experiments were performed to measure phonation threshold pressure (PTP), normalized mucosal wave amplitude (NMWA) and normalized glottal gap (NGG). The results of the measurements showed that PTP was normal or near normal in two cases and NMWA was within normal range in three cases, although there were individual variations. Histological examination was completed to evaluate structural changes in the scaffold with the appearance of the new cartilaginous structure. However, the regenerated vocal fold mucosa was mostly scarred. The UBM scaffold has shown to be biocompatible, biodegradable and useful for tissue regeneration of the hemilarynx, with possible restoration of function of the vocal fold. The vocal fold mucosa was scarred, which is the next challenge to be addressed. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Morimasa Kitamura
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan.
| | - Shigeru Hirano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Shin-Ichi Kanemaru
- Department of Otolaryngology, Regenerative Treatment for Tympanic Membrane, Foundation for Biomedical Research and Innovation, Kobe, Japan
- Department of Otolaryngology, Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Yoshiharu Kitani
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Satoshi Ohno
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Tsuyoshi Kojima
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Clark A Rosen
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas W Gilbert
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, PA, USA
| |
Collapse
|
13
|
Wingstrand VL, Grønhøj Larsen C, Jensen DH, Bork K, Sebbesen L, Balle J, Fischer-Nielsen A, von Buchwald C. Mesenchymal Stem Cell Therapy for the Treatment of Vocal Fold Scarring: A Systematic Review of Preclinical Studies. PLoS One 2016; 11:e0162349. [PMID: 27631373 PMCID: PMC5025194 DOI: 10.1371/journal.pone.0162349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023] Open
Abstract
Objectives Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance the biomechanical properties of injured vocal folds. This study evaluated the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring. Data Sources PubMed, Embase, the Cochrane Library and Google Scholar were searched. Methods Controlled studies that assessed the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring were included. Primary outcomes were viscoelastic properties and mucosal wave amplitude. Results Seven preclinical animal studies (n = 152 single vocal folds) were eligible for inclusion. Evaluation of viscoelastic parameters revealed a decreased dynamic viscosity (η’) and elastic modulus (G’), i.e., decreased resistance and stiffness, in scarred vocal folds treated with mesenchymal stem cells compared to non-treated scarred vocal folds. Mucosal wave amplitude was increased in scarred vocal folds treated with mesenchymal stem cells vs. non-treated scarred vocal folds. Conclusion The results from these studies suggest an increased regenerative effect of therapy with mesenchymal stem cells for scarred vocal folds and are encouraging for further clinical studies.
Collapse
Affiliation(s)
- Vibe Lindeblad Wingstrand
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Grønhøj Larsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - David H. Jensen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Bork
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Sebbesen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Balle
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Cell Therapy Facility, Blood Bank, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Woo JH, King SN, Hoffman H, Dailey S, Wang S, Christensen MB, Thibeault SL. MERS versus Standard Surgical Approaches for Porcine Vocal Fold Scarring with Adipose Stem Cell Constructs. Otolaryngol Head Neck Surg 2016; 155:612-23. [PMID: 27165681 DOI: 10.1177/0194599816645772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Cells, scaffold, and surgical approaches are important for regeneration of the lamina propria of the scarred vocal fold (VF). Microendoscopy of Reinke's space (MERS) is a surgical approach used to access the lamina propria. The present study evaluated MERS in the treatment of VF scarring as compared with standardized approaches for the treatment of VF scarring with adipose stem cell constructs. STUDY DESIGN Animal study. SETTING Academic center. SUBJECTS AND METHODS VF injury was performed bilaterally to induce scarring in 20 pigs. Eight weeks after injury, pigs were classified into no treatment, minithyrotomy, VF injection, VF incision/dissection, and MERS. All groups (except control) were implanted with adipose stem cell and hyaluronan. Four weeks after treatment, histology for collagen, hyaluronan, and fibronectin; mRNA expression for α-smooth muscle actin, tumor growth factor β1, collagen 1α1, collagen 3α1, matrix metalloproteinase 2, basic fibroblast growth factor, and hepatocyte growth factor; and tissue rheology were evaluated. RESULTS Differences were measured among surgical approaches for protein levels of collagen, hyaluronan, and fibronectin (P = .0133, P < .0001, and P = .0025, respectively). Fibroblast growth factor, collagen 1α1, and matrix metalloproteinase 2 transcript levels were different among treatment groups (P = .003, P = .0086, and P = .014, respectively), while no differences were measured for α-smooth muscle actin, tumor growth factor β1, hepatocyte growth factor, and collagen 3α1. Rheologically, significant differences were not measured between groups. CONCLUSION MERS is a promising surgical approach for the treatment of VF scarring, optimizing the placement of implanted biomaterials.
Collapse
Affiliation(s)
- Joo Hyun Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Gil Medical Center, Gachon University, Incheon, Korea
| | - Suzanne N King
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Henry Hoffman
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Seth Dailey
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah Wang
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Stem Cell Therapy in Injured Vocal Folds: A Three-Month Xenograft Analysis of Human Embryonic Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:754876. [PMID: 26557696 PMCID: PMC4628720 DOI: 10.1155/2015/754876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/08/2015] [Indexed: 11/29/2022]
Abstract
We have previously shown that human embryonic stem cell (hESC) therapy to injured rabbit vocal folds (VFs) induces human tissue generation with regained VF vibratory capacity. The aims of this study were to test the sustainability of such effect and to what extent derivatives of the transplanted hESCs are propagated in the VFs. The VFs of 14 New Zealand rabbits were injured by a localized resection. HESCs were transplanted to 22 VFs which were analyzed for persistence of hESCs after six weeks and after three months. At three months, the VFs were also analyzed for viscoelasticity, measured as dynamic viscosity and elastic modulus, for the lamina propria (Lp) thickness and relative content of collagen type I. Three months after hESC cell therapy, the dynamic viscosity and elastic modulus of the hESC treated VFs were similar to normal controls and lower than untreated VFs (p ≤ 0.011). A normalized VF architecture, reduction in collagen type I, and Lp thickness were found compared with untreated VFs (p ≤ 0.031). At three months, no derivatives of hESCs were detected. HESCs transplanted to injured rabbit VFs restored the vibratory characteristics of the VFs, with maintained restored function for three months without remaining hESCs or derivatives.
Collapse
|
16
|
Hiwatashi N, Hirano S, Suzuki R, Kawai Y, Mizuta M, Kishimoto Y, Tateya I, Kanemaru SI, Nakamura T, Dezawa M, Ito J. Comparison of ASCs and BMSCs combined with atelocollagen for vocal fold scar regeneration. Laryngoscope 2015; 126:1143-50. [PMID: 26403510 DOI: 10.1002/lary.25667] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/31/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold scar remains a therapeutic challenge. Mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. Nevertheless, few in vivo studies have directly compared various sources of MSCs. The aim of this study was to investigate the therapeutic potential of adipose-derived stromal cells (ASCs) in comparison with bone marrow-derived stromal cells (BMSCs) for vocal fold regeneration. STUDY DESIGN Prospective animal experiments with controls. METHODS Two months after stripping of the lamina propria, 18 beagles were divided into four implantation groups: atelocollagen alone (collagen group), atelocollagen with BMSCs (BMSC-collagen), atelocollagen with ASCs (ASC-collagen), or a sham-treated group. One or 6 months after implantation, vibratory and histological examinations were performed. RESULTS Mucosal vibration was significantly improved in both of the MSC-implanted groups compared with the sham-treated group, whereas only the ASC-collagen group showed a significantly smaller glottal gap than the collagen group. Moreover, in the ASC-collagen group, a significant reduction of collagen density was observed compared to the sham-treated group, and there was a trend for better restoration of hyaluronic acid (HA). Implanted MSCs were detected 1 month postimplantation; however, none survived 6 months postimplantation. CONCLUSIONS Although implantation of an atelocollagen sponge and ASCs into vocal fold scars induced vibratory recovery comparable to that of BMSCs, ASCs might have more potential in terms of restoration of HA and suppression of excessive collagen deposition. LEVEL OF EVIDENCE NA Laryngoscope, 126:1143-1150, 2016.
Collapse
Affiliation(s)
- Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Otolaryngology, New York University School of Medicine, New York, New York
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanobu Mizuta
- Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-Ichi Kanemaru
- Translational Research Informatics Center, The Foundation for Biomedical Research and Innovation, Kobe, Japan.,Department of Otolaryngology-Head and Neck Surgery, Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University, Graduate School of Medicine, Sendai, Japan
| | - Juichi Ito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Multidimensional Analysis on the Effect of Vocal Function Exercises on Aged Vocal Fold Atrophy. J Voice 2015; 29:638-44. [DOI: 10.1016/j.jvoice.2014.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/28/2014] [Indexed: 11/20/2022]
|
18
|
Yang W, Lee S, Yoon J, Lee JI. Stem cell therapy status in veterinary medicine. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0426-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Hiwatashi N, Hirano S, Mizuta M, Kobayashi T, Kawai Y, Kanemaru SI, Nakamura T, Ito J, Kawai K, Suzuki S. The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar. J Tissue Eng Regen Med 2015; 11:1598-1609. [DOI: 10.1002/term.2060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/26/2015] [Accepted: 04/29/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine, Kyoto University; Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine, Kyoto University; Japan
| | - Masanobu Mizuta
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine, Kyoto University; Japan
- Department of Otolaryngology; Vanderbilt University; Nashville TN USA
| | - Toshiki Kobayashi
- Department of Otorhinolaryngology; Jikei University of Medicine; Tokyo Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine, Kyoto University; Japan
| | - Shin-ichi Kanemaru
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine, Kyoto University; Japan
- Department of Otolaryngology-Head and Neck Surgery; Kitano Hospital, Tazuke Kofukai Medical Research Institute; Osaka Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Science; Kyoto University; Japan
| | - Juichi Ito
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine, Kyoto University; Japan
| | - Katsuya Kawai
- Department of Plastic and Reconstructive Surgery; Graduate School of Medicine, Kyoto University; Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery; Graduate School of Medicine, Kyoto University; Japan
| |
Collapse
|
20
|
Hoffman MR, Glab R, Gunderson M, Maytag AL, Yang DT, Jiang JJ, Dailey SH. Functional and Histological Evaluation following Canine Vocal Fold Reconstruction Using Composite Thyroid Ala Perichondrium Flaps. Otolaryngol Head Neck Surg 2015; 153:79-87. [PMID: 25883099 DOI: 10.1177/0194599815578824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES/HYPOTHESES We evaluated the effects of vocal fold reconstruction using a composite thyroid ala perichondrium flap (CTAP) after unilateral vocal fold stripping in beagles. We hypothesized that CTAP would improve glottic closure, decrease phonation threshold pressure, and decrease perturbation. In addition, vocal folds with CTAP would exhibit neovascularization and fat with increased von Willebrand factor (vWF) and smooth muscle actin (SMA), reflecting neoangiogenesis and flap viability. STUDY DESIGN Randomized controlled trial using beagles. SETTING University laboratory. METHODS Ten beagles underwent unilateral vocal fold stripping. Dogs in the scar-only group (n = 5) were sacrificed at 1 month. Dogs in the CTAP group (n = 5) underwent ipsilateral reconstruction with CTAP at 1 month and were sacrificed at 2 months. Excised larynx experiments evaluated vocal fold vibration using aerodynamic, acoustic, and mucosal wave measurements. Qualitative evaluation of vocal fold morphology and quantitative analysis of elastin, collagen, glycosaminoglycans, vWF, SMA, and hyaluronic acid were performed. RESULTS Phonation threshold pressure (P = .005), percent jitter (P = .010), percent shimmer (P = .007), and open quotient (P = .007) were lower in the CTAP group. Neovascularization (P = .0079) and fat (P = .1667) occurred more with CTAP, although the difference in fat was not significant. von Willebrand factor was higher with CTAP vs contralateral normal fold (P = .110), although not statistically significant. Smooth muscle actin was higher with CTAP vs contralateral normal fold (P = .038) and scarred vocal folds (P = .022). CONCLUSIONS Composite thyroid ala perichondrium flap restored glottic closure and vibratory periodicity following vocal fold scarring. Additional investigation on biologic response is warranted. Composite thyroid ala perichondrium flap offers an autologous, vascularized implant that can improve both vocal fold structure and function.
Collapse
Affiliation(s)
- Matthew R Hoffman
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rachel Glab
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - McLean Gunderson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Allison L Maytag
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David T Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jack J Jiang
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Seth H Dailey
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Choi JW, Park JK, Chang JW, Kim DY, Kim MS, Shin YS, Kim CH. Small intestine submucosa and mesenchymal stem cells composite gel for scarless vocal fold regeneration. Biomaterials 2014; 35:4911-8. [DOI: 10.1016/j.biomaterials.2014.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/03/2014] [Indexed: 12/09/2022]
|
22
|
Hu R, Xu W, Ling W, Wang Q, Wu Y, Han D. Characterization of extracellular matrix proteins during wound healing in the lamina propria of vocal fold in a canine model: a long-term and consecutive study. Acta Histochem 2014; 116:730-5. [PMID: 24503000 DOI: 10.1016/j.acthis.2013.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/27/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
Abstract
The characterization of vocal fold wound healing can be reflected by the changes of extracellular matrix (ECM) proteins in the lamina propria. Although the expression of ECM proteins after vocal fold injury has been widely studied, such observations have lacked time continuity and integrity of marker proteins. In this study, we observed the morphology of injured vocal folds in a canine model. We used immunofluorescence staining to evaluate the expression and distribution of ECM proteins, such as collagen, elastin, hyaluronic acid, decorin and fibronectin, from 15 days to 6 months after injury. The results showed that large amounts of ECM proteins were secreted 15-40 days after injury. Collagen and fibronectin secretion increased significantly, and were disorderly deposited. The secretion of decorin and elastin increased slightly, while hyaluronic acid decreased. The 15-40 day post-injury period may be the critical intervention stage in wound healing of vocal folds. From 3 to 6 months after injury, the secretion of ECM proteins declined. However, collagen and fibronectin secretion were still significantly higher than normal with irregular arrangement, while the secretion of elastin, hyaluronic acid and decorin decreased significantly at 6 months. This led to vocal fold inelasticity and stiffness, which required effective long-term interventions to treat scar formation.
Collapse
Affiliation(s)
- Rong Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wei Ling
- Department of Anatomy, Capital Medical University, Beijing 100069, China
| | - Qi Wang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Yan Wu
- Department of Anatomy, Capital Medical University, Beijing 100069, China.
| | - Demin Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
23
|
Kim YM, Oh SH, Choi JS, Lee S, Ra JC, Lee JH, Lim JY. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope 2013; 124:E64-72. [DOI: 10.1002/lary.24405] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/06/2013] [Accepted: 08/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| | - Se H. Oh
- Department of Nanobiomedical Science and WCU Research Center; Dankook University; Cheonan
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| | - Songyi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| | - Jeong C. Ra
- Stem Cell Research Center, RNL Bio Co., Ltd.; Seoul
| | - Jin H. Lee
- Department of Advanced Materials; Hannam University; Daejeon Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| |
Collapse
|
24
|
Kim YM, Yi T, Choi JS, Lee S, Jang YH, Kim CH, Song SU, Lim JY. Bone marrow-derived clonal mesenchymal stem cells as a source of cell therapy for promoting vocal fold wound healing. Ann Otol Rhinol Laryngol 2013; 122:121-30. [PMID: 23534127 DOI: 10.1177/000348941312200208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES We investigated whether mouse bone marrow-derived clonal mesenchymal stem cells (BM-cMSCs) could promote vocal fold (VF) wound healing by using a xenograft animal model. METHODS Homogeneous BM-cMSCs isolated by a subfractionation culturing method from the bone marrow aspirates of green fluorescent protein transgenic mice were injected into the VFs of rabbits immediately after direct mechanical injury. Macroscopic, biomechanical (rheometric), histologic, immunohistochemical, and transcriptional evaluations were performed on the scarred VFs 1 to 3 months after injury. Engraftment of the implanted BM-cMSCs was determined by detection of green fluorescent protein cells in the recipient VF by confocal microscopy. RESULTS The BM-cMSC-treated VFs showed improved morphological properties and viscoelasticity as compared to control VFs injected with phosphate-buffered saline solution. Histologic and immunohistochemical evaluations showed less excessive collagen deposition and increased density of glycosaminoglycans in the BM-cMSC-treated VFs as compared to the control VFs at 3 months after injury (p = 0.003 and p = 0.037, respectively). BM-cMSC transplantation led to a significant attenuation of fibronectin (p = 0.036) and transforming growth factor beta1 (p = 0.042) messenger RNA expression at 1 month after injury. Green fluorescent protein-expressing BM-cMSCs engrafted in recipient VFs were found at 1 month after implantation. CONCLUSIONS BM-cMSCs appeared to survive in the injured xenogeneic VFs after transplantation for up to 1 month and favorably enhanced the wound healing of VFs after injury. We conclude that BM-cMSCs are a possible source of cell therapy for vocal fold regeneration.
Collapse
Affiliation(s)
- Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, the Clinical Research Center,Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen X, Thibeault SL. Cell-cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel. J Tissue Eng Regen Med 2013; 10:437-46. [PMID: 23653427 DOI: 10.1002/term.1757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/07/2013] [Accepted: 03/25/2013] [Indexed: 01/18/2023]
Abstract
Mesenchymal stromal cells (MSCs) are multipotential adult cells present in all tissues. Paracrine effects and differentiating ability make MSCs an ideal cell source for tissue regeneration. However, little is known about how interactions between implanted MSCs and native cells influence cellular growth, proliferation, and behaviour. By using an in vitro three-dimensional (3D) co-culture assay of normal or scarred human vocal fold fibroblasts (VFFs) and bone marrow-derived MSCs (BM-MSCs) in a uniquely suited hyaluronan hydrogel (HyStem-VF), we investigated cell morphology, survival rate, proliferation and protein and gene expression of VFFs and BM-MSCs. BM-MSCs inhibited cell proliferation of both normal and scarred VFFs without changes in VFF morphology or viability. BM-MSCs demonstrated decreased proliferation and survival rate after 7 days of co-culture with VFFs. Interactions between BM-MSCs and VFFs led to a significant increase in protein secretion of collagen I and hepatocyte growth factor (HGF) and a decrease of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6). In particular, BM-MSCs significantly upregulated matrix metalloproteinase 1 (MMP1) and HGF gene expression for scarred VFFs compared to normal VFFs, indicating the potential for increases in extracellular matrix remodelling and tissue regeneration. Application of BM-MSCs-hydrogels may play a significant role in tissue regeneration, providing a therapeutic approach for vocal fold scarring. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xia Chen
- Department of Surgery, University of Wisconsin at Madison, WI, USA
| | | |
Collapse
|
26
|
Jakob M, Hemeda H, Bruderek K, H Gerstner AO, Bootz F, Lang S, Brandau S. Comparative functional cell biological analysis of mesenchymal stem cells of the head and neck region: potential impact on wound healing, trauma, and infection. Head Neck 2012; 35:1621-9. [PMID: 23152157 DOI: 10.1002/hed.23196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent mesenchymal progenitor cells, originally identified in bone-marrow. Little is known about MSCs of the head and neck region. We investigated cell biological properties with a potential impact on wound healing of 2 different tissue-resident MSC populations. METHODS MSCs were isolated from human nasal mucosa (nmMSCs) and parotid gland (pgMSCs). Clonogenic potential, cell surface markers, cytokine secretion, chemokine receptor expression, mobility, and adhesion to extracellular matrix were examined in unstimulated and stimulated MSCs. RESULTS NmMSCs had the higher clonogenic potential. PgMSCs showed a broader panel of chemokine receptor expression and displayed higher mobility, especially after challenge with bacterial lipopolysaccharide (LPS). NmMSCs were less mobile and showed increased LPS-induced secretion of the inflammatory cytokine interleukin-8 (IL-8) compared with pgMSCs. CONCLUSION These data highlight functional differences between tissue-resident MSCs of the head and neck region, which may impact functional properties of these cells in response to trauma or infection.
Collapse
Affiliation(s)
- Mark Jakob
- Department of Otorhinolaryngology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Ohno S, Hirano S, Kanemaru SI, Mizuta M, Ishikawa S, Tateya I, Nakamura T, Ito J. Role of circulating MSCs in vocal fold wound healing. Laryngoscope 2012; 122:2503-10. [DOI: 10.1002/lary.23543] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 01/14/2023]
|
28
|
Teller SS, Farran AJE, Xiao L, Jiao T, Duncan RL, Clifton RJ, Jia X. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering. Tissue Eng Part A 2012; 18:2008-19. [PMID: 22741523 DOI: 10.1089/ten.tea.2012.0023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10-200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6-9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36-200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a loss tangent of 0.42±0.10. Contrary to the results of some other investigators, no significant frequency dependence was observed. This lack of observable frequency dependence may be due to the modest frequency range of the experiments and the wide range of stiffnesses observed within nominally similar sample types.
Collapse
Affiliation(s)
- Sean S Teller
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bulgin D, Irha E, Hodzic E, Nemec B. Autologous bone marrow derived mononuclear cells combined with β-tricalcium phosphate and absorbable atelocollagen for a treatment of aneurysmal bone cyst of the humerus in child. J Biomater Appl 2012; 28:343-53. [PMID: 22693044 DOI: 10.1177/0885328212451047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aneurysmal bone cyst is a benign, locally destructive lesion of bone. Based on progressive cortical thinning pathological fractures are common, and are often the presenting feature. Despite the long experience of orthopaedists, radiologists and pathologists with aneurysmal bone cyst there is limited knowledge regarding the cause of the lesion and optimal treatment. Common methods of treatment vary considerably in the literature, particularly in children. A large variety of bone substitutes have been used to fill the cystic lesions. To date there has been no graft material which can be regarded as completely satisfactory. Our experience with freshly isolated autologous bone marrow derived mononuclear cells combined with β-tricalcium phosphate and absorbable atelocollagen for bone formation is presented. The concept of this treatment is based on stimulation of natural events continuously present in living bone appear to be a reasonable and beneficial alternative to promote healing of bone cysts and offering both osteoinduction and osteoconductive features.
Collapse
|
30
|
Ohno S, Hirano S, Kanemaru SI, Kitani Y, Kojima T, Ishikawa S, Mizuta M, Tateya I, Nakamura T, Ito J. Transforming growth factor β3 for the prevention of vocal fold scarring. Laryngoscope 2012; 122:583-9. [PMID: 22252900 DOI: 10.1002/lary.22389] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/02/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold scarring poses a therapeutic challenge. It causes hoarseness and decreases the quality of life. Transforming growth factor β3 (TGFβ3) is highly expressed in fetal wounds that heal without scarring, and administration of TGFβ3 has been reported to prevent scarring of the skin and the buccal mucosa. Thus TGFβ3 is considered to be a key molecule in scar-free healing. This study aimed to examine the ability of TGFβ3 to prevent vocal fold scarring, with particular attention paid to the distribution of extracellular matrices and functional outcomes. STUDY DESIGN Prospective study using an animal model. METHODS Ten beagles were used in this study; 500 μL of TGFβ3 (0.5 μg/mL: 5 beagles) or saline (5 beagles) was injected into the vocal fold lamina propria. Fifteen minutes after injection, vocal folds were injured by stripping off the entire layer of the lamina propria. Six months after surgery, animals were euthanized and the larynges were harvested. Vibratory and histologic examinations were performed. RESULTS The administration of TGFβ3 suppressed granulation-tissue formation and scarring. TGFβ3-treated vocal folds showed significantly better vibratory properties, resembling normal vocal folds. Histologic analysis revealed favorable restoration of elastin and hyaluronic acid in the lamina propria. The distribution of collagen was well organized, and collagen deposition was less dense in TGFβ3-treated vocal folds compared to sham-treated vocal folds. CONCLUSIONS Administration of TGFβ3 before injury significantly suppressed scar formation and induced favorable restoration of extracellular matrices in the vocal fold lamina propria, resulting in much improved phonatory function.
Collapse
Affiliation(s)
- Satoshi Ohno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|