1
|
Jaleel Z, Aboueisha MA, Adcock K, Cvancara DJ, Martinez V, Kinney G, Perkel DJ, Bhatt NK. Recordings of Superior Laryngeal Nerve Sensory Nerve Action Potentials in a Rat Model. Laryngoscope 2024; 134:5028-5033. [PMID: 39132845 DOI: 10.1002/lary.31675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Superior laryngeal nerve (SLN) function is critical to laryngeal sensation. Sensory dysfunction in the larynx, mediated through the internal branch of the superior laryngeal nerve (iSLN), is thought to occur with aging and neurodegenerative disease. However, objective analysis of iSLN neurophysiology is difficult due to its anatomic location and small diameter. This study measures sensory nerve action potentials (SNAP) from the iSLN in a rat model. METHODS SNAP data were obtained from two adult rat strains (Sprague-Dawley, SD and Fischer 344 × Brown Norway F1 Hybrid rats, FBN). Evoked responses were obtained by stimulating the main trunk of the SLN and recording the response using a 160-μm cuff electrode placed around the iSLN. SNAP were averaged from 10 stimulations. Laryngeal adductor reflex (LAR) threshold measurements were obtained with stimulation of the iSLN and direct laryngoscopy. The sections of the iSLN were obtained for histologic analysis. RESULTS SLN-evoked responses were successfully obtained in 18 hemi-laryngeal preparations (SD n = 13 and FBN n = 5) with corresponding LAR threshold measurements. Mean(±SD) SNAP latency, total duration, amplitude, negative durations, and intensity were 2.28 ms (±0.56), 2.13 ms (±0.70), 879 μV (±535), and 0.69 mA (±0.25), respectively. SLN stimulation threshold to elicit an LAR was of 0.84 mA (±0.31). CONCLUSION It is feasible to record evoked SLN responses in two adult rat strains. This work may lead to a tractable animal model for objective measurements of SLN neurophysiology with various disease states. LEVEL OF EVIDENCE NA Laryngoscope, 134:5028-5033, 2024.
Collapse
Affiliation(s)
- Zaroug Jaleel
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Mohamed A Aboueisha
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine Suez Canal University, Ismailia, Egypt
| | - Kelson Adcock
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - David J Cvancara
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Vicente Martinez
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Greg Kinney
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - David J Perkel
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
- Department of Biology, University of Washington, Seattle, Washington, U.S.A
| | - Neel K Bhatt
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| |
Collapse
|
2
|
González-García M, Carrillo-Franco L, Morales-Luque C, Ponce-Velasco M, Gago B, Dawid-Milner MS, López-González MV. Uncovering the neural control of laryngeal activity and subglottic pressure in anaesthetized rats: insights from mesencephalic regions. Pflugers Arch 2024; 476:1235-1247. [PMID: 38856775 PMCID: PMC11271367 DOI: 10.1007/s00424-024-02976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.
Collapse
Affiliation(s)
- M González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain.
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain.
- IBIMA Plataforma BIONAND, Málaga, Spain.
| | - L Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - C Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - M Ponce-Velasco
- IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Cell Biology, University of Málaga, Málaga, Spain
| | - B Gago
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - M S Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain
- IBIMA Plataforma BIONAND, Málaga, Spain
| | - M V López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, Málaga, Spain.
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, Málaga, Spain.
- IBIMA Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
3
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
4
|
Cvancara DJ, de Leon JA, Baertsch HC, Jaleel Z, Kinney G, Martinez V, Bhatt NK. Neurophysiology of the Superior Laryngeal Nerve in an In Vivo Rat Model. Laryngoscope 2024; 134:1778-1784. [PMID: 37787452 DOI: 10.1002/lary.31087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE The superior laryngeal nerve (SLN) is fundamental in laryngeal sensation, cough reflex, and pitch control. SLN injury has substantial consequences including altered sensation, aspiration, and dysphonia. To date, in vivo measurement of the SLN remains elusive. The purpose of this study was to assess the feasibility of recording motor and sensory evoked potentials in a rat SLN model. METHODS Twenty-two rat hemi-laryngeal preparations (n = 11) were obtained from 4-month-old Sprague-Dawley rats and included in this study. Compound motor action potentials (CMAPs) and motor unit number estimation (MUNE) were calculated by stimulating the SLN at the point of medial extension near the carotid artery and by placing a recording electrode on the cricothyroid muscle. Sensory response was determined through stimulation of the SLN and laryngoscopic visualization of a laryngeal adductor reflex (LAR). SLN and cricothyroid muscle cross-sections were stained and histologic morphometrics were quantified. RESULTS Laryngeal evoked potentials were successfully obtained in all trials. Mean CMAP latency and negative durations were 0.99 ± 0.57 ms and 1.49 ± 0.57 ms, respectively. The median MUNE was 2.06 (IQR 1.88, 3.51). LAR was induced with a mean intensity of 0.69 ± 0.20 mV. Mean axon count, myelin thickness, and g-ratio were 681 ± 192.2, 1.72 ± 0.26, and 0.45 ± 0.04, respectively. CONCLUSIONS This study demonstrates the feasibility of recording evoked response potentials following SLN stimulation. We hypothesize that this work will provide a tractable animal model to study changes in laryngeal sensation and cricothyroid motor function with aging, neurodegenerative disease, aspiration, or nerve injury. LEVEL OF EVIDENCE NA Laryngoscope, 134:1778-1784, 2024.
Collapse
Affiliation(s)
- David J Cvancara
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Julio A de Leon
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Hans C Baertsch
- Keck School of Medicine, University of Southern California, Los Angeles, California, U.S.A
| | - Zaroug Jaleel
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Greg Kinney
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Vicente Martinez
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, U.S.A
| | - Neel K Bhatt
- Department of Otolaryngology - Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, U.S.A
| |
Collapse
|
5
|
Hernández-Morato I, Yu VX, Pitman MJ. A review of the peripheral proprioceptive apparatus in the larynx. Front Neuroanat 2023; 17:1114817. [PMID: 36910514 PMCID: PMC9998684 DOI: 10.3389/fnana.2023.1114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
The larynx is an organ of the upper airway that participates in breathing, glutition, voice production, and airway protection. These complex functions depend on vocal fold (VF) movement, facilitated in turn by the action of the intrinsic laryngeal muscles (ILM). The necessary precise and near-instantaneous modulation of each ILM contraction relies on proprioceptive innervation of the larynx. Dysfunctional laryngeal proprioception likely contributes to disorders such as laryngeal dystonia, dysphagia, vocal fold paresis, and paralysis. While the proprioceptive system in skeletal muscle derived from somites is well described, the proprioceptive circuitry that governs head and neck structures such as VF has not been so well characterized. For over two centuries, researchers have investigated the question of whether canonical proprioceptive organs, muscle spindles, and Golgi tendon organs, exist in the ILM, with variable findings. The present work is a state-of-the-art review of the peripheral component of laryngeal proprioception, including current knowledge of canonical and possible alternative proprioceptive circuitry elements in the larynx.
Collapse
Affiliation(s)
- Ignacio Hernández-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Victoria X Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022; 10:3082. [PMID: 36551838 PMCID: PMC9775346 DOI: 10.3390/biomedicines10123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
Collapse
Affiliation(s)
- Wan-Chiew Ng
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Wengert ER, Wenker IC, Wagner EL, Wagley PK, Gaykema RP, Shin JB, Patel MK. Adrenergic Mechanisms of Audiogenic Seizure-Induced Death in a Mouse Model of SCN8A Encephalopathy. Front Neurosci 2021; 15:581048. [PMID: 33762902 PMCID: PMC7982890 DOI: 10.3389/fnins.2021.581048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
8
|
Jefferys JGR, Arafat MA, Irazoqui PP, Lovick TA. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia 2019; 60:2346-2358. [PMID: 31705531 DOI: 10.1111/epi.16374] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- John G. R. Jefferys
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Pharmacology Oxford University Oxford UK
| | - Muhammad A. Arafat
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Electrical and Computer Engineering Purdue University West Lafayette IN USA
| | - Pedro P. Irazoqui
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- Department of Electrical and Computer Engineering Purdue University West Lafayette IN USA
| | - Thelma A. Lovick
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| |
Collapse
|
9
|
Hernandez-Morato I, Tian L, Montalbano M, Pitman MJ. Expression of trophic factors receptors during reinnervation after recurrent laryngeal nerve injury. Laryngoscope 2019; 129:2537-2542. [PMID: 30811036 DOI: 10.1002/lary.27649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/21/2018] [Accepted: 09/04/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVE An injury of the recurrent laryngeal nerve (RLN) triggers axonal regeneration but results in a poor functional recovery. Netrin-1 and glial cell-derived neurotrophic factor (GDNF) expression are up-regulated in laryngeal muscles during RLN regeneration, but the role of their receptors produced in the nucleus ambiguus is unknown. The aim of this work was to determine the timing of the production of Netrin-1 and GDNF receptors during RLN regeneration and correlate this with the previously identified timing of up-regulation of their trophic factors in the laryngeal muscles. STUDY DESIGN Laboratory experiment with rat model. METHODS The right RLN was transected and dextran amine tracer applied. At 7, 14, and 21 days postinjury (DPI), brainstems were removed and harvested. Immunostaining was performed for Netrin-1 (deleted in colorectal carcinoma [DCC], UNC5A) and GDNF receptors (rearranged during transfection [Ret], glycosylphosphatidylinositol-linked cell surface receptors [GFRα1, GFRα2, GFRα3]). The timing and type of receptor production relative to injury as well as their position in the nucleus ambiguus was analyzed. RESULTS Netrin-1 UNC5A receptors were minimal in the nucleus ambiguus during RLN regeneration. DCC, the receptor that plays an attract role, was immunopositive from 7 to 21 DPI. All GDNF receptors, except GFRα2, were clearly positive from 7 to 14 DPI. No differences of production were observed according to the position of the motor neurons in the nucleus ambiguus. CONCLUSION An injury of the RLN leads to a higher production of Netrin-1 DCC and GDNF receptors in the nucleus ambiguus. The timing of receptor production is similar to up-regulation of their trophic factors in the laryngeal muscles. LEVEL OF EVIDENCE NA. Laryngoscope, 129:2537-2542, 2019.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Likun Tian
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Michael Montalbano
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| |
Collapse
|
10
|
Hernandez-Morato I, Koss S, Sharma S, Pitman MJ. Influence of Netrin-1 on reinnervation of laryngeal muscles following recurrent laryngeal nerve injury. Neurosci Lett 2017; 653:244-249. [DOI: 10.1016/j.neulet.2017.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
11
|
Hernandez-Morato I, Pitman MJ, Sharma S. Muscle specific nucleus ambiguus neurons isolation and culturing. J Neurosci Methods 2016; 273:33-39. [PMID: 27475929 DOI: 10.1016/j.jneumeth.2016.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral nerve injury leads to a regenerative state. However, the reinnervation process is highly non-selective. Growing axons are often misrouted and establish aberrant synapsis to abductor or adductor muscles. Determining the complex properties of abductor and adductor motoneurons in a neuron culture, may lay the groundwork for future studies on axon guidance, leading to a clinical treatment for a selective reinnervation. NEW METHOD In the present study we develop a neuron culture protocol to isolate recurrent laryngeal nerve abductor and adductor motoneurons in order to study their unique properties. Comparison with existing methods the best period to perform the present protocol for postnatal rat cranial motoneurons isolation was determined. In addition, the method allows identification of specific motoneurons from other primary motoneurons and interneurons within brainstem. CONCLUSION The present protocol will allow investigators to perform targeted and novel studies of the mechanisms of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Cell Biology and Anatomy, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, New York 10595, United States; Department of Otolaryngology-Head and Neck Surgery, Columbia University, Medical Center, 630 West, 168th Street, New York, NY 10032, United States.
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, Medical Center, 630 West, 168th Street, New York, NY 10032, United States; Department of Otolaryngology, New York Eye and Ear Infirmary of Mount Sinai, 310E, 14th Street, 6th Floor, New York Eye and Ear Infirmary, New York, NY 10003, United States
| | - Sansar Sharma
- Department of Cell Biology and Anatomy, New York Medical College, Basic Sciences Building, 15 Dana Road, Valhalla, New York 10595, United States
| |
Collapse
|
12
|
Bijangi-Vishehsaraei K, Blum K, Zhang H, Safa AR, Halum SL. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury. Ann Otol Rhinol Laryngol 2015; 125:247-56. [PMID: 26530091 DOI: 10.1177/0003489415608866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. METHODS F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. RESULTS Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. CONCLUSIONS The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries.
Collapse
Affiliation(s)
| | - Kevin Blum
- Purdue University Weldon School of Biomedical Engineering, West Lafayette, Indiana, USA
| | - Hongji Zhang
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana, USA
| | - Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana, USA
| | - Stacey L Halum
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Hernández-Morato I, Pascual-Font A, Ramírez C, Matarranz-Echeverría J, McHanwell S, Vázquez T, Sañudo JR, Valderrama-Canales FJ. Somatotopy of the neurons innervating the cricothyroid, posterior cricoarytenoid, and thyroarytenoid muscles of the rat's larynx. Anat Rec (Hoboken) 2013; 296:470-9. [PMID: 23381831 DOI: 10.1002/ar.22643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/07/2012] [Indexed: 11/08/2022]
Abstract
Neurons innervating the intrinsic muscles of the larynx are located within the nucleus ambiguus but the precise distribution of the neurons for each muscle is still a matter for debate. The purpose of this study was to finely determine the position and the number of the neurons innervating the intrinsic laryngeal muscles cricothyroid, posterior cricoarytenoid, and thyroarytenoid in the rat. The study was carried out in a total of 28 Sprague Dawley rats. The B subunit of the cholera toxin was employed as a retrograde tracer to determine the locations, within the nucleus ambiguus, of the neurons of these intrinsic laryngeal muscles following intramuscular injection. The labelled neurons were found ipsilaterally in the nucleus ambiguus grouped in discrete populations with reproducible rostrocaudal and dorsoventral locations among the sample of animals. Neurons innervating the cricothyroid muscle were located the most rostral of the three populations, neurons innervating the posterior cricoarytenoid were found more caudal, though there was a region of rostrocaudal overlap between these two populations. The most caudal were the neurons innervating the thyroarytenoid muscle, presenting a variable degree of overlap with the posterior cricoarytenoid muscle. The mean number (±SD) of labelled neurons was found to be 41 ± 9 for the cricothyroid, 39 ± 10 for the posterior cricoarytenoid and 33 ± 12 for the thyroarytenoid.
Collapse
Affiliation(s)
- Ignacio Hernández-Morato
- Department of Human Anatomy and Embryology I, Faculty of Medicine, Complutense University of Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|