1
|
Li X, Lin X, Xie X, Chen X, Xie Y, Sun G. Histological characterization of rat vocal fold across different postnatal periods. Laryngoscope Investig Otolaryngol 2024; 9:e70018. [PMID: 39346782 PMCID: PMC11437529 DOI: 10.1002/lio2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
Objective To evaluate the vocal fold histological characteristics during different postnatal periods in rats, especially older rats. Methods Sprague-Dawley rats aged 4 days, 4 and 12 weeks, and 12 and 24 months were used for the experiment. Five larynges were obtained for each age and cut into 5-μm consecutive sections. The expression of Ki-67 was assessed using immunohistochemistry to examine cell proliferation. Elastic van Gieson staining was used to detect the collagen and elastin concentrations. The cell type was determined using multicolor immunofluorescence. Results Ki-67 was not expressed in the macula flava (MF) of 12-week-, 12-month-, and 24-month-old adults. Collagen fibers in the lamina propria (LP) increased with age. The elastic fiber concentrations in the LP decreased significantly at 24 months (p < .01) but remained stable in the MF. All posterior MF cells showed strong glial fibrillary acidic protein and vimentin-positive reactions with weaker expressions of CD68 and α-smooth muscle actin (α-SMA). The myofibroblasts (α-SMA-positive) and macrophages (CD68-positive) in the LP of the 24-month-old rats were significantly the highest (p < .01). Conclusion The extracellular matrix in the LP increases with age, presenting as an increase in collagen with the loss of elastin, which may be due to myofibroblast proliferation. Moreover, the cellular properties or extracellular matrix components of the mature MF in rats are comparable to those in humans.
Collapse
Affiliation(s)
- Xumao Li
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xinsheng Lin
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xinqiao Xie
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiangyu Chen
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yuhui Xie
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Guangbin Sun
- Department of Otorhinolaryngology‐Head and Neck SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Ozawa S, Mukudai S, Kaneko M, Kinoshita S, Hashimoto K, Sugiyama Y, Hashimoto S, Akaki J, Hirano S. Anti-inflammatory and Antioxidant Effects of Japanese Herbal Medicine Kyoseihatekigan on Vocal Fold Wound Healing. J Voice 2024; 38:503-509. [PMID: 34836738 DOI: 10.1016/j.jvoice.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The Japanese herbal medicine kyoseihatekigan (KHG) has been used to alleviate the symptoms of croaky voice and globus hystericus, and each of its components has anti-inflammatory and antioxidant effects. However, the mechanisms underlying these beneficial actions of KHG on the vocal folds remain largely unknown. We examined the effects of KHG on rat vocal fold wound healing and assessed its anti-inflammatory and antioxidant properties. STUDY DESIGN Animal model. METHODS The vocal folds of Sprague-Dawley rats were unilaterally injured under endoscopy. Rats were divided into three groups based on KHG dosing from pre injury day 4 to post injury day 3: 0 mg/kg/day (sham group), 500 mg/kg/day (1% KHG group) and 1000 mg/kg/day (2% KHG group). Histologic changes were examined to assess the degree of inflammation and oxidative stress at day 3, and fibrosis at day 56. In addition, gene expression related to pro-inflammatory cytokines and transforming growth factor-beta1 (TGF-β1) signaling was examined by quantitative real-time polymerase chain reaction (qPCR). RESULTS Histologic analysis showed that the 1% and 2% KHG treatments significantly decreased cell infiltration and the 4-hydroxy-2-nonenalx-immunopositive area, and increased hyaluronic acid at day 3. Both KHG treatments significantly decreased fibrosis at day 56. qPCR revealed that mRNA of interleukin-1β and cyclooxygenase-2 were significantly suppressed at day 1 and TGF-β1 mRNA was significantly downregulated at day 5 in both KHG groups. CONCLUSIONS The current findings suggest that KHG has anti-inflammatory and antioxidant effects in the early phase of vocal fold wound healing, which can lead to better wound healing with less scar formation.
Collapse
Affiliation(s)
- Satomi Ozawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Junji Akaki
- Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Hirano S, Inufusa H, You F. The Effect of Oxidative Stress on the Human Voice. Int J Mol Sci 2024; 25:2604. [PMID: 38473848 DOI: 10.3390/ijms25052604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The vocal fold vibrates in high frequency to create voice sound. The vocal fold has a sophisticated histological "layered structure" that enables such vibration. As the vibration causes fricative damage to the mucosa, excessive voicing can cause inflammation or injury to the mucosa. Chronic inflammation or repeated injury to the vocal fold occasionally induces scar formation in the mucosa, which can result in severe dysphonia, which is difficult to treat. Oxidative stress has been proven to be an important factor in aggravating the injury, which can lead to scarring. It is important to avoid excessive oxidative stress during the wound healing period. Excessive accumulation of reactive oxygen species (ROS) has been found in the injured vocal folds of rats during the early phase of wound healing. Antioxidants proved to be useful in preventing the accumulation of ROS during the period with less scar formation in the long-term results. Oxidative stress is also revealed to contribute to aging of the vocal fold, in which the mucosa becomes thin and stiff with a reduction in vibratory capacity. The aged voice can be characterized as weak and breathy. It has been confirmed that ROS gradually increases in rat vocal fold mucosa with age, which may cause further damage to the vocal fold. Antioxidants have also proved effective in avoiding aging of the vocal fold in rat models. Recently, human trials have shown significant effects of the antioxidant Twendee X for maintaining the voice of professional opera singers. In conclusion, it is suggested that oxidative stress has a great impact on the damage or deterioration of the vocal folds, and the use of antioxidants is effective for preventing damage of the vocal fold and maintaining the voice.
Collapse
Affiliation(s)
- Shigeru Hirano
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Antioxidant Research, Gifu University, Gifu 501-1194, Japan
| | - Fukka You
- Division of Antioxidant Research, Gifu University, Gifu 501-1194, Japan
| |
Collapse
|
4
|
Bailey TW, do Nascimento NC, Dos Santos AP, Sivasankar MP, Cox A. Comparative proteomic changes in rabbit vocal folds undergoing systemic dehydration and systemic rehydration. J Proteomics 2023; 270:104734. [PMID: 36174951 PMCID: PMC9851386 DOI: 10.1016/j.jprot.2022.104734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND A considerable body of clinical evidence suggests that systemic dehydration can negatively affect voice production, leading to the common recommendation to rehydrate. Evidence for the corrective benefits of rehydration, however, is limited with mixed conclusions, and biological data on the underlying tissue changes with rehydration is lacking. In this study, we used a rabbit model (n = 24) of acute (5 days) water restriction-induced systemic dehydration with subsequent rehydration (3 days) to explore the protein-level changes underlying the molecular transition from euhydration to dehydration and following rehydration using LC-MS/MS protein quantification in the vocal folds. We show that 5-day water restriction led to an average 4.3% decrease in body weight with relative increases in anion gap, Cl-, creatinine, Na+, and relative decreases in BUN, iCa2+, K+, and tCO2 compared to control (euhydrated) animals. A total of 309 differentially regulated (p < 0.05) proteins were identified between the Control and Dehydration groups. We observed a noteworthy similarity between the Dehydration and Rehydration groups, both well differentiated from the Control group, highlighting the distinct timelines of resolution of the clinical symptoms of systemic dehydration and the underlying molecular changes. SIGNIFICANCE Voice disorders are a ubiquitous problem with considerable economic and psychological impact. Maintenance of proper hydration is commonly prescribed as a general vocal hygiene practice. There is evidence that dehydration negatively impacts phonation, but our understanding of the state of vocal folds in the context of systemic dehydration are limited, particular from a molecular perspective. Further, ours is a novel molecular study of the short-term impact of rehydration on the tissue. Given the relatively minimal difference in vocal fold proteomic profiles between the Dehydration and Rehydration groups, our data demonstrate a complex physiological response to acute systemic dehydration, and highlight the importance of considering persistent underlying molecular pathology despite the rapid resolution of clinical measures. This study sets a foundation for future research to confirm the nature of potential beneficial outcomes of clinical recommendations related to hydration.
Collapse
Affiliation(s)
- Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States of America
| | - Naila Cannes do Nascimento
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Andrea Pires Dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States of America
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
5
|
Chi HW, Cho HC, Yang AY, Chen YC, Chen JW. Effects of Different Voice Rest on Vocal Function After Microlaryngeal Surgery: A Systematic Review and Meta-Analysis. Laryngoscope 2023; 133:154-161. [PMID: 35218027 DOI: 10.1002/lary.30082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To compare the results of a voice handicap index (VHI) scale and acoustic parameters in patients who underwent microlaryngeal surgery followed by either short-duration (voice rest for <7 days) or long-duration (≥7 days) voice rest. STUDY DESIGN Systematic review and meta-analysis. METHODS The PubMed, Embase, and Cochrane Library databases were systematically searched for articles published before March 1, 2021. Randomized controlled trials (RCTs) that measured the voice outcomes of patients after different durations and extents of postoperative voice restriction were included in the meta-analysis. RESULTS Four RCTs comprising 112 patients were included in the quantitative meta-analysis. Compared with the long-duration voice rest group, the short-duration group exhibited comparable VHI scores (mean difference [MD], -7.01; 95% CI, -16.12 to 2.09; p = 0.13), maximum phonation time (MD, -2.58; 95% CI, -5.42 to 0.26; p = 0.07), and acoustic variables of jitter (MD, -1.25; 95% CI, -3.43 to 0.94; p = 0.26) and shimmer (MD, -0.79; 95% CI, -2.08 to 0.51; p = 0.24). Subgroup analysis for benign pathology and cold instruments studies demonstrated significantly better VHI scores (MD, -14.45; 95% CI, -26.19 to -2.72; p = 0.02 and MD, -15.98; 95% CI, -28.52 to -3.44; p = 0.01, respectively) in the short-duration group. CONCLUSIONS The limited evidence does not demonstrate benefit in voice outcomes from long-duration voice rest and suggests potential unfavorable effects on compliance and quality of life, providing a rationale for short-duration voice rest after microlaryngeal surgery. More studies are required to determine the optimal duration and extent of postoperative voice rest. LEVEL OF EVIDENCE 1 Laryngoscope, 133:154-161, 2023.
Collapse
Affiliation(s)
- Hua-Wei Chi
- Department of Otolaryngology-Head and Neck Surgery, Yonghe Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Hsiao-Chien Cho
- Department of Otolaryngology-Head and Neck Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| | - An-Yun Yang
- Master Program of Big Data in Biomedicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yong-Chen Chen
- College of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jeng-Wen Chen
- Department of Otolaryngology-Head and Neck Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, National Taiwan University Hospital, Taipei City, Taiwan.,Master Program of Big Data in Biomedicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,College of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Medical Research and Education, Cardinal Tien Hospital, New Taipei City, Taiwan
| |
Collapse
|
6
|
do Nascimento NC, Bailey TW, Santos AP, Duan C, Mohallem R, Franco J, Aryal UK, Xie J, Cox A, Sivasankar MP. Proteomic analysis reveals that aging rabbit vocal folds are more vulnerable to changes caused by systemic dehydration. BMC Genomics 2022; 23:762. [PMID: 36411412 PMCID: PMC9677652 DOI: 10.1186/s12864-022-08975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Older adults are more prone to develop systemic dehydration. Systemic dehydration has implications for vocal fold biology by affecting gene and protein expression. The objective of this study was to quantify vocal fold protein changes between two age groups and hydration status, and to investigate the interaction of age and hydration status on protein expression, which has not been investigated in the context of vocal folds before. Comparative proteomics was used to analyze the vocal fold proteome of 6.5-month-old and > 3-year-old rabbits subjected to water ad libitum or water volume restriction protocol. RESULTS Young and older adult rabbits (n = 22) were either euhydrated (water ad libitum) or dehydrated by water volume restriction. Dehydration was confirmed by body weight loss of - 5.4% and - 4.6% in young and older groups, respectively, and a 1.7-fold increase of kidney renin gene expression in the young rabbits. LC-MS/MS identified 2286 proteins in the rabbit vocal folds of young and older adult rabbits combined. Of these, 177, 169, and 81 proteins were significantly (p ≤ 0.05) affected by age, hydration status, or the interaction of both factors, respectively. Analysis of the interaction effect revealed 32 proteins with opposite change patterns after dehydration between older and young rabbit vocal folds, while 31 proteins were differentially regulated only in the older adult rabbits and ten only in the young rabbits in response to systemic dehydration. The magnitude of changes for either up or downregulated proteins was higher in the older rabbits. These proteins are predominantly related to structural components of the extracellular matrix and muscle layer, suggesting a disturbance in the viscoelastic properties of aging vocal fold tissue, especially when subjected to systemic dehydration. CONCLUSIONS Water restriction is a laboratory protocol to assess systemic dehydration-related changes in the vocal fold tissue that is translatable to human subjects. Our findings showed a higher number of proteins differentially regulated with a greater magnitude of change in the vocal folds of older adult rabbits in the presence of systemic dehydration compared to younger rabbits. The association of these proteins with vocal fold structure and biomechanical properties suggests that older human subjects may be more vulnerable to the effects of systemic dehydration on vocal function. The clinical implications of these protein changes warrant more investigation, but age should be taken into consideration when evaluating vocal treatment recommendations that interfere with body fluid balance.
Collapse
Affiliation(s)
- Naila C. do Nascimento
- grid.169077.e0000 0004 1937 2197Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Taylor W. Bailey
- grid.169077.e0000 0004 1937 2197Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Andrea P. Santos
- grid.169077.e0000 0004 1937 2197Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Chenwei Duan
- grid.169077.e0000 0004 1937 2197Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Rodrigo Mohallem
- grid.169077.e0000 0004 1937 2197Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Jackeline Franco
- grid.169077.e0000 0004 1937 2197Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Uma K. Aryal
- grid.169077.e0000 0004 1937 2197Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Jun Xie
- grid.169077.e0000 0004 1937 2197Department of Statistics, Purdue University, West Lafayette, Indiana, 47907 USA
| | - Abigail Cox
- grid.169077.e0000 0004 1937 2197Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, 47907 USA
| | - M. Preeti Sivasankar
- grid.169077.e0000 0004 1937 2197Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, 47907 USA
| |
Collapse
|
7
|
do Nascimento NC, Dos Santos AP, Mohallem R, Aryal UK, Xie J, Cox A, Sivasankar MP. Furosemide-induced systemic dehydration alters the proteome of rabbit vocal folds. J Proteomics 2022; 252:104431. [PMID: 34823036 DOI: 10.1016/j.jprot.2021.104431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Whole-body dehydration (i.e., systemic dehydration) leads to vocal fold tissue dehydration. Furosemide, a common diuretic prescribed to treat hypertension and edema-associated conditions, induces systemic dehydration. Furosemide also causes voice changes in human speakers, making this method of systemic dehydration particularly interesting for vocal fold dehydration studies. Our objective was to obtain a comprehensive proteome of vocal folds following furosemide-induced systemic dehydration. New Zealand White rabbits were used as the animal model and randomly assigned to euhydrated (control) or furosemide-dehydrated groups. Systemic dehydration, induced by injectable furosemide, was verified by an average body weight loss of -5.5% and significant percentage changes in blood analytes in the dehydrated rabbits compared to controls. Vocal fold specimens, including mucosa and muscle, were processed for proteomic analysis using label-free quantitation LC-MS/MS. Over 1600 proteins were successfully identified across all vocal fold samples; and associated with a variety of cellular components and ubiquitous cell functions. Protein levels were compared between groups showing 32 proteins differentially regulated (p ≤ 0.05) in the dehydrated vocal folds. These are mainly involved with mitochondrial translation and metabolism. The downregulation of proteins involved in mitochondrial metabolism in the vocal folds suggests a mechanism to prevent oxidative stress associated with systemic dehydration. SIGNIFICANCE: Voice disorders affect different population demographics worldwide with one in 13 adults in the United States reporting voice problems annually. Vocal fold systemic hydration is clinically recognized for preventing and treating voice problems and depends on optimal body hydration primarily achieved by water intake. Herein, we use the rabbit as a translatable animal model, and furosemide as a translatable method of systemic dehydration, to reveal a comprehensive proteomic profile of vocal fold mucosa and muscle in response to systemic dehydration. The significant subset of proteins differentially regulated due to furosemide-induced dehydration offer novel insights into the molecular mechanisms of systemic dehydration in the vocal folds. These findings also deepen our understanding of changes to tissue biology after diuretic administration.
Collapse
Affiliation(s)
- Naila Cannes do Nascimento
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette 47907, IN, United States.
| | - Andrea Pires Dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States; Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette 47907, IN, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States; Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette 47907, IN, United States
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette 47907, IN, United States
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette 47907, IN, United States
| |
Collapse
|
8
|
Antioxidant Properties of Tonsil-Derived Mesenchymal Stem Cells on Human Vocal Fold Fibroblast Exposed to Oxidative Stress. Stem Cells Int 2020. [DOI: 10.1155/2020/2560828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) has been proved in several in vitro and in vivo models based on their antioxidative capacity. Oxidative stress is involved in the formation of vocal fold scars and the aging of vocal folds. However, few studies have examined the direct correlation between oxidative damage and reconstitution of extracellular matrix (ECM) in the vocal fold fibrosis. We, therefore, sought to investigate the impact of oxidative stress on cell survival and ECM production of human vocal fibroblasts (hVFFs) and the protective effects elicited by TMSCs against oxidative damages in hVFFs. hVFFs were exposed to different concentrations of tert-butyl hydroperoxide in the presence or absence of TMSCs. Cell viability and reactive oxygen species (ROS) production were assessed to examine the progression of oxidative stress in vitro. In addition, expression patterns of ECM-associated factors including various collagens were examined by real-time PCR and immunocytochemical analysis. We found that both cell viability and proliferation capacity of hVFFs were decreased following the exposure to tBHP in a dose-dependent manner. Furthermore, tBHP treatment induced the generation of ROS and reactive aldehydes, while it decreased endogenous activity of antioxidant enzymes in hVFF. Importantly, TMSCs could rescue these oxidative stress-associated damages of hVFFs. TMSCs also downregulated tBHP-mediated production of proinflammatory cytokines in hVFFs. In addition, coculture with TMSC could restore the endogenous matrix metalloproteinase (MMP) activity of hVFFs upon tBHP treatment and, in turn, reduce the oxidative stress-induced ECM accumulation in hVFFs. We have, therefore, shown that the changes in hVFF proliferative capacity and ECM gene expression induced by oxidative stress are consistent with in vivo phenotypes observed in aging vocal folds and vocal fold scarring and that TMSCs may function to reduce oxidative stress in aging vocal folds.
Collapse
|
9
|
Manciula LG, Berce C, Tabaran F, Trombitaș V, Albu S. The Effects of Postoperative Astaxanthin Administration on Nasal Mucosa Wound Healing. J Clin Med 2019; 8:E1941. [PMID: 31718054 PMCID: PMC6912356 DOI: 10.3390/jcm8111941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
. BACKGROUND Wound healing of the nasal mucosa after endoscopic sinus surgery (ESS) is frequently complicated by scaring and consequently recurrences are encountered. Methods of optimizing results have been sought. In the present study we evaluated the effects of a powerful antioxidant, astaxanthin, on nasal mucosa healing after surgery, comparing it to the extensively studied properties of dexamethasone. MATERIALS AND METHODS 63 Wistar rats were used. The nasal mucosa from one side was damaged employing the brushing method. They were randomly divided into three experimental groups, one treated with astaxanthin, the second treated with dexamethasone and the third one acted as the control and was given normal saline. The rats were killed on days 5, 14 and 28 following injury. We observed the temporal evolution of the wound healing process and quantified the results by assessing four parameters: the epithelial thickness index (ETI), the subepithelial thickness index (STI), the goblet cell count and the subepithelial fibrosis index (SFI). RESULTS At 28 days, the ETI was significantly lower in the astaxanthin group (p < 0.05) compared to the other two groups. The STI was also lower in the astaxanthin group (p < 0.05), but comparable to the dexamethasone group at 28 days. The goblet cell count was higher in the astaxanthin group. The SFI had similar results in both dexamethasone and astaxanthin groups, with lower values compared to the control group. In the astaxanthin group there was no synechia formation. CONCLUSION Astaxanthin given in the post injury period significantly decreases fibrosis, inhibits synechia development and significantly decreases subepithelial fibrosis. Moreover, it has no general or local toxic effects.
Collapse
Affiliation(s)
- Lavinia-Gianina Manciula
- 2nd Department of Otolaryngology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (V.T.); (S.A.)
| | - Cristian Berce
- Department of Experimental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Flaviu Tabaran
- Pathology Department, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Veronica Trombitaș
- 2nd Department of Otolaryngology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (V.T.); (S.A.)
| | - Silviu Albu
- 2nd Department of Otolaryngology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (V.T.); (S.A.)
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This article aims to review previous research reports and to summarize current strategies for the optimal duration of voice rest and the effect of phonatory stimulation after phonomicrosurgery. RECENT FINDINGS Voice rest is commonly recommended after laryngeal surgery to prevent worsening of vocal fold injuries. However, there are no established standard protocol for voice rest, and the type and duration of voice rest vary among clinicians. The most effective duration of voice rest is unknown. Recently, early vocal stimulation was recommended as a means to improve wound healing, on the basis of the basic and clinical researches. SUMMARY It seems that early vocal stimulation may enhance the wound healing process in the vocal fold. More basic and clinical researches are warranted to investigate appropriate timing of initiation of stimulation, as well as the type and amount of stimulation that are available for human.
Collapse
|
11
|
Meephansan J, Rungjang A, Yingmema W, Deenonpoe R, Ponnikorn S. Effect of astaxanthin on cutaneous wound healing. Clin Cosmet Investig Dermatol 2017; 10:259-265. [PMID: 28761364 PMCID: PMC5516620 DOI: 10.2147/ccid.s142795] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.
Collapse
Affiliation(s)
- Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Atiya Rungjang
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Werayut Yingmema
- Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand
| | - Raksawan Deenonpoe
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Saranyoo Ponnikorn
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
12
|
Karbiener M, Darnhofer B, Frisch MT, Rinner B, Birner-Gruenberger R, Gugatschka M. Comparative proteomics of paired vocal fold and oral mucosa fibroblasts. J Proteomics 2017; 155:11-21. [PMID: 28099887 PMCID: PMC5389448 DOI: 10.1016/j.jprot.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Injuries of the vocal folds frequently heal with scar formation, which can have lifelong detrimental impact on voice quality. Current treatments to prevent or resolve scars of the vocal fold mucosa are highly unsatisfactory. In contrast, the adjacent oral mucosa is mostly resistant to scarring. These differences in healing tendency might relate to distinct properties of the fibroblasts populating oral and vocal fold mucosae. We thus established the in vitro cultivation of paired, near-primary vocal fold fibroblasts (VFF) and oral mucosa fibroblasts (OMF) to perform a basic cellular characterization and comparative cellular proteomics. VFF were significantly larger than OMF, proliferated more slowly, and exhibited a sustained TGF-β1-induced elevation of pro-fibrotic interleukin 6. Cluster analysis of the proteomic data revealed distinct protein repertoires specific for VFF and OMF. Further, VFF displayed a broader protein spectrum, particularly a more sophisticated array of factors constituting and modifying the extracellular matrix. Conversely, subsets of OMF-enriched proteins were linked to cellular proliferation, nuclear events, and protection against oxidative stress. Altogether, this study supports the notion that fibroblasts sensitively adapt to the functional peculiarities of their respective anatomical location and presents several molecular targets for further investigation in the context of vocal fold wound healing. BIOLOGICAL SIGNIFICANCE Mammalian vocal folds are a unique but delicate tissue. A considerable fraction of people is affected by voice problems, yet many of the underlying vocal fold pathologies are sparsely understood at the molecular level. One such pathology is vocal fold scarring - the tendency of vocal fold injuries to heal with scar formation -, which represents a clinical problem with highly suboptimal treatment modalities. This study employed proteomics to obtain comprehensive insight into the protein repertoire of vocal fold fibroblasts, which are the cells that predominantly synthesize the extracellular matrix in both physiological and pathophysiological conditions. Protein profiles were compared to paired fibroblasts from the oral mucosa, a neighboring tissue that is remarkably resistant to scarring. Bioinformatic analyses of the data revealed a number of pathways as well as single proteins (e.g. ECM-remodeling factors, transcription factors, enzymes) that were significantly different between the two fibroblast types. Thereby, this study has revealed novel interesting molecular targets which can be analyzed in the future for their impact on vocal fold wound healing.
Collapse
Affiliation(s)
- Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria.
| | - Barbara Darnhofer
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Marie-Therese Frisch
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Beate Rinner
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria
| |
Collapse
|
13
|
Kaneko M, Shiromoto O, Fujiu-Kurachi M, Kishimoto Y, Tateya I, Hirano S. Optimal Duration for Voice Rest After Vocal Fold Surgery: Randomized Controlled Clinical Study. J Voice 2017; 31:97-103. [DOI: 10.1016/j.jvoice.2016.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
|
14
|
Kaneko M, Kishimoto Y, Suzuki R, Kawai Y, Tateya I, Hirano S. Protective Effect of Astaxanthin on Vocal Fold Injury and Inflammation Due to Vocal Loading: A Clinical Trial. J Voice 2016; 31:352-358. [PMID: 27481232 DOI: 10.1016/j.jvoice.2016.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Professional voice users, such as singers and teachers, are at greater risk of developing vocal fold injury from excessive use of voice; thus, protection of the vocal fold is essential. One of the most important factors that aggravates injury is the production of reactive oxygen species at the wound site. The purpose of the current study was to assess the effect of astaxanthin, a strong antioxidant, on the protection of the vocal fold from injury and inflammation due to vocal loading. STUDY DESIGN This study is an institutional review board-approved human clinical trial. METHODS Ten male subjects underwent a 60-minute vocal loading session and received vocal assessments prior to, immediately after, and 30 minutes postvocal loading (AST(-) status). All subjects were then prescribed 24 mg/day of astaxanthin for 28 days, after which they received the same vocal task and assessments (AST(+) status). Phonatory parameters were compared between both groups. RESULTS Aerodynamic assessment, acoustic analysis, and GRBAS scale (grade, roughness, breathiness, asthenia, and strain) were significantly worse in the AST(-) status immediately after vocal loading, but improved by 30 minutes after loading. In contrast, none of the phonatory parameters in the AST(+) status were statistically worse, even when measured immediately after vocal loading. No allergic responses or adverse effects were observed after administration of astaxanthin. CONCLUSIONS The current results suggest that astaxanthin can protect the vocal fold from injury and inflammation caused by vocal loading possibly through the regulation of oxidative stress.
Collapse
Affiliation(s)
- Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology Head & Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
15
|
Liu X, Zheng W, Sivasankar MP. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function. PLoS One 2016; 11:e0163237. [PMID: 27643990 PMCID: PMC5028054 DOI: 10.1371/journal.pone.0163237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3) expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001). Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (p<0.05) and a reduction in transepithelial electrical resistance (TEER) by 180.0% (p<0.001). While the expression of tight junctional protein did not change in acrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (p<0.05). Taken together, these data provide evidence that acute acrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - M. Preeti Sivasankar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
King SN, Guille J, Thibeault SL. Characterization of the Leukocyte Response in Acute Vocal Fold Injury. PLoS One 2015; 10:e0139260. [PMID: 26430970 PMCID: PMC4591973 DOI: 10.1371/journal.pone.0139260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/10/2015] [Indexed: 11/23/2022] Open
Abstract
Macrophages location in the superficial layer of the vocal fold (VF) is not only at the first line of defense, but in a place of physiologic importance to voice quality. This study characterizes and compares macrophage function in two models of acute injury. Porcine VF injuries were created bilaterally by either surgical biopsy or lipopolysaccharide (LPS) (1.5μg/kg) injection. Animals were sacrificed at 1- or 5-day post LPS or 3-, 7-, or 23-days post-surgical injury (n = 3/time/ injury). Flow cytometry characterized immunophenotypes and RT-PCR quantified cytokine gene expression. Uninjured VF were used as controls. Post-surgical and LPS injury, SWC9+/SWC3- cells identified as hi SLA-DR+ (p<0.05) compared to controls along with hi CD16+ expression at 1-day and 3-days respectively compared to all other time points (p<0.05). Surgical injuries, SWC9+/SWC3- cells exhibited hi CD163+ (p<0.05) at 3-days along with upregulation in TNFα and TGFβ1 mRNA compared to 23-days (p<0.05). No measurable changes to IL–12, IFNγ, IL–10, IL–4 mRNA post-surgery. LPS injuries induced upregulation of TNFα, IL–12, IFNγ, IL–10, and IL–4 mRNA at 1- and 5-days compared to controls (p<0.05). Higher levels of IL–10 mRNA were found 1-day post-LPS compared to 5-days (p<0.05). No changes to CD163 or CD80/86 post-LPS were measured. Acute VF injuries revealed a paradigm of markers that appear to associate with each injury. LPS induced a regulatory phenotype indicated by prominent IL–10 mRNA expression. Surgical injury elicited a complex phenotype with early TNFα mRNA and CD163+ and persistent TGFβ1 transcript expression.
Collapse
Affiliation(s)
- Suzanne N. King
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jeremy Guille
- Department of ENT and Head and Neck Surgery, University Hospital of Pointe Pitre, French West Indies, Pointe Pitre, Guadeloupe
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
17
|
Early controlled release of peroxisome proliferator-activated receptor β/δ agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment. J Control Release 2015; 197:138-47. [DOI: 10.1016/j.jconrel.2014.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/25/2014] [Accepted: 11/01/2014] [Indexed: 12/28/2022]
|
18
|
Mizuta M, Hirano S, Hiwatashi N, Tateya I, Kanemaru SI, Nakamura T, Ito J. Effect of astaxanthin on vocal fold wound healing. Laryngoscope 2013; 124:E1-7. [PMID: 23686840 DOI: 10.1002/lary.24197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVES/HYPOTHESIS Our previous study demonstrated that a large amount of reactive oxygen species (ROS) is produced during the early phase of vocal fold wound healing. In the current study, we investigated the effect of astaxanthin, which is a strong antioxidant, on the regulation of oxidative stress and scarring during vocal fold wound healing. STUDY DESIGN Prospective animal experiment with control. METHODS Sprague-Dawley rats were dosed with astaxanthin (Ast-treated group, 100 mg/kg/day) or olive oil (sham-treated group) by oral gavage daily from preinjury day 1 to postinjury day 4. After vocal folds were injured under the endoscope, larynges were harvested for histological and immunohistochemical examinations on postinjury days 1, 3, 5, and 56, and quantitative real time polymerase chain reaction (PCR) on postinjury days 1 and 3. RESULTS The expression of 4-hydroxy-2-nonenal, which is an oxidative stress marker, was reduced significantly in the lamina propria of the Ast-treated group as compared to the sham-treated group. Histological examination showed significantly less tissue contraction with favorable deposition of hyaluronic acid in the lamina propria of the Ast-treated group compared to the sham-treated group. Real time PCR revealed significantly upregulated mRNA expression of basic fibroblast growth factor on postinjury day 1 and procollagen type I in the Ast-treated group compared to the sham-treated group. CONCLUSIONS These findings suggest that astaxanthin has the potential to prevent vocal fold scarring by regulating oxidative stress during the early phase of vocal fold wound healing.
Collapse
Affiliation(s)
- Masanobu Mizuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|