1
|
Kondrakhova D, Unger M, Stadler H, Zakuťanská K, Tomašovičová N, Tomečková V, Horák J, Kimákova T, Komanický V. Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102803. [PMID: 39788273 DOI: 10.1016/j.nano.2025.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears. FTIR showed that the dendritic structures gradually disappeared over time due to glucose-induced lysozyme damage. The tear fluid from diabetes mellitus patients has a higher concentration of glucose, which accelerates the breakdown of lysozyme and, as a result, the quick loss of the dendritic structure. Our study shows that analysis of dry tear fluid can be promising technique for the detection of glycated proteins that reveal long lasting hyperglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia
| | - Miriam Unger
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Hartmut Stadler
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Katarína Zakuťanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jakub Horák
- Měřicí technika Morava s.r.o., Babická 619, 664 84 Zastávka, Czech Republic
| | - Tatiana Kimákova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárová 2, Košice 041 80, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia.
| |
Collapse
|
2
|
Jiang H, Zhang X, Liu X, Dai M, Zhang B, Luo X, Chen W, Zhang Y, Zhu W, Zheng Y. Wide-Range and Multistate Work Functions of Organometallic Halide Perovskite Films Regulated by Ferroelectric Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34358-34366. [PMID: 38913838 DOI: 10.1021/acsami.4c05179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Work function of organometallic halide perovskite (OHP) films is one of the most crucial photoelectric properties, which dominates the carrier dynamics in OHP-based devices. Despite surface treatments by additives being widely used to promote crystallization and passivate defects in OHP films, these chemical strategies for modulation of work functions face two trade-offs: homogeneity on the surface versus along the thickness; the range versus the accuracy of modulation. Herein, by using ferroelectric substrates of uniform polarization and subnanometer roughness, homogeneous CH3NH3PbI3 films are fabricated with five states of work functions with large spanning (∼0.8 eV) and high precision (sd ∼ 0.01 eV). We reveal that the ferroelectric polarizations and the smooth surfaces regulate CH3NH3+ orientations and suppress distortions of PbI6 octahedrons. The wide-range and multistate work functions originate from the ordered CH3NH3+ orientations and PbI6 octahedrons, which result in intensity enhancements and wavelength shifts in photoluminescence with a 30-fold increase of photoexcited carrier lifetime.
Collapse
Affiliation(s)
- He Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyue Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinzhi Liu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - MinZhi Dai
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Bangmin Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Luo
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Weijin Chen
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenpeng Zhu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Kim D, Townsley S, Grassian VH. Vibrational spectroscopy as a probe of heterogeneities within geochemical thin films on macro, micro, and nanoscales. RSC Adv 2023; 13:28873-28884. [PMID: 37790106 PMCID: PMC10543985 DOI: 10.1039/d3ra05179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Minerals play a critical role in the chemistry occurring along the interface of different environmental systems, including the atmosphere/geosphere and hydrosphere/geosphere. In the past few decades, vibrational spectroscopy has been used as a probe for studying interfacial geochemistry. Here, we compare four different vibrational methods for probing physical and chemical features across different mineral samples and length scales, from the macroscale to nanoscale. These methods include Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR), Optical Photothermal Infrared (O-PTIR), Atomic Force Microscopy-Infrared (AFM-IR) and micro-Raman spectroscopy. The emergence of these micro-spectroscopic probes has offered new insights into heterogeneities within geochemical thin films and particles. These developments represent an important step forward for analyzing environmental interfaces and thin films as often these are assumed to be physically and chemically homogeneous. By comparing and integrating data across these measurement techniques, new insights into sample differences and heterogeneities can be gained. For example, interrogation of the various mineral samples at smaller length scales is shown to be particularly informative in highlighting unique chemical environments, including for chemically complex, multicomponent samples such as Arizona Test Dust (AZTD), as well as differences due to crystal orientation.
Collapse
Affiliation(s)
- Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Samantha Townsley
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
4
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Veber A, Zancajo VMR, Puskar L, Schade U, Kneipp J. In situ infrared imaging of the local orientation of cellulose fibrils in plant secondary cell walls. Analyst 2023; 148:4138-4147. [PMID: 37496329 DOI: 10.1039/d3an00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The mechanical and chemical properties of plant cell walls greatly rely on the supramolecular assembly of cellulose fibrils. To study the local orientation of cellulose in secondary plant cell walls, diffraction limited infrared (IR) micro-spectroscopic mapping experiments were conducted at different orientation of transverse leaf section of the grass Sorghum bicolor with respect to the polarization direction of the IR radiation. Two-dimensional maps, based on polarization-sensitive absorption bands of cellulose were obtained for different polarization angles. They reveal a significant degree of anisotropy of the cellulose macromolecules as well as of other biopolymers in sclerenchyma and xylem regions of the cross section. Quantification of the signals assigned to polarization sensitive vibrational modes allowed to determine the preferential orientation of the sub-micron cellulose fibrils in single cell walls. A sample of crystalline nano-cellulose comprising both a single microcrystal as well as unordered layers of nanocrystals was used for validation of the approach. The results demonstrate that diffraction limited IR micro-spectroscopy can be used to study hierarchically structured materials with complex anisotropic behavior.
Collapse
Affiliation(s)
- Alexander Veber
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Victor M R Zancajo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Ljiljana Puskar
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Ulrich Schade
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Banerjee S, Naik T, Ghosh A. Intermediate Antiparallel Fibrils in Aβ40 Dutch Mutant Aggregation: Insights from Nanoscale Infrared Spectroscopy. J Phys Chem B 2023; 127:5799-5807. [PMID: 37363988 PMCID: PMC10691422 DOI: 10.1021/acs.jpcb.3c01869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Cerebral amyloid angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease (AD) cases. Familial mutations in the amyloid β peptide are correlated to higher risks of CAA and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild-type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with atomic force microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly antiparallel in character, which develop parallel β sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Banerjee S, Naik T, Ghosh A. Intermediate antiparallel fibrils in Aβ40 Dutch mutant aggregation: nanoscale insights from AFM-IR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533667. [PMID: 36993390 PMCID: PMC10055286 DOI: 10.1101/2023.03.21.533667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease cases. Familial mutations in the amyloid β peptide is correlated to higher risks of CAA, and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with Atomic Force Microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β-sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly anti parallel in character, which develop parallel β-sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
Collapse
|
8
|
Amaki Y, Okada H, Nagai N. Structural Analysis of Injection-Molded Polyoxymethylene Treated Below a Melting Point Using Field-Emission Scanning Electron Microscopy and Infrared Spectroscopy. APPLIED SPECTROSCOPY 2022; 76:699-711. [PMID: 35081767 DOI: 10.1177/00037028221078050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The heat treatment of an injection-molded polyoxymethylene slightly below the melting point and subsequent isothermal treatment at 130 °C were performed. The polyoxymethylene structure was examined using field-emission scanning electron microscopy and polarization infrared reflection measurements. After the heat treatment, a significant change in the surface morphology was observed, and the reflection spectrum derived from the polariton in the injection direction also changed dramatically. Since the reflection spectrum in the injection direction contains the reflection component of the perpendicular direction and vice versa, the polarization spectra of both directions can be calculated consistently. The mixing ratio of each crossed component and the pure relative permittivity both parallel and perpendicular to the main-chain direction were determined using the oscillator model. The heat treatment reduced the ratio of the perpendicular component and increased the order structure until just before melting. The structural changes characterized by the two techniques, along with Raman spectroscopy and differential scanning calorimetry, are discussed.
Collapse
Affiliation(s)
- Yuko Amaki
- Industrial Research Institute of Niigata Prefecture, Niigata, Japan
| | - Hideki Okada
- Industrial Research Institute of Niigata Prefecture, Niigata, Japan
| | - Naoto Nagai
- Industrial Research Institute of Niigata Prefecture, Niigata, Japan
- Graduate School of Science and Technology, 594248Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev 2022; 51:5248-5267. [PMID: 35616225 DOI: 10.1039/d2cs00095d] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, MD 20740, USA.,Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St., NW Washington D.C., 20057, USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
10
|
Hinrichs K, Blevins B, Furchner A, Yadavalli NS, Minko S. Infrared polarimetry: Anisotropy of polymer nanofibers. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Banerjee S, Ghosh A. Structurally Distinct Polymorphs of Tau Aggregates Revealed by Nanoscale Infrared Spectroscopy. J Phys Chem Lett 2021; 12:11035-11041. [PMID: 34747175 PMCID: PMC8967399 DOI: 10.1021/acs.jpclett.1c02660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aggregation of the tau protein plays a central role in several neurodegenerative diseases collectively known as tauopathies, including Alzheimer's and Parkinson's disease. Tau misfolds into fibrillar β sheet structures that constitute the paired helical filaments found in neurofibrillary tangles. It is known that there can be significant structural heterogeneities in tau aggregates associated with different diseases. However, while structures of mature fibrils have been studied, the structural distributions in early-stage tau aggregates is not well-understood. In the present study, we use atomic force microscopy-IR to investigate nanoscale spectra of individual tau fibrils at different stages of aggregation and demonstrate the presence of multiple fibrillar polymorphs that exhibit different secondary structures. We further show that mature fibrils contain significant amounts of antiparallel β sheets. Our results are the very first application of nanoscale infrared spectroscopy to tau aggregates and underscore the promise of spatially resolved infrared spectroscopy for investigating protein aggregation.
Collapse
Affiliation(s)
| | - Ayanjeet Ghosh
- Corresponding Author Ayanjeet Ghosh - Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35401, USA.
| |
Collapse
|
12
|
Wang J, He Y, Wu Y, Tang P, Wang Y, Tang Z. Cytomembrane visualization using Stokes parameter confocal microscopy. APPLIED OPTICS 2021; 60:5081-5086. [PMID: 34143073 DOI: 10.1364/ao.420892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
A new, to the best of our knowledge, method for Stokes vector imaging is proposed to achieve imaging and dynamic monitoring of a non-labeled cytomembrane. In this work, a polarization state vector is described by a Stokes vector and expressed in chrominance space. A physical quantity called polarization chromaticity value (PCV) corresponding to a Stokes vector is used as the imaging parameter to perform Stokes vector imaging. By using the PCV imaging technique, the Stokes vector can be expressed in three-dimensional real space rather than in a Poincare sphere. Furthermore, a four-way Stokes parameter confocal microscopy system is designed to measure four Stokes parameters simultaneously and obtain micro-imaging. Label-free living onion cell membranes and their plasmolysis process are selected as the representative micro-anisotropy experimental analysis. It is proved that PCV imaging can perform visualization of cytomembranes, and further, microscopic orientation is demonstrated. The prospect of universal measurement of anisotropy details for analysis and diagnosis is provided.
Collapse
|
13
|
Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, Raussens V, Dazzi A. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst 2021; 146:132-145. [PMID: 33107501 DOI: 10.1039/d0an01545h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher β-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.
Collapse
Affiliation(s)
- Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Freitag S, Baer M, Buntzoll L, Ramer G, Schwaighofer A, Schmauss B, Lendl B. Polarimetric Balanced Detection: Background-Free Mid-IR Evanescent Field Laser Spectroscopy for Low-Noise, Long-term Stable Chemical Sensing. ACS Sens 2021; 6:35-42. [PMID: 33372759 PMCID: PMC7872502 DOI: 10.1021/acssensors.0c01342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In
this work, we introduce polarimetric balanced detection as a
new attenuated total reflection (ATR) infrared (IR) sensing scheme,
leveraging unequal effective thicknesses achieved with laser light
of different polarizations. We combined a monolithic widely tunable
Vernier quantum cascade laser (QCL-XT) and a multibounce ATR IR spectroscopy
setup for analysis of liquids in a process analytical setting. Polarimetric
balanced detection enables simultaneous recording of background and
sample spectra, significantly reducing long-term drifts. The root-mean-square
noise could be improved by a factor of 10 in a long-term experiment,
compared to conventional absorbance measurements obtained via the
single-ended optical channel. The sensing performance of the device
was further evaluated by on-site measurements of ethanol in water,
leading to an improved limit of detection (LOD) achieved with polarimetric
balanced detection. Sequential injection analysis was employed for
automated injection of samples into a custom-built ATR flow cell mounted
above a zinc sulfide multibounce ATR element. The QCL-XT posed to
be suitable for mid-IR-based sensing in liquids due to its wide tunability.
Polarimetric balanced detection proved to enhance the robustness and
long-term stability of the sensing device, along with improving the
LOD by a factor of 5. This demonstrates the potential for new polarimetric
QCL-based ATR mid-IR sensing schemes for in-field measurements or
process monitoring usually prone to a multitude of interferences.
Collapse
Affiliation(s)
- Stephan Freitag
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Matthias Baer
- Institute of Microwaves and Photonics, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen, Germany
| | - Laura Buntzoll
- Institute of Microwaves and Photonics, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen, Germany
| | - Georg Ramer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Bernhard Schmauss
- Institute of Microwaves and Photonics, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen, Germany
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| |
Collapse
|
15
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
16
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
17
|
Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960094. [PMID: 31999078 DOI: 10.1002/jbio.201960094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.
Collapse
Affiliation(s)
- Maciej Roman
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz P Wrobel
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Czeslawa Paluszkiewicz
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech M Kwiatek
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
18
|
Baden N, Kobayashi H, Urayama N. Submicron-resolution polymer orientation mapping by optical photothermal infrared spectroscopy. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1735851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
19
|
Wang Z, Sun B, Lu X, Wang C, Su Z. Molecular Orientation in Individual Electrospun Nanofibers Studied by Polarized AFM–IR. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zeqian Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bolun Sun
- Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, P. R. China
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
20
|
Zhou J, Smirnov A, Dietler G, Sekatskii SK. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range. NANO LETTERS 2019; 19:8278-8286. [PMID: 31650844 DOI: 10.1021/acs.nanolett.9b03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical characterization at the nanoscale is of significant importance for many applications in physics, analytical chemistry, material science, and biology. Despite the intensive studies in the infrared range, high-spatial-resolution and high-sensitivity imaging for compositional identification in the visible range is rarely exploited. In this work, we present a gap-plasmon-enhanced imaging approach based on photothermal-induced resonance (PTIR) for nanoscale chemical identification. With this approach, we experimentally obtained a high spatial resolution of ∼5 nm for rhodamine nanohill characterization and achieved monolayer sensitivity for mapping the single-layer chlorophyll-a islands with the thickness of only 1.9 nm. We also successfully characterized amyloid fibrils stained with methylene blue dye, indicating that this methodology can be also utilized for identification of the radiation-insensitive macromolecules. We believe that our proposed high-performance visible PTIR system can be used to broaden the applications of nanoscale chemical identification ranging from nanomaterial to life science areas.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Anton Smirnov
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Sergey K Sekatskii
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
21
|
Shioya N, Tomita K, Shimoaka T, Hasegawa T. Second Generation of Multiple-Angle Incidence Resolution Spectrometry. J Phys Chem A 2019; 123:7177-7183. [PMID: 31328919 DOI: 10.1021/acs.jpca.9b05316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infrared surface spectroscopic techniques commonly have long-term issues that (1) the multiple reflections of light in the substrate yield optical interference fringes in the absorption spectrum and (2) the double modulation of light at the interferometer in a Fourier transform infrared spectrometer makes the water-vapor subtraction impossible. These measurement troubles often disturb the quantitative analysis of chemical bands of the analyte thin film. Multiple-angle incidence resolution spectrometry (MAIRS) is not an exception in this matter, either. In the present study, the long-term common issues have first been resolved by fixing the angle of incidence at a large angle, whereas the polarization angle is changed. With this simple conceptual change of MAIRS, as a result, we are ready for concentrating on spectral analysis only without concerning about the measurement troubles.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| | - Kazutaka Tomita
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| | - Takafumi Shimoaka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
22
|
Papkov D, Delpouve N, Delbreilh L, Araujo S, Stockdale T, Mamedov S, Maleckis K, Zou Y, Andalib MN, Dargent E, Dravid VP, Holt MV, Pellerin C, Dzenis YA. Quantifying Polymer Chain Orientation in Strong and Tough Nanofibers with Low Crystallinity: Toward Next Generation Nanostructured Superfibers. ACS NANO 2019; 13:4893-4927. [PMID: 31038925 DOI: 10.1021/acsnano.8b08725] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Advanced fibers revolutionized structural materials in the second half of the 20th century. However, all high-strength fibers developed to date are brittle. Recently, pioneering simultaneous ultrahigh strength and toughness were discovered in fine (<250 nm) individual electrospun polymer nanofibers (NFs). This highly desirable combination of properties was attributed to high macromolecular chain alignment coupled with low crystallinity. Quantitative analysis of the degree of preferred chain orientation will be crucial for control of NF mechanical properties. However, quantification of supramolecular nanoarchitecture in NFs with low crystallinity in the ultrafine diameter range is highly challenging. Here, we discuss the applicability of traditional as well as emerging methods for quantification of polymer chain orientation in nanoscale one-dimensional samples. Advantages and limitations of different techniques are critically evaluated on experimental examples. It is shown that straightforward application of some of the techniques to sub-wavelength-diameter NFs can lead to severe quantitative and even qualitative artifacts. Sources of such size-related artifacts, stemming from instrumental, materials, and geometric phenomena at the nanoscale, are analyzed on the example of polarized Raman method but are relevant to other spectroscopic techniques. A proposed modified, artifact-free method is demonstrated. Outstanding issues and their proposed solutions are discussed. The results provide guidance for accurate nanofiber characterization to improve fundamental understanding and accelerate development of nanofibers and related nanostructured materials produced by electrospinning or other methods. We expect that the discussion in this review will also be useful to studies of many biological systems that exhibit nanofilamentary architectures and combinations of high strength and toughness.
Collapse
Affiliation(s)
- Dimitry Papkov
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
- Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0298 , United States
| | - Nicolas Delpouve
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Laurent Delbreilh
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Steven Araujo
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Taylor Stockdale
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Sergey Mamedov
- Division of HORIBA Instruments, Inc. , HORIBA Scientific , 20 Knightsbridge Road , Piscataway , New Jersey 08854 , United States
| | - Kaspars Maleckis
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Yan Zou
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Mohammad Nahid Andalib
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
| | - Eric Dargent
- Département Systèmes Désordonnés et Polymères, Equipe Internationale de Recherche et de Caractérisation des Amorphes et des Polymères , Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, GPM , 76000 Rouen , France
| | - Vinayak P Dravid
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Martin V Holt
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Christian Pellerin
- Département de chimie , Université de Montréal , Montréal , QC H3C 3J7 , Canada
| | - Yuris A Dzenis
- Department of Mechanical and Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0526 , United States
- Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0298 , United States
| |
Collapse
|
23
|
High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy. Nat Protoc 2019; 14:576-593. [PMID: 30651586 DOI: 10.1038/s41596-018-0109-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are highly specialized nanoscale assemblies that deliver complex biological cargos to mediate intercellular communication. EVs are heterogeneous, and characterization of this heterogeneity is paramount to understanding EV biogenesis and activity, as well as to associating them with biological responses and pathologies. Traditional approaches to studying EV composition generally lack the resolution and/or sensitivity to characterize individual EVs, and therefore the assessment of EV heterogeneity has remained challenging. We have recently developed an atomic force microscope IR spectroscopy (AFM-IR) approach to probe the structural composition of single EVs with nanoscale resolution. Here, we provide a step-by-step procedure for our approach and show its power to reveal heterogeneity across individual EVs, within the same population of EVs and between different EV populations. Our approach is label free and able to detect lipids, proteins and nucleic acids within individual EVs. After isolation of EVs from cell culture medium, the protocol involves incubation of the EV sample on a suitable substrate, setup of the AFM-IR instrument and collection of nano-IR spectra and nano-IR images. Data acquisition and analyses can be completed within 24 h, and require only a basic knowledge of spectroscopy and chemistry. We anticipate that new understanding of EV composition and structure through AFM-IR will contribute to our biological understanding of EV biology and could find application in disease diagnosis and the development of EV therapies.
Collapse
|
24
|
High-resolution label-free studies of molecular distribution and orientation in ultrathin, multicomponent model membranes with infrared nano-spectroscopy AFM-IR. J Colloid Interface Sci 2019; 542:347-354. [DOI: 10.1016/j.jcis.2019.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 11/18/2022]
|
25
|
Belianinov A, Ievlev AV, Lorenz M, Borodinov N, Doughty B, Kalinin SV, Fernández FM, Ovchinnikova OS. Correlated Materials Characterization via Multimodal Chemical and Functional Imaging. ACS NANO 2018; 12:11798-11818. [PMID: 30422627 PMCID: PMC9850281 DOI: 10.1021/acsnano.8b07292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multimodal chemical imaging simultaneously offers high-resolution chemical and physical information with nanoscale and, in select cases, atomic resolution. By coupling modalities that collect physical and chemical information, we can address scientific problems in biological systems, battery and fuel cell research, catalysis, pharmaceuticals, photovoltaics, medicine, and many others. The combined systems enable the local correlation of material properties with chemical makeup, making fundamental questions of how chemistry and structure drive functionality approachable. In this Review, we present recent progress and offer a perspective for chemical imaging used to characterize a variety of samples by a number of platforms. Specifically, we present cases of infrared and Raman spectroscopies combined with scanning probe microscopy; optical microscopy and mass spectrometry; nonlinear optical microscopy; and, finally, ion, electron, and probe microscopies with mass spectrometry. We also discuss the challenges associated with the use of data originated by the combinatorial hardware, analysis, and machine learning as well as processing tools necessary for the interpretation of multidimensional data acquired from multimodal studies.
Collapse
Affiliation(s)
- Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anton V. Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthias Lorenz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikolay Borodinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sergei V. Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for Biochemistry and Bioscience, Atlanta, Georgia 30332, United States
| | - Olga S. Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Corresponding Author:
| |
Collapse
|
26
|
Kenkel S, Mittal A, Mittal S, Bhargava R. Probe-Sample Interaction-Independent Atomic Force Microscopy-Infrared Spectroscopy: Toward Robust Nanoscale Compositional Mapping. Anal Chem 2018; 90:8845-8855. [PMID: 29939013 PMCID: PMC6361725 DOI: 10.1021/acs.analchem.8b00823] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoscale topological imaging using atomic force microscopy (AFM) combined with infrared (IR) spectroscopy (AFM-IR) is a rapidly emerging modality to record correlated structural and chemical images. Although the expectation is that the spectral data faithfully represents the underlying chemical composition, the sample mechanical properties affect the recorded data (known as the probe-sample-interaction effect). Although experts in the field are aware of this effect, the contribution is not fully understood. Further, when the sample properties are not well-known or when AFM-IR experiments are conducted by nonexperts, there is a chance that these nonmolecular properties may affect analytical measurements in an uncertain manner. Techniques such as resonance-enhanced imaging and normalization of the IR signal using ratios might improve fidelity of recorded data, but they are not universally effective. Here, we provide a fully analytical model that relates cantilever response to the local sample expansion which opens several avenues. We demonstrate a new method for removing probe-sample-interaction effects in AFM-IR images by measuring the cantilever responsivity using a mechanically induced, out-of-plane sample vibration. This method is then applied to model polymers and mammary epithelial cells to show improvements in sensitivity, accuracy, and repeatability for measuring soft matter when compared to the current state of the art (resonance-enhanced operation). Understanding of the sample-dependent cantilever responsivity is an essential addition to AFM-IR imaging if the identification of chemical features at nanoscale resolutions is to be realized for arbitrary samples.
Collapse
Affiliation(s)
- Seth Kenkel
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Mechanical Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Anirudh Mittal
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Shachi Mittal
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Mechanical Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemical and Biomolecular Engineering, Department of Electrical and Computer Engineering, and Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|