1
|
Lambert CJ, Clarke E, Patel D, Laurentius LB, Gale BK, Sant HJ, Porter MD. Microfluidic platform for the enzymatic pretreatment of human serum for the detection of the tuberculosis biomarker mannose-capped lipoarabinomannan. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39037397 DOI: 10.1039/d4ay00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Tuberculosis (TB) represents a major public health threat, with millions of new cases reported worldwide each year. A major hurdle to curtailing the spread of this disease is the need for low-cost, point-of-care (PoC) diagnostics. Mannose-capped lipoarabinomannan, a significant component of the Mycobacterium tuberculosis bacillus, has been heavily studied as a biomarker for TB, but with little success due to its complexation with endogenous components of body fluids in a manner that sterically interferes with its detection by ELISA and other immunoassays. Recent work by our group and others has shown that complexation can be disrupted with protein-denaturing protocols. By way of followup, we recently described an enzymatic digestion (Proteinase K) sample pretreatment that enables quantitative recovery of ManLAM spiked into healthy human control serum. Herein, we report on the transfer of our benchtop sample pretreatment methodology to an automated microfluidic platform. We show that this platform can be configured to: (1) carry out the pretreatment process with very little user interaction and, (2) yield recoveries for ManLAm spiked into control serum which are statistically indistinguishable from those achieved by the benchtop process. Plans to integrate this device with a portable sample reader as a possible basis for a PoC TB diagnostic system and analyze patient samples are briefly discussed.
Collapse
Affiliation(s)
- Christopher J Lambert
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eamonn Clarke
- Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Dhruv Patel
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lars B Laurentius
- Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bruce K Gale
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Himanshu J Sant
- Departments of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Marc D Porter
- Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
- Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Meng Y, Wang Y, Zhan Z, Chen Y, Zhang C, Peng W, Ying B, Chen P. Fructose@histone synergistically improve the performance of DNA-templated Cu NPs: rapid analysis of LAM in tuberculosis urine samples using a handheld fluorometer and a smartphone RGB camera. J Mater Chem B 2024; 12:6668-6677. [PMID: 38884176 DOI: 10.1039/d4tb00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This study presented a nanoparticle-enhanced aptamer-recognizing homogeneous detection system combined with a portable instrument (NASPI) to quantify lipoarabinomannan (LAM). This system leveraged the high binding affinity of aptamers, the high sensitivity of nanoparticle cascade amplification, and the stabilization effect of dual stabilizers (fructose and histone), and used probe-Cu2+ to achieve LAM detection at concentrations ranging from 10 ag mL-1 to 100 fg mL-1, with a limit of detection of 3 ag mL-1 using a fluorometer. It can also be detected using an independently developed handheld fluorometer or the red-green-blue (RGB) camera of a smartphone, with a minimum detection concentration of 10 ag mL-1. We validated the clinical utility of the biosensor by testing the LAM in the urine of patients. Forty urine samples were tested, with positive LAM results in the urine of 18/20 tuberculosis (TB) cases and negative results in the urine of 6/10 latent tuberculosis infection cases and 10/10 non-TB cases. The assay results revealed a 100% specificity and a 90% sensitivity, with an area under the curve of 0.9. We believe that the NASPI biosensor can be a promising clinical tool with great potential to convert LAM into clinical indicators for TB patients.
Collapse
Affiliation(s)
- Yanming Meng
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yue Wang
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zixuan Zhan
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yuemei Chen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chunying Zhang
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wu Peng
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Tawade P, Mastrangeli M. Integrated Electrochemical and Optical Biosensing in Organs-on-Chip. Chembiochem 2024; 25:e202300560. [PMID: 37966365 DOI: 10.1002/cbic.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Demand for biocompatible, non-invasive, and continuous real-time monitoring of organs-on-chip has driven the development of a variety of novel sensors. However, highest accuracy and sensitivity can arguably be achieved by integrated biosensing, which enables in situ monitoring of the in vitro microenvironment and dynamic responses of tissues and miniature organs recapitulated in organs-on-chip. This paper reviews integrated electrical, electrochemical, and optical sensing methods within organ-on-chip devices and platforms. By affording precise detection of analytes and biochemical reactions, these methods expand and advance the monitoring capabilities and reproducibility of organ-on-chip technology. The integration of these sensing techniques allows a deeper understanding of organ functions, and paves the way for important applications such as drug testing, disease modeling, and personalized medicine. By consolidating recent advancements and highlighting challenges in the field, this review aims to foster further research and innovation in the integration of biosensing in organs-on-chip.
Collapse
Affiliation(s)
- Pratik Tawade
- Electronic Components, Technology and Materials, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628CD, Delft, Netherlands
| | - Massimo Mastrangeli
- Electronic Components, Technology and Materials, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628CD, Delft, Netherlands
| |
Collapse
|
4
|
Hassanain WA, Johnson CL, Faulds K, Graham D, Keegan N. Recent advances in antibiotic resistance diagnosis using SERS: focus on the “ Big 5” challenges. Analyst 2022; 147:4674-4700. [DOI: 10.1039/d2an00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SERS for antibiotic resistance diagnosis.
Collapse
Affiliation(s)
- Waleed A. Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Christopher L. Johnson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Neil Keegan
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Iri AH, Shahrah MHA, Ali AM, Qadri SA, Erdem T, Ozdur IT, Icoz K. Optical detection of microplastics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63860-63866. [PMID: 33462694 DOI: 10.1007/s11356-021-12358-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/02/2021] [Indexed: 05/24/2023]
Abstract
Unfortunately, the plastic pollution increases at an exponential rate and drastically endangers the marine ecosystem. According to World Health Organization (WHO), microplastics in drinking water have become a concern and may be a risk to human health. One of the major efforts to fight against this problem is developing easy-to-use, low-cost, portable microplastic detection systems. To address this issue, here, we present our prototype device based on an optical system that can help detect the microplastics in water. This system that costs less than $370 is essentially a low-cost Raman spectrometer. It includes a collimated laser (5 mW), a sample holder, a notch filter, a diffraction grating, and a CCD sensor all integrated in a 3D printed case. Our experiments show that our system is capable of detecting microplastics in water having a concentration less than 0.015% w/v. We believe that the designed portable device can find a widespread use all over the world to monitor the microplastic content in an easier and cost-effective manner.
Collapse
Affiliation(s)
- Ahmet H Iri
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey
| | - Malek H A Shahrah
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey
| | - Ali M Ali
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey
| | - Sayed A Qadri
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey
| | - Talha Erdem
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey
| | - Ibrahim T Ozdur
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey
| | - Kutay Icoz
- Department of Electrical-Electronics Engineering, Abdullah Gül University, Kocasinan, 38080, Kayseri, Turkey.
- Opsentia Research and Development, 38030, Kayseri, Turkey.
| |
Collapse
|
6
|
Siebe HS, Chen Q, Li X, Xu Y, Browne WR, Bell SEJ. Filter paper based SERS substrate for the direct detection of analytes in complex matrices. Analyst 2021; 146:1281-1288. [PMID: 33426548 DOI: 10.1039/d0an02103b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical technique for chemical analysis, which is favourable due to its combination of short measurement time, high sensitivity and molecular specificity. However, the application of SERS is still limited, largely because in real samples the analyte is often present in a complex matrix that contains micro/macro particles that block the probe laser, as well as molecular contaminants that compete for the enhancing surface. Here, we show a simple and scalable spray-deposition technique to fabricate SERS-active paper substrates which combine sample filtration and enhancement in a single material. Unlike previous spray-deposition methods, in which simple colloidal nanoparticles were sprayed onto solid surfaces, here the colloidal nanoparticles are mixed with hydroxyethyl cellulose (HEC) polymer before application. This leads to significantly improved uniformity in the distribution of enhancing particles as the film dries on the substrate surface. Importantly, the polymer matrix also protects the enhancing particles from air-oxidation during storage but releases them to provide SERS enhancement when the film is rehydrated. These SERS-paper substrates are highly active and a model analyte, crystal violet, was detected down to 4 ng in 10 μL of sample with less than 20% point-by-point signal deviation. The filter paper and HEC effectively filter out both interfering micro/macro particles and molecular (protein) contaminants, allowing the SERS-paper substrates to be used for SERS detection of thiram in mud and melamine in the presence of protein down to nanogram levels without sample pre-treatment or purification.
Collapse
Affiliation(s)
- Harmke S Siebe
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Rani A, Donovan N, Mantri N. Review: The future of plant pathogen diagnostics in a nursery production system. Biosens Bioelectron 2019; 145:111631. [DOI: 10.1016/j.bios.2019.111631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
|
8
|
|
9
|
Russo L, Sánchez-Purrà M, Rodriguez-Quijada C, Leonardo BM, Puntes V, Hamad-Schifferli K. Detection of resistance protein A (MxA) in paper-based immunoassays with surface enhanced Raman spectroscopy with AuAg nanoshells. NANOSCALE 2019; 11:10819-10827. [PMID: 31135010 DOI: 10.1039/c9nr02397f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Myxovirus protein A (MxA) is a biomarker that can be used to distinguish between viral and bacterial infections. While MxA lateral flow assays (LFAs) have been successfully used for viral vs. bacterial differential diagnosis for children, the clinically relevant level of MxA for adults has been reported to be 100 times lower, which is too low for traditional LFAs. We present results applying the use of surface enhanced Raman spectroscopy (SERS) to detect MxA. AuAg nanoshells (AuAg NSs) were used to enhance the Raman signal of mercaptobenzoic acid (4-MBA), enabling readout by SERS. The AuAg NSs were conjugated to antibodies for the biomarker of interest, resulting in a "nanotag", that could be used in a dipstick immunoassay for detection. We first optimized the nanotag parameters using anti-human IgG/human IgG as a model antibody/antigen system, and then demonstrated detection of MxA using anti-MxA antibodies. We show that SERS readout of immunoassays for MxA can quantify MxA levels at clinically relevant levels for adult viral infection.
Collapse
Affiliation(s)
- Lorenzo Russo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Patel SK, Rajora N, Kumar S, Sahu A, Kochar SK, Krishna CM, Srivastava S. Rapid Discrimination of Malaria- and Dengue-Infected Patients Sera Using Raman Spectroscopy. Anal Chem 2019; 91:7054-7062. [PMID: 31033270 DOI: 10.1021/acs.analchem.8b05907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malaria and dengue have overlapping clinical symptoms and are prevalent in the same geographic region (tropical and subtropical), hence precise diagnosis is challenging. The high mortality rate associated with both malaria and dengue could be attributed to "false", "delayed", or "missed" diagnosis. The present study thus aims to stratify malaria and dengue using Raman spectroscopy (RS). In total, 130 human sera were analyzed for model development and double-blinded testing. Principal components linear discriminant analysis (PC-LDA) of acquired RS-spectra could classify malaria and dengue with a minor overlap of 16.7%. Receiver operating characteristic (ROC) analysis of test samples showed sensitivity/specificity of 0.9529 for malaria vs healthy controls (HC) and 0.9584 for dengue vs HC. The Raman findings were complemented by mass spectroscopy (MS)-based metabolite analysis of 8 individuals, each from malaria, dengue, and HC. Several of the metabolites, including amino acids, cell-free DNA, creatinine, and bilirubin, assigned for the predominant RS-bands were also identified by MS and showed similar trends. Our data clearly indicates that RS-based serum analysis using a microprobe has immense potential for early, accurate, and automated detection and discrimination of malaria and dengue, and in the future, it could be extrapolated in field-settings combined with hand-held RS. Further, this approach might be extended to diagnose other closely related infections with similar clinical manifestations.
Collapse
Affiliation(s)
- Sandip K Patel
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Nishant Rajora
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Saurabh Kumar
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| | - Aditi Sahu
- Chilakapati Lab, ACTREC , Tata Memorial Center , Kharghar, Navi Mumbai 410210 , India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Center , S.P. Medical College , Bikaner 334003 , India
| | - C Murali Krishna
- Chilakapati Lab, ACTREC , Tata Memorial Center , Kharghar, Navi Mumbai 410210 , India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India
| |
Collapse
|
11
|
Recent Advancement in the Surface-Enhanced Raman Spectroscopy-Based Biosensors for Infectious Disease Diagnosis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071448] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diagnosis is the key component in disease elimination to improve global health. However, there is a tremendous need for diagnostic innovation for neglected tropical diseases that largely consist of mosquito-borne infections and bacterial infections. Early diagnosis of these infectious diseases is critical but challenging because the biomarkers are present at low concentrations, demanding bioanalytical techniques that can deliver high sensitivity with ensured specificity. Owing to the plasmonic nanomaterials-enabled high detection sensitivities, even up to single molecules, surface-enhanced Raman spectroscopy (SERS) has gained attention as an optical analytical tool for early disease biomarker detection. In this mini-review, we highlight the SERS-based assay development tailored to detect key types of biomarkers for mosquito-borne and bacterial infections. We discuss in detail the variations of SERS-based techniques that have developed to afford qualitative and quantitative disease biomarker detection in a more accurate, affordable, and field-transferable manner. Current and emerging challenges in the advancement of SERS-based technologies from the proof-of-concept phase to the point-of-care phase are also briefly discussed.
Collapse
|
12
|
Lim CY, Granger JH, Porter MD. SERS detection of Clostridium botulinum neurotoxin serotypes A and B in buffer and serum: Towards the development of a biodefense test platform. Anal Chim Acta X 2018; 1:100002. [PMID: 33186413 PMCID: PMC7587037 DOI: 10.1016/j.acax.2018.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 01/30/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are classified at a highest degree of threat in biodefense, due largely to their high lethality. With the growing risk of biowarfare, the shortcomings of the gold standard test for these neurotoxins, the mouse bioassay, have underscored the need to develop alternative diagnostic testing strategies. This paper reports on the detection of inactivated Clostridium botulinum neurotoxin serotype A (BoNT-A) and serotype B (BoNT-B), the two most important markers of botulism infection, by using a sandwich immunoassay, gold nanoparticle labels, and surface-enhanced Raman scattering (SERS) within the context of two threat scenarios. The first scenario mimics part of the analysis needed in response to a “white powder” threat by measuring both neurotoxins in phosphate-buffered saline (PBS), a biocompatible solvent often used to recover markers dispersed in a powdered matrix. The second scenario detects the two neurotoxins in spiked human serum to assess the clinical potential of the platform. The overall goal is to develop a test applicable to both scenarios in terms of projections of required levels of detection. We demonstrate the ability to measure BoNT-A and BoNT-B in PBS at a limit of detection (LoD) of 700 pg/mL (5 pM) and 84 pg/mL (0.6 pM), respectively, and in human serum at 1200 pg/mL (8 pM) and 91 pg/mL (0.6 pM), respectively, with a time to result under 24 h. The steps required to transform this platform into an onsite biodefense screening tool that can simultaneously and rapidly detect (<1 h) these and other agents are briefly discussed. Raman-based immunoassays can successfully detect botulism neurotoxins. Limits of detection for botulism neurotoxins A/B rival those of the mouse bioassay. Serum and liquid extracts are suitable sample matrices for the Raman assay.
Collapse
Affiliation(s)
- China Y Lim
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112-5001, USA
| | - Jennifer H Granger
- Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5001, USA
| | - Marc D Porter
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112-5001, USA.,Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5001, USA.,Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-5001, USA
| |
Collapse
|
13
|
Skuratovsky A, Soto RJ, Porter MD. Adaptable Detection Strategies in Membrane-Based Immunoassays: Calibration-Free Quantitation with Surface-Enhanced Raman Scattering Readout. Anal Chem 2018; 90:7769-7776. [DOI: 10.1021/acs.analchem.8b01958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|