1
|
da Silva Cavalcante PE, Públio Rabello J, Leme J, Aragão Tejo Dias V, Correia Barrence FA, de Oliveira Guardalini LG, Consoni Bernardino T, Almeida S, Tonso A, Attie Calil Jorge S, Fernández Núñez EG. Raman laser intensity and sample clarification on biochemical monitoring over Zika-VLP upstream stages. Biochem Biophys Res Commun 2024; 733:150671. [PMID: 39298919 DOI: 10.1016/j.bbrc.2024.150671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In the current biopharmaceutical scenario, constant bioprocess monitoring is crucial for the quality and integrity of final products. Thus, process analytical techniques, such as those based on Raman spectroscopy, have been used as multiparameter tracking methods in pharma bioprocesses, which can be combined with chemometric tools, like Partial Least Squares (PLS) and Artificial Neural Networks (ANN). In some cases, applying spectra pre-processing techniques before modeling can improve the accuracy of chemometric model fittings to observed values. One of the biological applications of these techniques could have as a target the virus-like particles (VLP), a vaccine production platform for viral diseases. A disease that has drawn attention in recent years is Zika, with large-scale production sometimes challenging without an appropriate monitoring approach. This work aimed to define global models for Zika VLP upstream production monitoring with Raman considering different laser intensities (200 mW and 495 mW), sample clarification (with or without cells), spectra pre-processing approaches, and PLS and ANN modeling techniques. Six experiments were performed in a benchtop bioreactor to collect the Raman spectral and biochemical datasets for modeling calibration. The best models generated presented a mean absolute error and mean relative error respectively of 3.46 × 105 cell/mL and 35 % for viable cell density (Xv); 4.1 % and 5 % for cell viability (CV); 0.245 g/L and 3 % for glucose (Glc); 0.006 g/L and 18 % for lactate (Lac); 0.115 g/L and 26 % for glutamine (Gln); 0.132 g/L and 18 % for glutamate (Glu); 0.0029 g/L and 3 % for ammonium (NH4+); and 0.0103 g/L and 2 % for potassium (K+). Sample without conditioning (with cells) improved the models' adequacy, except for Glutamine. ANN better predicted CV, Gln, Glu, and K+, while Xv, Glc, Lac, and NH4+ presented no statistical difference between the chemometric tools. For most of the assessed experimental parameters, there was no statistical need for spectra pre-filtering, for which the models based on the raw spectra were selected as the best ones. Laser intensity impacts quality model predictions in some parameters, Xv, Gln, and K+ had a better performance with 200 mW of intensity (for PLS, ANN, and ANN, respectively), for CV the 495 mW laser intensity was better (for PLS), and for the other biochemical variables, the use of 200 or 495 mW did not impact model fitting adequacy.
Collapse
Affiliation(s)
| | - Júlia Públio Rabello
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000, São Paulo, SP, Brazil
| | - Jaci Leme
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Vinícius Aragão Tejo Dias
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000, São Paulo, SP, Brazil
| | - Fernanda Angela Correia Barrence
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000, São Paulo, SP, Brazil
| | | | - Thaissa Consoni Bernardino
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Sabrina Almeida
- Grupo de Espectroscopia. Astro34. Rua Belém, 106 - Jardim Vista Alegre, Embu das Artes - SP, CEP: 06807-340, São Paulo, SP-Brazil
| | - Aldo Tonso
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Travessa do Politécnico, 380, 05508-010, São Paulo, SP, Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Costa MHG, Carrondo I, Isidro IA, Serra M. Harnessing Raman spectroscopy for cell therapy bioprocessing. Biotechnol Adv 2024; 77:108472. [PMID: 39490752 DOI: 10.1016/j.biotechadv.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, consistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling real-time correlations between process parameters and critical quality attributes. Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics, covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize current practices and accelerate the development of advanced therapy medicinal products.
Collapse
Affiliation(s)
- Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Inês Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A Isidro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
3
|
Hara R, Kobayashi W, Yamanaka H, Murayama K, Shimoda S, Ozaki Y. Validation of the cell culture monitoring using a Raman spectroscopy calibration model developed with artificially mixed samples and investigation of model learning methods using initial batch data. Anal Bioanal Chem 2024; 416:569-581. [PMID: 38099966 DOI: 10.1007/s00216-023-05065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024]
Abstract
The development of calibration models using Raman spectra data has long been challenged owing to the substantial time and cost required for robust data acquisition. To reduce the number of experiments involving actual incubation, a calibration model development method was investigated by measuring artificially mixed samples. In this method, calibration datasets were prepared using spectra from artificially mixed samples with adjusted concentrations based on design of experiments. The precision of these calibration models was validated using the actual cell culture sample. The results showed that when the culture conditions were unchanged, the root mean square error of prediction (RMSEP) of glucose, lactate, and antibody concentrations was 0.34, 0.33, and 0.25 g/L, respectively. Even when variables such as cell line or culture media were changed, the RMSEPs of glucose, lactate, and antibody concentrations remained within acceptable limits, demonstrating the robustness of the calibration models with artificially mixed samples. To further improve accuracy, a model training method for small datasets was also investigated. The spectral pretreatment conditions were optimized using error heat maps based on the first batch of each cell culture condition and applied these settings to the second and third batches. The RMSEPs improved for glucose, lactate, and antibody concentration, with values of 0.44, 0.19, and 0.18 g/L under constant culture conditions, 0.37, 0.12, and 0.12 g/L for different cell lines, and 0.26, 0.40, and 0.12 g/L when the culture media was changed. These results indicated the efficacy of calibration modeling with artificially mixed samples for actual incubations under various conditions.
Collapse
Affiliation(s)
- Risa Hara
- Research and Development Department, Yokogawa Electric Corporation, Musashino, Tokyo, 180-8750, Japan.
| | - Wataru Kobayashi
- Life Business Department, Yokogawa Electric Corporation, Musashino, Tokyo, 180-8750, Japan
| | - Hiroaki Yamanaka
- Life Business Department, Yokogawa Electric Corporation, Musashino, Tokyo, 180-8750, Japan
| | - Kodai Murayama
- Research and Development Department, Yokogawa Electric Corporation, Musashino, Tokyo, 180-8750, Japan
- Research and Development Department, SYNCREST Inc., Fujisawa, Kanagawa, 251-8555, Japan
| | - Soichiro Shimoda
- Life Business Department, Yokogawa Electric Corporation, Musashino, Tokyo, 180-8750, Japan.
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|